JP4145254B2 - Ammonia refrigeration equipment - Google Patents

Ammonia refrigeration equipment Download PDF

Info

Publication number
JP4145254B2
JP4145254B2 JP2004025089A JP2004025089A JP4145254B2 JP 4145254 B2 JP4145254 B2 JP 4145254B2 JP 2004025089 A JP2004025089 A JP 2004025089A JP 2004025089 A JP2004025089 A JP 2004025089A JP 4145254 B2 JP4145254 B2 JP 4145254B2
Authority
JP
Japan
Prior art keywords
air
water
ammonia
heat exchanger
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004025089A
Other languages
Japanese (ja)
Other versions
JP2005214571A (en
Inventor
雅彦 熊谷
勝彦 杉田
秀晃 尾花
光雄 関
佳寛 黒川
勇二 大下
佳子 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Tokyo Electric Power Co Holdings Inc
Original Assignee
TOYO. SS. CO., LTD.
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD., Tokyo Electric Power Co Inc filed Critical TOYO. SS. CO., LTD.
Priority to JP2004025089A priority Critical patent/JP4145254B2/en
Publication of JP2005214571A publication Critical patent/JP2005214571A/en
Application granted granted Critical
Publication of JP4145254B2 publication Critical patent/JP4145254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は装置内部にアンモニア漏洩時における漏洩アンモニア除害機構を備えるアンモニア冷凍装置に関する。   The present invention relates to an ammonia refrigeration apparatus provided with a leakage ammonia abatement mechanism when ammonia leaks inside the apparatus.

アンモニアを冷媒とする冷凍装置においては、装置内における構成機器や冷媒配管の損傷あるいは冷媒配管の接続部における緩みなどに起因するアンモニア冷媒の漏洩事故が発生するおそれがある。   In a refrigeration apparatus using ammonia as a refrigerant, there is a risk that a leakage accident of ammonia refrigerant may occur due to damage to components or refrigerant piping in the apparatus or looseness at a connection portion of the refrigerant pipe.

アンモニアは有毒であるので、万が一アンモニア冷媒が漏れた場合にはアンモニアガスが装置外部に高濃度のまま放出されないようにする必要があり、従来からアンモニアの水への溶解度の高さを利用してアンモニアガスが含まれる空気を水と接触せしめ、空気中のアンモニア濃度を低減する除害手段を備える装置がある。   Since ammonia is toxic, in the unlikely event that ammonia refrigerant leaks, it is necessary to prevent the ammonia gas from being released at a high concentration outside the device. Conventionally, using the high solubility of ammonia in water, There is an apparatus provided with an abatement means for reducing the concentration of ammonia in air by bringing air containing ammonia gas into contact with water.

従来の除害手段としては装置のケーシング内に直接水を散布し、散布した水と装置内のアンモニアガスを高濃度に含む空気とを接触させて水にアンモニアを溶け込ませ、アンモニアが溶け込んだ水を回収する散水方式の除害手段(特許文献1参照)や、ケーシング内の空気を外部のスクラバー装置に導出し、このスクラバー装置内に散布される水とケーシング内からの空気を接触させて水にアンモニアを溶解させて回収し、水との接触によりアンモニア濃度が低下した空気をスクラバー装置から大気に放出するスクラバー方式の除害手段(特許文献2および3参照)がある。   As conventional detoxification means, water is sprayed directly into the casing of the apparatus, the sprayed water is brought into contact with air containing a high concentration of ammonia gas in the apparatus to dissolve ammonia in the water, and water in which ammonia is dissolved Water spray type abatement means (see Patent Document 1) for recovering water, and the air in the casing is led to an external scrubber device, and the water sprayed in the scrubber device and the air from the casing are brought into contact with each other. There is a scrubber-type abatement means (see Patent Documents 2 and 3) in which ammonia is dissolved and recovered, and air whose ammonia concentration has been lowered by contact with water is released from the scrubber device to the atmosphere.

上述した散水方式およびスクラバー方式のものは、漏洩したアンモニアの全量を水に溶解せしめてアンモニア溶解後の水を回収する構成となっており、外部から常に除害用の水を大量に供給するか、あるいは除害用の水を大量に蓄えておかなければならず、アンモニア溶解後の水の中和処理等の無害化処理に多大な費用が嵩むという問題がある。   The above-mentioned watering method and scrubber method are configured to dissolve all the leaked ammonia in water and recover the water after dissolving the ammonia. Alternatively, a large amount of water for detoxification must be stored, and there is a problem that enormous costs are required for detoxification treatment such as neutralization of water after dissolution of ammonia.

また、除害用の水を大量に蓄える場合には装置寸法が大となって装置コストが嵩み、しかも装置の設置スペースが大となるという問題もある。
特開2001−99447(第1〜5頁、図1および図2) 特開2001−347127(第1〜4頁、図1および図2) 特開2001−145819(第1〜10頁、図1)
Further, when a large amount of water for detoxification is stored, there is a problem that the size of the apparatus becomes large, the apparatus cost increases, and the installation space for the apparatus increases.
JP 2001-99447 (pages 1 to 5, FIGS. 1 and 2) JP-A-2001-347127 (pages 1 to 4, FIGS. 1 and 2) JP 2001-145819 (pages 1 to 10, FIG. 1)

本発明は、除害機構によって周囲に影響を与えない程度にアンモニア濃度を低減せしめた空気をさらに大量の新鮮外気によってアンモニア臭気の殆どしない安全な濃度にまで希釈して大気に放出することにより、除害用の水の使用量が少なくて済み、しかも構成が簡単でコンパクトであり、ケーシング内の漏洩アンモニアガスを高濃度のまま放出することのない安全なアンモニア冷凍装置を提供できるようにすることを課題とする。   By diluting the air whose ammonia concentration has been reduced to such an extent that it does not affect the surroundings by the detoxification mechanism to a safe concentration with almost no ammonia odor by a large amount of fresh outside air, and releasing it to the atmosphere, To provide a safe ammonia refrigeration apparatus that requires a small amount of water for detoxification, has a simple structure, is compact, and does not release leaked ammonia gas in the casing in a high concentration. Is an issue.

上記目的を達成するために、本発明に係る装置は、アンモニアを冷媒とする冷媒回路を内部に備える冷凍装置のケーシング内に水槽を備え、この水槽内の水とケーシング内の空気とを接触させてから水と空気とを分離し、分離された水を水槽に戻し、かつ分離された空気を排出管に送出する除害機構を備え、また、空気入口と空気出口を有し、同空気出口に送風機を備え、前記冷媒回路の収容部分とは仕切られた空気通路を備え、この空気通路内に前記除害機構の排出管の外端部を開口せしめ、前記冷媒回路からアンモニアが漏洩した場合には、前記除外機構によってアンモニア濃度が低下された空気が前記排出管により前記空気通路に排出され、前記送風機の駆動により空気通路を流過する大量の外気と排気管からの空気が送風機によって攪拌されるとともに希釈され、極めてアンモニア濃度の低い安全な空気とされて大気に放出されるようにした構成のものとしてある。
In order to achieve the above object, an apparatus according to the present invention includes a water tank in a casing of a refrigeration apparatus provided with a refrigerant circuit using ammonia as a refrigerant, and makes the water in the water tank contact the air in the casing. It has a detoxification mechanism that separates water and air, returns the separated water to the water tank, and sends the separated air to the discharge pipe, and has an air inlet and an air outlet. When the air leaks from the refrigerant circuit by providing an air passage that is partitioned from the accommodating portion of the refrigerant circuit, and opening an outer end portion of the discharge pipe of the abatement mechanism in the air passage. The air whose ammonia concentration has been reduced by the exclusion mechanism is discharged to the air passage by the discharge pipe, and a large amount of outside air flowing through the air passage by driving the blower and the air from the exhaust pipe are blown by the blower. Diluted with the拌is a very low ammonia concentrations is a safe air having a structure which is to be discharged to the atmosphere.

また前記空気通路内に、前記冷媒回路の外気側熱交換器を設け、この外気側熱交換器を蒸発式熱交換器で構成し、この蒸発式熱交換器に散布する冷却用の水を前記水槽から供給し、冷却用水と除害用水とを兼用するようにした構成のものとしてある。   Further, an outside air side heat exchanger of the refrigerant circuit is provided in the air passage, the outside air side heat exchanger is constituted by an evaporating heat exchanger, and cooling water sprayed on the evaporating heat exchanger is Supplying from the water tank, the cooling water and the detoxifying water are combined.

以下、本発明に係る装置の実施例を添付図面に示す具体例に基づいて詳細に説明する。
ケーシング1の上部には、ケーシング上面に開口する空気入口1aから同じくケーシング上面に開口する空気出口1bに至る空気通路2が形成されていて、この空気通路は入口側の下向部の下部と出口側の上向部の下部との間が横向部にて連絡する略U字状を呈しており、横向部の下面は中央部に向って下傾するドレンパンを兼ねる仕切板3によってケーシング内の下部と区画されていて、仕切板3の最下部にドレン口4が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the apparatus according to the present invention will be described below in detail based on specific examples shown in the accompanying drawings.
An air passage 2 is formed in the upper portion of the casing 1 from an air inlet 1a that opens to the upper surface of the casing to an air outlet 1b that also opens to the upper surface of the casing. The lower part in the casing is formed by a partition plate 3 that also serves as a drain pan inclined downward toward the center part. A drain port 4 is provided at the lowermost part of the partition plate 3.

上記下向部内には、蒸発式凝縮器よりなる外気側熱交換器5が設けられていて、同熱交換器の上方における下向部内に散水ノズル6が設けられている。   An outside air side heat exchanger 5 made of an evaporative condenser is provided in the downward portion, and a water spray nozzle 6 is provided in the downward portion above the heat exchanger.

また、上記空気出口1bには送風機7が設けられていて、送風機7の駆動により空気入口1aから空気通路2内に流入した空気は前記外気側熱交換器5を流過して空気出口1bから外部へ排出されるようになっている。   The air outlet 1b is provided with a blower 7, and the air flowing into the air passage 2 from the air inlet 1a by the drive of the blower 7 flows through the outside air heat exchanger 5 from the air outlet 1b. It is designed to be discharged outside.

前記ケーシング1内の前記仕切板3で区画された下部には、四方弁24、圧縮機8、第1膨張弁9a、第2膨張弁9b、負荷側熱交換器10が設けられていて、四方弁24の操作により冷却運転と加熱運転が切り替えられる構成となっている。なお、図1における四方弁24は冷却運転時の弁の連通状態を太線で示し、加熱運転時の弁の連通状態を破線で示してある。   A four-way valve 24, a compressor 8, a first expansion valve 9 a, a second expansion valve 9 b, and a load-side heat exchanger 10 are provided at the lower part of the casing 1 that is partitioned by the partition plate 3. The cooling operation and the heating operation can be switched by operating the valve 24. In FIG. 1, the four-way valve 24 indicates a valve communication state during the cooling operation by a bold line, and a valve communication state during the heating operation by a broken line.

より詳しくは、冷却運転時には圧縮機8の吐出側から送り出されたアンモニア冷媒ガスが四方弁24を経て外気側熱交換器5に送られて液化し、逆止弁25、第2膨張弁9bを経て負荷側熱交換器10に送られて蒸発し、負荷側熱交換器からの冷媒が四方弁24を経て圧縮機の吸入側に戻され、加熱運転時には圧縮機8の吐出側から送り出された冷媒ガスが四方弁24を経て負荷側熱交換器10に送られて液化し、逆止弁26、第1膨張弁9aを経て外気側熱交換器5に送られて蒸発し、外気側熱交換器からの冷媒が四方弁24を経て圧縮機の吸入側に戻されるように冷媒回路が構成されている。   More specifically, during the cooling operation, the ammonia refrigerant gas sent from the discharge side of the compressor 8 is sent to the outside air heat exchanger 5 through the four-way valve 24 and liquefied, and the check valve 25 and the second expansion valve 9b are turned on. Then, it is sent to the load side heat exchanger 10 to evaporate, and the refrigerant from the load side heat exchanger is returned to the suction side of the compressor through the four-way valve 24, and sent out from the discharge side of the compressor 8 during the heating operation. The refrigerant gas is sent to the load side heat exchanger 10 through the four-way valve 24 and liquefied, sent to the outside air side heat exchanger 5 through the check valve 26 and the first expansion valve 9a, and evaporated, and the outside air side heat exchange. The refrigerant circuit is configured so that the refrigerant from the compressor is returned to the suction side of the compressor via the four-way valve 24.

上記負荷側熱交換器10は、冷媒の気化潜熱によってブラインや水等の冷熱媒体を冷却し、または圧縮機からの吐出ガスによって冷熱媒体を加熱し、負荷側熱交換器からの冷熱媒体は例えば被空調室に設けられた各空調用熱交換器11に供給されるようになっている。   The load side heat exchanger 10 cools a cooling medium such as brine or water by the vaporization latent heat of the refrigerant, or heats the cooling medium by a discharge gas from the compressor, and the cooling medium from the load side heat exchanger is, for example, It is supplied to each heat exchanger 11 for air conditioning provided in the air-conditioned room.

また、前記ケーシング1の内底部には前記散水ノズル6に供給する水を蓄える水槽12を設けてあって、同水槽12内に一端が臨む送水管13の他端が送水ポンプ14を介して散水ノズル6に接続されている。   Further, a water tank 12 for storing water to be supplied to the watering nozzle 6 is provided at the inner bottom of the casing 1, and the other end of the water supply pipe 13 having one end facing the water tank 12 is sprinkled through the water supply pump 14. It is connected to the nozzle 6.

上記送水管13の水槽側端部にはフィルタ15が設けられており、また、送水管の途中における送水ポンプ14の下流側には浄化装置16が設けられていて、これらフィルタおよび浄化装置によって水中の不純物をできるだけ除去するようにしてある。   A filter 15 is provided at the water tank side end of the water supply pipe 13, and a purification device 16 is provided downstream of the water supply pump 14 in the middle of the water supply pipe. The impurities are removed as much as possible.

さらに、前記空気通路2の最下部におけるドレン口4に一端が接続された排水管17の他端が水槽12内に臨んでおり、この排水管の途中には後述する排水バルブ21を設けてあり、これら排水管と排水バルブで排水手段を構成してある。
なお、水槽12内への水の補給は給水管18によって適宜行なわれるようになっている。
Further, the other end of a drain pipe 17 having one end connected to the drain port 4 at the lowermost part of the air passage 2 faces the water tank 12, and a drain valve 21 described later is provided in the middle of the drain pipe. These drain pipes and drain valves constitute drain means.
In addition, the water supply to the water tank 12 is appropriately performed by the water supply pipe 18.

また、前記送水管13の途中には分岐注水管19の一端が接続されていて、この分岐注水管の他端注水口は注水バルブ20を介して空気通路2内に臨んでおり、前記送水ポンプ14の駆動によって注水口から空気通路2内に水を供給する注水手段を構成している。   One end of a branch water injection pipe 19 is connected to the water supply pipe 13 and the other water inlet of the branch water supply pipe faces the air passage 2 through a water injection valve 20. A water injection means for supplying water from the water injection port into the air passage 2 by driving 14 is configured.

上記注水バルブ20は、前記冷媒回路にて冷却運転が行なわれている間は閉止されているが、冷却運転が停止すると所定時間開成されて前記水槽12内の水を空気通路2内に所要の高さHLまで注水し、再び閉ざされる構成のものとしてある。   The water injection valve 20 is closed while the cooling operation is performed in the refrigerant circuit. However, when the cooling operation is stopped, the water injection valve 20 is opened for a predetermined time, and water in the water tank 12 is supplied to the air passage 2 as required. Water is poured up to a height HL, and the structure is closed again.

また、前記排水管17の途中には前記排水バルブ21を設けてあって、同排水バルブは前記冷媒回路における冷却運転が行なわれている間は開かれているが、冷却運転が停止すると閉止され、再び冷却運転が開始される前に開成される構成のものとしてある。
なお、上記排水バルブ21は、後述する除害運転時にも開かれる。
Further, the drain valve 21 is provided in the middle of the drain pipe 17, and the drain valve is opened while the cooling operation in the refrigerant circuit is being performed, but is closed when the cooling operation is stopped. The configuration is established before the cooling operation is started again.
The drain valve 21 is also opened during a detoxification operation described later.

しかして、本発明の装置はアンモニアの除害機構を備えており、以下にその構成について説明する。
前記水槽12は仕切板27によって1次水槽12Aと2次水槽12Bに区画されていて、2次水槽からのオーバーフローが1次水槽に流入する構成となっている。
Thus, the apparatus of the present invention is equipped with an ammonia detoxifying mechanism, and the configuration thereof will be described below.
The water tank 12 is divided into a primary water tank 12A and a secondary water tank 12B by a partition plate 27, and an overflow from the secondary water tank flows into the primary water tank.

上記1次水槽12Aと2次水槽12B内にはそれぞれ1次送水管28と2次送水管29の一端が臨んでいて、各送水管の途中にはポンプ30と吸気手段たるエジェクタ31と気液混合手段たるスタティックミキサ32を備え、各送水管の他端には気液分離手段たる気液分離器33が設けられていて各気液分離器の液相は各水槽に臨み、1次送水管28側の気液分離器33の気相に一端が接続された送気管34の他端は2次送水管29側のスタティックミキサ32の吸気口に接続され、2次送水管29側の気液分離器33の気相に一端が接続された排出管35の外端たる排出口22がケーシング1外に臨んでいる。   One end of a primary water supply pipe 28 and a secondary water supply pipe 29 face the primary water tank 12A and the secondary water tank 12B, respectively, and a pump 30, an ejector 31 serving as an intake means, and a gas-liquid are located in the middle of each water supply pipe. A static mixer 32 serving as a mixing means is provided, and a gas-liquid separator 33 serving as a gas-liquid separating means is provided at the other end of each water pipe. The liquid phase of each gas-liquid separator faces each water tank, and the primary water pipe. The other end of the air supply pipe 34 connected at one end to the gas phase of the gas-liquid separator 33 on the 28 side is connected to the intake port of the static mixer 32 on the secondary water supply pipe 29 side, and the gas-liquid on the secondary water supply pipe 29 side. A discharge port 22 as an outer end of the discharge pipe 35 having one end connected to the gas phase of the separator 33 faces the outside of the casing 1.

なお、各送水管28、29の水槽側端にはそれぞれ不純物の流入を防止するためのフィルタ36が設けられている。   A filter 36 for preventing the inflow of impurities is provided at the water tank side ends of the water pipes 28 and 29, respectively.

次ぎに、上述のように構成された本発明の装置の作用について説明する。
通常の冷却運転時には、前記注水バルブ20が閉ざされ、かつ排水バルブ21が開かれた状態で、前記送水ポンプ14、送風機7および圧縮機8が駆動される。
Next, the operation of the apparatus of the present invention configured as described above will be described.
During the normal cooling operation, the water supply pump 14, the blower 7, and the compressor 8 are driven with the water injection valve 20 closed and the drain valve 21 opened.

水槽12内の水は送水ポンプ14によって散水ノズル6から散布され、外気側熱交換器5を冷却して仕切板3に滴下し、ドレン口4から排水管17によって水槽12に戻される。   Water in the water tank 12 is sprayed from the water spray nozzle 6 by the water supply pump 14, the outside air side heat exchanger 5 is cooled and dropped onto the partition plate 3, and returned from the drain port 4 to the water tank 12 through the drain pipe 17.

しかして圧縮機8から吐出された冷媒は、四方弁24を経て外気側熱交換器5に送られ、散水ノズル6から散布される水の蒸発潜熱で冷却されて液化し、逆止弁25により第1膨張弁9aをバイパスし、第2膨張弁9bにて減圧されて負荷側熱交換器10内で気化し、被空調室の空調用熱交換器11に供給されるブラインや水と熱交換し、四方弁24を経て圧縮機8へ戻される。   Thus, the refrigerant discharged from the compressor 8 is sent to the outside air heat exchanger 5 through the four-way valve 24, cooled and liquefied by the latent heat of evaporation of water sprayed from the water spray nozzle 6, and is liquefied by the check valve 25. Bypassing the first expansion valve 9a, the pressure is reduced by the second expansion valve 9b, vaporized in the load-side heat exchanger 10, and heat exchange with brine and water supplied to the air-conditioning heat exchanger 11 of the air-conditioned room Then, it is returned to the compressor 8 through the four-way valve 24.

圧縮機8の駆動が停止され、すなわち冷却運転が停止されると送風機7も停止され、注水バルブ20が開成されるとともに排水バルブ21が閉止されるが、送水ポンプ14は駆動状態が維持される。   When the driving of the compressor 8 is stopped, that is, when the cooling operation is stopped, the blower 7 is also stopped, the water injection valve 20 is opened and the drain valve 21 is closed, but the water pump 14 is maintained in the driving state. .

上記送水ポンプ14の駆動により、水槽12内の水が散水ノズル6および分岐注水管19から空気通路2内に送られて溜まり、外気側熱交換器5全体が水に漬かる水位HLに達すると送水ポンプの駆動が停止される。なお、送水ポンプの駆動停止は、タイマ制御による場合もあるし、空気通路2内にフロートスイッチ等の上限水位を検知するセンサを設ける場合もある。   When the water pump 14 is driven, the water in the water tank 12 is sent from the water spray nozzle 6 and the branch water injection pipe 19 into the air passage 2 and accumulated. When the outside air side heat exchanger 5 reaches the water level HL where it is immersed in water, the water is supplied. The pump drive is stopped. In addition, the drive stop of the water pump may be performed by timer control, or a sensor for detecting an upper limit water level such as a float switch may be provided in the air passage 2.

上述のように、冷却運転の停止時に外気側熱交換器5が水に漬けられると、外気側熱交換器に散布された水中の不純物が同熱交換器の表面に附着していても、同熱交換器の表面は乾燥されないので、不純物が析出するおそれがなく、したがって、外気側熱交換器表面の伝熱性能の低下が防止される。   As described above, when the outside air heat exchanger 5 is immersed in water when the cooling operation is stopped, even if impurities in the water sprayed on the outside air heat exchanger are attached to the surface of the heat exchanger, the same Since the surface of the heat exchanger is not dried, there is no possibility of impurities being deposited, and therefore, a decrease in heat transfer performance on the surface of the outside air heat exchanger is prevented.

冷却運転を開始する際には、まず排水バルブ21が開成されて空気通路2内の水が排水管17から水槽12に戻され、その後圧縮機8および送風機7が駆動されるとともに送水ポンプ14が駆動され、通常の冷却運転が開始される。なお、圧縮機8等の駆動開始は、排水バルブ21が開成されてから空気通路2内の水が全て排出されるまでの時間を予めタイマにセットしておいてこのタイマにより制御する場合もあるし、空気通路2内にフロートスイッチ等の下限水位を検知するセンサを設け、このセンサにより制御する場合もある。   When the cooling operation is started, first, the drain valve 21 is opened, and the water in the air passage 2 is returned from the drain pipe 17 to the water tank 12, and then the compressor 8 and the blower 7 are driven and the water pump 14 is turned on. Driven and normal cooling operation is started. The start of driving of the compressor 8 and the like may be controlled by this timer by setting in advance a time from when the drain valve 21 is opened until all the water in the air passage 2 is discharged. In some cases, a sensor for detecting a lower limit water level such as a float switch is provided in the air passage 2 and is controlled by this sensor.

本実施例の冷凍装置は、上述した冷却運転以外に加熱運転も行なうことができるヒートポンプ式のものとしてあり、加熱運転時の作用について以下に説明する。   The refrigeration apparatus of the present embodiment is of a heat pump type that can perform a heating operation in addition to the cooling operation described above, and the operation during the heating operation will be described below.

加熱運転時には、に外気側熱交換器5への散水が停止され、具体的には前記散水ポンプ14が常時停止、注水バルブ20が常に閉ざされ、かつ排水バルブ21が開かれた状態で、前記送風機7および圧縮機8が駆動される。   During the heating operation, water spraying to the outside air heat exchanger 5 is stopped. Specifically, the water spray pump 14 is always stopped, the water injection valve 20 is always closed, and the drain valve 21 is opened. The blower 7 and the compressor 8 are driven.

しかして圧縮機8から吐出された冷媒は、四方弁24を経て負荷側熱交換器10に送られ、外部の空調用熱交換器11から送られる水やブライン等の冷熱媒体と熱交換させられて液化し、逆止弁26により第2膨張弁9bをバイパスし、第1膨張弁9aにて減圧されて外気側熱交換器5内で気化し、空気通路2内を流過する外気と熱交換し、四方弁24を経て圧縮機8へ戻される。   Thus, the refrigerant discharged from the compressor 8 is sent to the load-side heat exchanger 10 through the four-way valve 24 and is heat-exchanged with a cooling medium such as water or brine sent from the external air conditioning heat exchanger 11. Liquefied, bypassed the second expansion valve 9b by the check valve 26, depressurized by the first expansion valve 9a, vaporized in the outside air heat exchanger 5, and the outside air and heat flowing through the air passage 2 They are exchanged and returned to the compressor 8 via the four-way valve 24.

圧縮機8の駆動が停止され、すなわち加熱運転が停止されると送風機7も停止され、送水ポンプ14も加熱運転時と同様に停止されたままとされる。   When the driving of the compressor 8 is stopped, that is, when the heating operation is stopped, the blower 7 is also stopped, and the water pump 14 is also stopped as in the heating operation.

上述したように、加熱運転時においては外気側熱交換器5への散水は行なわれず、同熱交換器表面へのスケール析出のおそれはないので、空気通路2内への水の貯留は行なわない。   As described above, during the heating operation, water is not sprayed to the outside air heat exchanger 5 and there is no possibility of scale deposition on the surface of the heat exchanger, so water is not stored in the air passage 2. .

しかして、冷媒回路からアンモニアが漏洩すると、ケーシング内のアンモニアセンサ37が漏洩を検知し、同センサからの信号により圧縮機8の運転が停止されるとともに、散水用の送水ポンプ14の駆動も停止され、また、負荷側熱交換器10や空調用熱交換器11へのブライン・水の循環も停止される。なお、送風機7は停止されない。   If ammonia leaks from the refrigerant circuit, the ammonia sensor 37 in the casing detects the leak, and the operation of the compressor 8 is stopped by the signal from the sensor, and the drive of the watering pump 14 for watering is also stopped. In addition, the circulation of brine / water to the load side heat exchanger 10 and the air conditioner heat exchanger 11 is also stopped. The blower 7 is not stopped.

また、除害機構における送水管28、29のポンプ30、30が駆動され、1次送水管28により1次水槽12A内から吸入された水はエジェクタ31を経てスタティックミキサ32に送られ、このスタティックミキサにおいて上記エジェクタ31において導入されたケーシング内のアンモニアガスを含む空気と十分に攪拌混合され、空気中のアンモニアが水に溶解され、空気中のアンモニア濃度が低下させられる。   Further, the pumps 30 and 30 of the water supply pipes 28 and 29 in the detoxification mechanism are driven, and the water sucked from the primary water tank 12A by the primary water supply pipe 28 is sent to the static mixer 32 through the ejector 31, and this static In the mixer, the air containing the ammonia gas in the casing introduced in the ejector 31 is sufficiently stirred and mixed, so that the ammonia in the air is dissolved in water and the ammonia concentration in the air is lowered.

そしてスタティックミキサからの水と空気は気液分離器33において気相と液相に分離され、液相の水は1次水槽12Aに戻され、気相の空気は2次送水管29に送られる。なお、2次送水管29に送られる空気は1次水槽の水との接触によりケーシング内空気よりも十分にアンモニア濃度が低下している。   Water and air from the static mixer are separated into a gas phase and a liquid phase in the gas-liquid separator 33, the liquid phase water is returned to the primary water tank 12 </ b> A, and the gas phase air is sent to the secondary water supply pipe 29. . The air sent to the secondary water supply pipe 29 has a sufficiently lower ammonia concentration than the air in the casing due to contact with the water in the primary water tank.

2次送水管29においては、2次水槽12Bからポンプ30により吸入された水中にエジェクタ31により、上述した1次送水管側気液分離器からの空気が導入され、これらがスタティックミキサ32で攪拌混合されて気液分離器33に送られ、液相は2次水槽に戻され、気相の空気すなわちさらにアンモニア濃度が低下した空気が排出管35によって排出口22からケーシング外における送風機7の入口側に排出され、さらに空気通路2内を流過する大量の外気によって希釈されて十分に安全であり、かつアンモニア臭気の殆どしないアンモニア濃度の空気となって放出される。   In the secondary water supply pipe 29, air from the above-mentioned primary water supply pipe side gas-liquid separator is introduced into the water sucked by the pump 30 from the secondary water tank 12 </ b> B by the ejector 31, and these are stirred by the static mixer 32. After being mixed and sent to the gas-liquid separator 33, the liquid phase is returned to the secondary water tank, and the gas-phase air, that is, the air whose ammonia concentration has been lowered is discharged from the discharge port 22 to the inlet of the blower 7 outside the casing by the discharge pipe 35. Further, it is diluted by a large amount of outside air that flows through the air passage 2 and is sufficiently safe, and is released as air having an ammonia concentration that has almost no ammonia odor.

そして排出管から空気通路2内に流入した低濃度のアンモニアを含む空気は、送風機入口側の負圧により吸引されるとともに、送風機によって攪拌されて空気通路内に導入された新鮮外気と攪拌され、よりアンモニア濃度の低い安全な空気となって排出される。
なお、排出管からの空気と上記新鮮外気の攪拌をより充分に行なうことを目的として、送風機の羽根の角度をより攪拌作用の高いものに設定する場合もあるし、排出管の端部を分岐せしめて送風機の吸入側における複数箇所に排出口を開口せしめる場合もある。
And the air containing low-concentration ammonia that has flowed into the air passage 2 from the discharge pipe is sucked by the negative pressure on the inlet side of the blower and stirred with fresh outside air that has been stirred by the blower and introduced into the air passage, It is discharged as safe air with a lower ammonia concentration.
In order to sufficiently stir the air from the discharge pipe and the fresh outside air, the blade angle of the blower may be set to a higher stirring action, or the end of the discharge pipe may be branched. In some cases, discharge ports may be opened at a plurality of locations on the suction side of the blower.

ケーシング1内の空気は1次水槽12A側のエジェクタ31に吸引されるので、ケーシング内は負圧となり、ケーシング内の空気が前記排出管35を経ずに外部へアンモニアが高濃度のまま漏出するおそれはない。なお、ケーシング内には空気取入通気口23からの新鮮外気が導入され、ケーシング内の空気中のアンモニア濃度は徐々に減少する。   Since the air in the casing 1 is sucked into the ejector 31 on the primary water tank 12A side, the pressure in the casing becomes negative, and the air in the casing leaks out to the outside without passing through the discharge pipe 35 with a high concentration of ammonia. There is no fear. In addition, fresh fresh air from the air intake vent 23 is introduced into the casing, and the ammonia concentration in the air in the casing gradually decreases.

上述した実施例では除害機構を1次送水管と2次送水管において気液の接触を行なう2段構成のものとしてあるが、この構成を1段のものとする場合や、3段以上のものとする場合もある。   In the embodiment described above, the abatement mechanism has a two-stage configuration in which the gas-liquid contact is made in the primary water supply pipe and the secondary water supply pipe. In some cases.

本発明の装置によれば、ケーシング内にアンモニアが漏洩すると、アンモニアを高濃度に含むケーシング内の空気が水槽内の水と接触させられて空気中のアンモニアが水に溶解され、アンモニア濃度が低下した空気が分離されて排出管から空気流路に排出され、さらに空気流路を流過する大量の外気によって希釈されて極めてアンモニア濃度低い安全な空気となって大気に放出される。   According to the apparatus of the present invention, when ammonia leaks into the casing, the air in the casing containing a high concentration of ammonia is brought into contact with the water in the water tank, so that the ammonia in the air is dissolved in the water, and the ammonia concentration decreases. The separated air is separated and discharged from the discharge pipe to the air flow path, and is further diluted by a large amount of outside air flowing through the air flow path to be released into the atmosphere as safe air having a very low ammonia concentration.

したがって、除害機構によってケーシング内空気中のアンモニアを全量除去する必要は無く、除害機構の構成を簡素化することができるとともに水槽の容量も小なるものとすることができ、装置を簡単かつ省スペースで低コストな構成のものとすることができる。   Therefore, it is not necessary to remove all the ammonia in the air in the casing by the abatement mechanism, the configuration of the abatement mechanism can be simplified, the capacity of the water tank can be reduced, and the apparatus can be simplified and A space-saving and low-cost configuration can be obtained.

本発明に係る装置の実施例を示す縦断面図。The longitudinal section showing the example of the device concerning the present invention.

符号の説明Explanation of symbols

1 ケーシング
2 空気通路
3 仕切板
4 ドレン口
5 外気側熱交換器
6 散水ノズル
7 送風機
8 圧縮機
9a 第1膨張弁
9b 第2膨張弁
10 負荷側熱交換器
11 空調用熱交換器
12 水槽
13 送水管
14 送水ポンプ
15 フィルタ
16 浄化装置
17 排水管
18 給水管
19 分岐注水管
20 注水バルブ
21 排水バルブ
22 排出口
23 空気取入口
24 四方弁
25、26 逆止弁
27 仕切板
28 1次送水管
29 2次送水管
30 ポンプ
31 エジェクタ
32 スタティックミキサ
33 気液分離器
34 送気管
35 排出管
36 フィルタ
37 アンモニアセンサ
DESCRIPTION OF SYMBOLS 1 Casing 2 Air passage 3 Partition plate 4 Drain port 5 Outside air side heat exchanger 6 Sprinkling nozzle 7 Blower 8 Compressor 9a 1st expansion valve 9b 2nd expansion valve 10 Load side heat exchanger 11 Air conditioning heat exchanger 12 Water tank 13 Water supply pipe 14 Water supply pump 15 Filter 16 Purification device 17 Drainage pipe 18 Water supply pipe 19 Branch water injection pipe 20 Water injection valve 21 Drainage valve 22 Discharge port 23 Air intake 24 Four-way valve 25, 26 Check valve 27 Partition plate 28 Primary water supply pipe 29 Secondary water supply pipe 30 Pump 31 Ejector 32 Static mixer 33 Gas-liquid separator 34 Air supply pipe 35 Discharge pipe 36 Filter 37 Ammonia sensor

Claims (3)

アンモニアを冷媒とする冷媒回路を内部に備える冷凍装置のケーシング内に水槽を備え、この水槽内の水とケーシング内の空気とを接触させてから水と空気とを分離し、分離された水を水槽に戻し、かつ分離された空気を排出管に送出する除害機構を備え、また、空気入口と空気出口を有し、同空気出口に送風機を備え、前記冷媒回路の収容部分とは仕切られた空気通路を備え、この空気通路内に前記除害機構の排出管の外端部を開口せしめ、前記冷媒回路からアンモニアが漏洩した場合には、前記除外機構によってアンモニア濃度が低下された空気が前記排出管により前記空気通路に排出され、前記送風機の駆動により空気通路を流過する大量の外気と排気管からの空気が送風機によって攪拌されるとともに希釈され、極めてアンモニア濃度の低い安全な空気とされて大気に放出されるように構成してなるアンモニア冷凍装置。
A water tank is provided in a casing of a refrigeration apparatus that includes a refrigerant circuit that uses ammonia as a refrigerant. The water in the water tank and the air in the casing are brought into contact with each other, and then the water and the air are separated. It has a detoxifying mechanism that returns to the water tank and sends the separated air to the discharge pipe, and has an air inlet and an air outlet, and has a blower at the air outlet, and is separated from the housing part of the refrigerant circuit. When the outer end portion of the discharge pipe of the abatement mechanism is opened in the air passage and ammonia leaks from the refrigerant circuit, the air whose ammonia concentration has been reduced by the exclusion mechanism A large amount of outside air that is discharged to the air passage by the exhaust pipe and flows through the air passage by driving the blower and the air from the exhaust pipe are stirred and diluted by the blower, and are extremely concentrated in ammonia. It is a less secure air and constructed ammonia refrigerating apparatus comprising to be released into the atmosphere.
前記空気通路内に、前記冷媒回路の外気側熱交換器を設けてなる請求項1に記載の除害機構を備えるアンモニア冷凍装置。   The ammonia refrigeration apparatus provided with the abatement mechanism according to claim 1, wherein an outside air heat exchanger of the refrigerant circuit is provided in the air passage. 前記外気側熱交換器を蒸発式熱交換器で構成し、この蒸発式熱交換器に散布する冷却用の水を前記水槽から供給し、冷却用水と除害用水とを兼用するように構成してなる請求項2に記載のアンモニア冷凍装置。   The outside air side heat exchanger is configured by an evaporative heat exchanger, and cooling water sprayed on the evaporative heat exchanger is supplied from the water tank so that the cooling water and the detoxifying water are combined. The ammonia refrigeration apparatus according to claim 2.
JP2004025089A 2004-02-02 2004-02-02 Ammonia refrigeration equipment Expired - Lifetime JP4145254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025089A JP4145254B2 (en) 2004-02-02 2004-02-02 Ammonia refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025089A JP4145254B2 (en) 2004-02-02 2004-02-02 Ammonia refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2005214571A JP2005214571A (en) 2005-08-11
JP4145254B2 true JP4145254B2 (en) 2008-09-03

Family

ID=34907561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025089A Expired - Lifetime JP4145254B2 (en) 2004-02-02 2004-02-02 Ammonia refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4145254B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424430C (en) * 2006-09-26 2008-10-08 江苏友奥电器有限公司 Mobile air conditioner with internal water tank capable of adding water to cool
JP5591678B2 (en) * 2010-12-15 2014-09-17 ホシザキ電機株式会社 Storage
EP4273478A4 (en) * 2021-01-04 2024-05-29 Qingdao Haier Refrigerator Co., Ltd Refrigerator

Also Published As

Publication number Publication date
JP2005214571A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US8727325B2 (en) Method, apparatus and system for concentrating solutions using evaporation
KR101433977B1 (en) System and method for managing water content in a fluid
EP2861919B1 (en) Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
JP2011047528A (en) Evaporation type condenser, cooling device, and scale removing method of the evaporation type condenser
KR102464461B1 (en) Vaporization system for treating high salinity and high concentration wastewater
WO2011043878A1 (en) Absorption system
JP2009292318A (en) Heat exchanger
JP4145254B2 (en) Ammonia refrigeration equipment
JP4660311B2 (en) Engine exhaust treatment device and engine driven heat pump device
JP4362383B2 (en) Detoxification device for ammonia refrigeration equipment
JP4941676B2 (en) Air conditioning system
WO2004090442A1 (en) Refrigeration device
JP4317767B2 (en) Ammonia refrigeration system with waste ammonia water purification device
JP2005214570A (en) Ammonia refrigerator provided with neutralizing mechanism
JP3066828B1 (en) Ammonia refrigeration system leakage ammonia elimination device
JP3961352B2 (en) Refrigeration equipment
JP2006255627A (en) Dehumidifier
JP2007170698A (en) Control method of cooling device
JP4071200B2 (en) Ammonia refrigeration equipment
JP4145255B2 (en) Ammonia refrigeration equipment
JP4243036B2 (en) Engine exhaust treatment device and engine-driven heat pump device using the same
JP2006170516A (en) Air conditioner
WO2021192885A1 (en) Heat pump
JP3168015B2 (en) Aqueous solution evaporator
JP2003014331A (en) Refrigeration unit

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4145254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term