JP3961352B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3961352B2
JP3961352B2 JP2002199162A JP2002199162A JP3961352B2 JP 3961352 B2 JP3961352 B2 JP 3961352B2 JP 2002199162 A JP2002199162 A JP 2002199162A JP 2002199162 A JP2002199162 A JP 2002199162A JP 3961352 B2 JP3961352 B2 JP 3961352B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
air
outside air
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002199162A
Other languages
Japanese (ja)
Other versions
JP2004044822A (en
Inventor
英智 黒本
雅彦 熊谷
勝彦 杉田
光雄 関
佳寛 黒川
勇二 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Tokyo Electric Power Co Inc
Original Assignee
TOYO. SS. CO., LTD.
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD., Tokyo Electric Power Co Inc filed Critical TOYO. SS. CO., LTD.
Priority to JP2002199162A priority Critical patent/JP3961352B2/en
Publication of JP2004044822A publication Critical patent/JP2004044822A/en
Application granted granted Critical
Publication of JP3961352B2 publication Critical patent/JP3961352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種の冷凍機械器具や空調装置に冷熱を供給する冷凍装置に関する。
【0002】
【従来の技術とその問題点】
冷凍装置には、冷却運転時に圧縮機から吐出された冷媒ガスを液化する外気側熱交換器として蒸発式凝縮器を備えるものがあり、この蒸発式凝縮器は凝縮器に冷却用の空気を流過せしめるとともに凝縮器の表面に水を散布し、水の蒸発潜熱によって凝縮器内の冷媒ガスを冷却して液化するようになっている。
【0003】
ところで上述した蒸発式凝縮器においては、散布用の水を装置のケーシング内下部に設けた水槽に溜めておき、この水槽からポンプで汲み上げた水を散水ノズルから凝縮器へ散布し、気化せずに凝縮器を流過した水は水槽に戻されて循環するようになっている。
【0004】
散布用の水中には、空気中の塵埃や水道水に含まれるシリカ等の無機物が不純物として存在し、この不純物は散水用の水の循環に伴って徐々にその濃度が増す。
【0005】
上記不純物は散水ノズルから水が散布されている状態では凝縮器の表面に附着しても洗い流されるが、装置の運転が停止して散水がストップすると、凝縮器の表面に附着している水中の不純物は凝縮器表面の乾燥によって同表面で結晶化して析出する。
【0006】
析出した不純物はスケールと呼ばれ、凝縮器表面に強固に附着し、このスケールは装置の運転再開によって散水が再開されても容易には流れ落ちず、したがって凝縮器の表面には徐々にスケールが堆積し、凝縮器表面の伝熱性能が低下する。
【0007】
また、スケールが析出するとメンテナンスの際にスケールを剥がして除去する作業が必要になり、メンテナンスが煩雑であるという問題もある。
【0008】
上述したスケール析出の問題に対し、従来の装置においては予めスケールが析出して伝熱性能が低下することを考慮に入れて凝縮器を大型のものとしているが、装置コストが上昇し、また装置の小型化の障碍にもなる。
【0009】
なお、凝縮器の表面にフィンを設けて伝熱面積を大なるものとすれば凝縮器を小型化することができるのであるが、フィンの表面にスケールが析出すると伝熱性能の低下が著しく、スケール析出の防止を実現しない限り従来の蒸発式凝縮器にはフィンを設けることは困難である。
【0010】
【目的】
本発明の目的とするところは、外気側熱交換器の表面におけるスケールの析出が防止され、スケールによる伝熱性能の低下が殆どなくて外気側熱交換器を小型のものとすることができ、しかもメンテナンス時におけるスケール除去の作業が不要で保守、点検が容易な冷凍装置を提供することにある。
【0011】
【発明の構成】
上記目的を達成するために、本発明に係る装置は、外気側熱交換器に冷却用の空気を流過せしめるための空気通路を、同通路内に水を溜めることができる形状に構成するとともに、同空気通路内に水を供給する注水手段と、空気通路内の水を排出する排水手段とを備え、冷却運転時においては空気通路内において前記外気側熱交換器へ冷却用の水が散布され、散布された水は外気側熱交換器を流過して冷却した後、前記排水手段により排出されるが、冷却運転が停止されると前記排水手段が閉止されるとともに注水手段により空気通路内に水が貯留されて外気側熱交換器全体が水に浸漬されるようにした構成のものとしてある。
【0012】
本発明の実施態様の第1は、冷却運転時に、圧縮機から吐出された冷媒ガスが外気側熱交換器にて液化され、膨張弁を経て負荷側熱交換器に送られて気化し、その後圧縮機へ戻される冷媒回路を備える冷凍装置において、送風機の駆動により前記外気側熱交換器に同熱交換器を冷却するための空気が流過される空気通路を備え、同空気通路はケーシングの空気入口に続く下向部と同出口に至る上向部との間が横向部で連絡する略U字状を呈し、この空気通路内に、前記外気側熱交換器と、同熱交換器の上方に設けられ、同熱交換器に冷却用の水を散布する散水ノズルを備えるとともに空気通路の最下部に空気通路内の水を排出するドレン口を備え、また、前記空気通路に水を供給する注水口を備えるとともに前記ドレン口に続く排水管の途中に排水バルブを備え、冷媒回路に冷媒が循環される冷却運転中においては前記送風機が駆動されるとともに散水ノズルから外気側熱交換器へ水が散布され、かつ前記排水バルブが開かれていて外気側熱交換器を流過した水が前記ドレン口から排出されるが、冷却運転が停止されると、送風機が停止されるとともに前記排出バルブが閉止され、かつ前記注水口から空気通路内に所定の水位となるまで水が供給されて前記外気側熱交換器全体が水に浸漬され、冷却運転の開始時には前記排出バルブが開成されて空気通路内の水が排出されるとともに送風機の駆動および散水ノズルからの散水が行なわれるようにした構成のものとしてある。
【0013】
また、本発明の実施態様の第2は、前記ケーシング内下部に散水用の水を貯留する水槽を備え、同水槽内の水を前記散水ノズルに送る送水管の途中に送水ポンプを備え、同送水管の送水ポンプと散水ノズル間から分岐し、先端注水口が注水バルブを介して前記空気通路内に臨む分岐注水管を備え、かつ、前記ドレン口に一端が接続され、途中に前記排水バルブを備える排水管の他端を前記水槽に臨ませ、冷却運転時には上記注水バルブが閉止されているとともに排水バルブが開かれていて、前記送水ポンプの駆動により水槽内の水が散水ノズルから外気側熱交換器に散布され、ドレン口から排水管を経て水槽に戻されるが、冷却運転が停止されると、前記注水バルブが開かれるとともに排水バルブが閉止され、前記送水ポンプの駆動により水槽内の水が空気通路内へ外気側熱交換器全体が水に浸漬するまで供給されて貯留された後、送水ポンプの駆動が停止されるとともに注水バルブが閉止され、冷却運転が開始されると排水バルブが開成されて空気通路内の水が水槽内に戻されるとともに送水ポンプが駆動され、散水ノズルから外気側熱交換器への水の散布が行なわれるようにした構成のものとしてある。
【0014】
【実施例】
以下、本発明に係る装置の実施例を添付図面に示す具体例に基づいて詳細に説明する。
ケーシング1の上部には、ケーシング上面に開口する空気入口1aから同じくケーシング上面に開口する空気出口1bに至る空気通路2が形成されていて、この空気通路は入口側の下向部の下部と出口側の上向部の下部との間が横向部にて連絡する略U字状を呈しており、横向部の下面は中央部に向って下傾するドレンパンを兼ねる仕切板3によってケーシング内の下部と区画されていて、その最下部にドレン口4が設けられている。
【0015】
上記下向部内には、蒸発式凝縮器よりなる外気側熱交換器5が設けられていて、同熱交換器の上方における下向部内に散水ノズル6が設けられている。
【0016】
また、上記空気出口1bには送風機7が設けられていて、送風機7の駆動により空気入口1aから空気通路2内に流入した空気は前記外気側熱交換器5を流過して空気出口1bから外部へ排出されるようになっている。
【0017】
前記ケーシング1内の前記仕切板3で区画された下部には、四方弁24、圧縮機8、第1膨張弁9a、第2膨張弁9b、負荷側熱交換器10が設けられていて、四方弁24の操作により冷却運転と加熱運転が切り替えられる構成となっている。
【0018】
具体的には、冷却運転時には圧縮機8の吐出側から送り出された冷媒ガスが四方弁24を経て外気側熱交換器5に送られて液化し、逆止弁25、第2膨張弁9bを経て負荷側熱交換器10に送られて蒸発し、負荷側熱交換器からの冷媒が四方弁24を経て圧縮機の吸入側に戻され、加熱運転時には圧縮機8の吐出側から送り出された冷媒ガスが四方弁24を経て負荷側熱交換器10に送られて液化し、逆止弁26、第1膨張弁9aを経て外気側熱交換器5に送られて蒸発し、外気側熱交換器からの冷媒が四方弁24を経て圧縮機の吸入側に戻されるように冷媒回路が構成されている。
【0019】
上記負荷側熱交換器10は、冷媒の気化潜熱によってブラインや水等の冷熱媒体を冷却し、または圧縮機からの吐出ガスによって冷熱媒体を加熱し、負荷側熱交換器からの冷熱媒体は例えば被空調室に設けられた各空調用熱交換器11に供給されるようになっている。
【0020】
また、前記ケーシング1の内底部は前記散水ノズル6に供給する水を蓄える水槽12となっていて、同水槽12内に一端が臨む送水管13の他端が送水ポンプ14を介して散水ノズル6に接続されている。
【0021】
上記送水管13の水槽側端部にはフィルタ15が設けられており、また、送水管の途中における送水ポンプ14の下流側には浄化装置16が設けられていて、これらフィルタおよび浄化装置によって水中の不純物をできるだけ除去するようにしてある。
【0022】
さらに、前記空気通路2の最下部におけるドレン口4に一端が接続された排水管17の他端が水槽12内に臨んでおり、この排水管の途中には後述する排水バルブ21を設けてあり、これら排水管と排水バルブで排水手段を構成してある。なお、水槽12内への水の補給は給水管18によって適宜行なわれるようになっている。
【0023】
しかして、前記送水管13の途中には分岐注水管19の一端が接続されていて、この分岐注水管の他端注水口は注水バルブ20を介して空気通路2内に臨んでおり、前記送水ポンプ14の駆動によって注水口から空気通路2内に水を供給する注水手段を構成している。
【0024】
上記注水バルブ20は、前記冷媒回路にて冷却運転が行なわれている間は閉止されているが、冷却運転が停止すると所定時間開成されて前記水槽12内の水を空気通路2内に所要の高さHLまで注水し、再び閉ざされる構成のものとしてある。
【0025】
また、前記排水管17の途中には前記排水バルブ21を設けてあって、同排水バルブは前記冷媒回路における冷却運転が行なわれている間は開かれているが、冷却運転が停止すると閉止され、再び冷却運転が開始される前に開成される構成のものとしてある。
【0026】
なお、本実施例では冷媒がアンモニアの場合を示しており、アンモニアを冷媒として用いる場合にはアンモニアの漏洩時にアンモニアがケーシング1外へ出ないようにケーシング内を負圧にしなければならず、本実施例の装置においては前記送風機7の入口側に前記空気通路2とケーシング内とを連通する排気口22を設けてあり、ケーシング内の空気が送風機入口側の負圧により排気口から吸引されてケーシング内が負圧となるように構成してあって、ケーシング内にはケーシングの側面にあけた空気取入口23から空気が吸入されるようになっている。しかし、冷媒にアンモニア以外のものを使用する場合には上記排気口22および空気取入口23を設ける必要はない。
【0027】
次ぎに、上述のように構成された本発明の装置の作用について説明する。
通常の冷却運転時には、図2に示される動作チャートのように前記注水バルブ20が閉ざされ、かつ排水バルブ21が開かれた状態で、前記送水ポンプ14、送風機7および圧縮機8が駆動される。
【0028】
水槽12内の水は送水ポンプ14によって散水ノズル6から散布され、外気側熱交換器5を冷却して仕切板3に滴下し、ドレン口4から排水管17によって水槽12に戻される。
【0029】
しかして圧縮機8から吐出された冷媒は、図1に示されるように四方弁24を経て外気側熱交換器5に送られ、散水ノズル6から散布される水の蒸発潜熱で冷却されて液化し、逆止弁25により第1膨張弁9aをバイパスし、第2膨張弁9bにて減圧されて負荷側熱交換器10内で気化し、被空調室の空調用熱交換器11に供給されるブラインや水と熱交換し、四方弁24を経て圧縮機8へ戻される。
【0030】
圧縮機8の駆動が停止され、すなわち冷却運転が停止されると送風機7も停止され、注水バルブ20が開成されるとともに排水バルブ21が閉止されるが、送水ポンプ14は駆動状態が維持される。
【0031】
上記送水ポンプ14の駆動により、水槽12内の水が散水ノズル5および分岐注水管19から空気通路2内に送られて溜まり、外気側熱交換器5全体が水に漬かる水位HLに達すると送水ポンプの駆動が停止される。なお、送水ポンプの駆動停止は、タイマ制御による場合もあるし、空気通路2内にフロートスイッチ等の上限水位を検知するセンサを設ける場合もある。
【0032】
上述のように、冷却運転の停止時に外気側熱交換器5が水に漬けられると、外気側熱交換器に散布された水中の不純物が同熱交換器の表面に附着していても、同熱交換器の表面は乾燥されないので、不純物が析出するおそれがなく、したがって、外気側熱交換器表面の伝熱性能の低下が防止される。
【0033】
冷却運転を開始する際には、まず排水バルブ21が開成されて空気通路2内の水が排水管17から水槽12に戻され、その後圧縮機8および送風機7が駆動されるとともに送水ポンプ14が駆動され、通常の冷却運転が開始される。なお、圧縮機8等の駆動開始は、排水バルブ21が開成されてから空気通路2内の水が全て排出されるまでの時間を予めタイマにセットしておいてこのタイマにより制御する場合もあるし、空気通路2内にフロートスイッチ等の下限水位を検知するセンサを設け、このセンサにより制御する場合もある。
【0034】
本実施例の冷凍装置は、上述した冷却運転以外に加熱運転も行なうことができるヒートポンプ式のものとしてあり、加熱運転時の作用について以下に説明する。
【0035】
加熱運転時には、図4に示される動作チャートのように外気側熱交換器5への散水が常時停止され、具体的には前記散水ポンプ14が常時停止、注水バルブ20が常に閉ざされ、かつ排水バルブ21が開かれた状態で、前記送風機7および圧縮機8が駆動される。
【0036】
しかして圧縮機8から吐出された冷媒は、図3に示されるように四方弁24を経て負荷側熱交換器10に送られ、外部の空調用熱交換器11から送られる水やブライン等の冷熱媒体と熱交換させられて液化し、逆止弁26により第2膨張弁9bをバイパスし、第1膨張弁9aにて減圧されて外気側熱交換器5内で気化し、空気通路2内を流過する外気と熱交換し、四方弁24を経て圧縮機8へ戻される。
【0037】
圧縮機8の駆動が停止され、すなわち加熱運転が停止されると送風機7も停止され、送水ポンプ14も加熱運転時と同様に停止されたままとされる。
【0038】
上述したように、加熱運転時においては外気側熱交換器5への散水は行なわれず、同熱交換器表面へのスケール析出のおそれはないので、空気通路2内への水の貯留は行なわない。
【0039】
上述した実施例においては冷媒にアンモニアを使用しているので、ケーシング1内に圧縮機8、膨張弁9bおよび負荷側熱交換器10を設けてあるが、冷媒がアンモニアでない場合にはこれら圧縮機8、膨張弁9bおよび負荷側熱交換器10をケーシング1外に設ける場合もある。
【0040】
また、上述した実施例では空気通路2内に注入して外気側熱交換器を浸す水としてケーシング1内の水槽12に貯留されている散水用の水を使用しているが、この散水用の水とは別に空気通路2内へ直接水道水等の外部からの水を注入する場合もある。
【0041】
また、本実施例においては冷却運転と加熱運転とを切り替えることができるヒートポンプ式の冷凍装置について説明したが、冷却運転専用のものとする場合もある。
【0042】
【発明の効果】
本発明の装置によれば、冷却運転時においては空気通路内に外気側熱交換器を冷却するための空気が流過させられ、散水ノズルから同熱交換器に水が散布されて外気側熱交換器の冷却が行なわれるが、冷却運転が停止されると空気通路内に水が供給されるとともに空気通路内からの水の排出が停止されて空気通路内に水が貯留され、外気側熱交換器全体が水に浸漬される。
【0043】
したがって、外気側熱交換器の表面は散水ノズルから同熱交換器に散布される水かあるいは空気通路内に貯留される水に接触して乾燥することがなく、水中の不純物が外気側熱交換器の表面において結晶化するスケール析出が防止され、熱交換器の表面にスケールが析出することによる伝熱性能の低下のおそれはまずなく、熱交換器は必要十分な小型のもので事が足り、装置コストの低減および装置の小型化を期すことができる。
【0044】
またスケール析出のおそれがないので、外気側熱交換器の表面にフィンを設けてもフィン表面でのスケール析出による伝熱性能の低下を考慮する必要がなく、したがって外気側熱交換器表面にフィンを設けて伝熱性能をより一層向上せしめることができ、さらなる外気側熱交換器の小型化を図ることができる。
【0045】
さらに、メンテナンス時におけるスケールの除去作業が不要であり、保守、点検作業を容易に行なうことができるという利点もある。
【図面の簡単な説明】
【図1】本発明に係る実施例の冷却運転状態を示す縦断面図。
【図2】本発明に係る冷凍装置の各部における冷却運転時の動作チャート。
【図3】本発明に係る実施例の加熱運転状態を示す縦断面図。
【図4】本発明に係る冷凍装置の各部における加熱運転時の動作チャート。
【符号の説明】
1 ケーシング
2 空気通路
3 仕切板
4 ドレン口
5 外気側熱交換器
6 散水ノズル
7 送風機
8 圧縮機
9a 第1膨張弁
9b 第2膨張弁
10 負荷側熱交換器
11 空調用熱交換器
12 水槽
13 送水管
14 送水ポンプ
15 フィルタ
16 浄化装置
17 排水管
18 給水管
19 分岐注水管
20 注水バルブ
21 排水バルブ
22 排気口
23 空気取入口
24 四方弁
25、26 逆止弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus that supplies cold heat to various refrigeration machine appliances and air conditioners.
[0002]
[Prior art and its problems]
Some refrigeration systems include an evaporative condenser as an outside air heat exchanger that liquefies the refrigerant gas discharged from the compressor during the cooling operation, and this evaporative condenser flows cooling air through the condenser. In addition, the water is sprayed on the surface of the condenser, and the refrigerant gas in the condenser is cooled and liquefied by the latent heat of vaporization of the water.
[0003]
By the way, in the evaporative condenser described above, water for spraying is stored in a water tank provided in the lower part of the casing of the apparatus, and water pumped up from this water tank is sprayed from the watering nozzle to the condenser without vaporization. The water flowing through the condenser is returned to the water tank and circulated.
[0004]
In the water for spraying, inorganic substances such as dust in the air and silica contained in tap water are present as impurities, and the concentration of these impurities gradually increases with the circulation of water for watering.
[0005]
In the state where water is sprayed from the watering nozzle, the above impurities are washed away even if attached to the surface of the condenser, but when the operation stops and the watering stops, the water attached to the surface of the condenser Impurities crystallize and precipitate on the surface of the condenser by drying.
[0006]
The deposited impurities are called scales and are firmly attached to the condenser surface. This scale does not easily flow down even when watering is resumed by restarting the operation of the equipment. Therefore, the scale gradually accumulates on the condenser surface. As a result, the heat transfer performance on the condenser surface decreases.
[0007]
Further, when the scale is deposited, it is necessary to remove the scale during the maintenance, and there is a problem that the maintenance is complicated.
[0008]
In order to solve the above-mentioned problem of scale deposition, the conventional apparatus has a large condenser in consideration of the fact that the scale is deposited in advance and the heat transfer performance is lowered. It becomes an obstacle to downsizing.
[0009]
In addition, if the heat transfer area is increased by providing fins on the surface of the condenser, the condenser can be reduced in size, but if scale is deposited on the surface of the fins, the heat transfer performance is significantly reduced. Unless the prevention of scale deposition is realized, it is difficult to provide fins in a conventional evaporative condenser.
[0010]
【the purpose】
The purpose of the present invention is to prevent the precipitation of scale on the surface of the outside air side heat exchanger, there is almost no decrease in heat transfer performance due to the scale, and the outside air side heat exchanger can be made compact. In addition, it is an object of the present invention to provide a refrigeration apparatus that does not require scale removal during maintenance and is easy to maintain and check.
[0011]
[Structure of the invention]
In order to achieve the above object, an apparatus according to the present invention is configured such that an air passage for allowing cooling air to flow through an outside air heat exchanger has a shape capable of accumulating water in the passage. And a water injection means for supplying water into the air passage and a drain means for discharging the water in the air passage. During cooling operation, the cooling water is sprayed to the outside air heat exchanger in the air passage. The sprayed water flows through the outside air heat exchanger and is cooled and then discharged by the drainage means. When the cooling operation is stopped, the drainage means is closed and the water injection means In this configuration, water is stored inside and the entire outside air heat exchanger is immersed in water.
[0012]
In the first embodiment of the present invention, during the cooling operation, the refrigerant gas discharged from the compressor is liquefied in the outside air heat exchanger, sent to the load side heat exchanger via the expansion valve, and then vaporized. In the refrigeration apparatus including the refrigerant circuit returned to the compressor, the outside air side heat exchanger is provided with an air passage through which air for cooling the heat exchanger flows by driving the blower, and the air passage is provided in the casing. The downward portion following the air inlet and the upward portion leading to the outlet have a substantially U-shape that communicates with the lateral portion, and the outside air side heat exchanger and the heat exchanger Provided at the top, with a watering nozzle for spraying cooling water to the heat exchanger, a drain port for discharging water in the air passage at the bottom of the air passage, and supplying water to the air passage In the middle of the drainage pipe following the drain port During the cooling operation in which a drain valve is provided and the refrigerant is circulated in the refrigerant circuit, the blower is driven, water is sprayed from the water spray nozzle to the outside air heat exchanger, and the drain valve is opened so that the outside air side is opened. The water that has flowed through the heat exchanger is discharged from the drain port, but when the cooling operation is stopped, the blower is stopped and the discharge valve is closed, and a predetermined passage from the water injection port to the air passage is performed. Water is supplied until the water level is reached, the entire outside air heat exchanger is immersed in water, and at the start of the cooling operation, the discharge valve is opened to discharge the water in the air passage and drive the blower and spray nozzle It is the thing of the structure where watering from was performed.
[0013]
Further, a second embodiment of the present invention includes a water tank for storing water for sprinkling in the lower part of the casing, a water supply pump in the middle of a water supply pipe for sending the water in the water tank to the watering nozzle, The water supply pipe of the water supply pipe is branched from the water spray nozzle, the tip water injection port is provided with a branch water injection pipe facing the air passage through the water injection valve, and one end is connected to the drain port, and the drain valve is provided in the middle. The other end of the drain pipe facing the water tank is closed, and during the cooling operation, the water injection valve is closed and the water discharge valve is opened, and the water in the water tank is driven from the watering nozzle to the outside air side by driving the water pump. It is sprayed on the heat exchanger and returned from the drain port to the water tank through the drain pipe. When the cooling operation is stopped, the water injection valve is opened and the drain valve is closed. When the water inside is supplied and stored in the air passage until the entire outside air heat exchanger is immersed in water, the drive of the water pump is stopped and the water injection valve is closed, and the cooling operation is started. The drain valve is opened, the water in the air passage is returned to the water tank, and the water feed pump is driven to spray water from the water spray nozzle to the outside air heat exchanger.
[0014]
【Example】
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the apparatus according to the present invention will be described below in detail based on specific examples shown in the accompanying drawings.
An air passage 2 is formed in the upper portion of the casing 1 from an air inlet 1a that opens to the upper surface of the casing to an air outlet 1b that also opens to the upper surface of the casing. The lower part in the casing is formed by a partition plate 3 that also serves as a drain pan inclined downward toward the center part. The drain port 4 is provided at the lowermost part thereof.
[0015]
An outside air side heat exchanger 5 made of an evaporative condenser is provided in the downward portion, and a water spray nozzle 6 is provided in the downward portion above the heat exchanger.
[0016]
The air outlet 1b is provided with a blower 7, and the air flowing into the air passage 2 from the air inlet 1a by the drive of the blower 7 flows through the outside air heat exchanger 5 from the air outlet 1b. It is designed to be discharged outside.
[0017]
A four-way valve 24, a compressor 8, a first expansion valve 9 a, a second expansion valve 9 b, and a load-side heat exchanger 10 are provided at the lower part of the casing 1 that is partitioned by the partition plate 3. The cooling operation and the heating operation can be switched by operating the valve 24.
[0018]
Specifically, during the cooling operation, the refrigerant gas sent from the discharge side of the compressor 8 is sent to the outside air heat exchanger 5 through the four-way valve 24 and liquefied, and the check valve 25 and the second expansion valve 9b are turned on. Then, it is sent to the load side heat exchanger 10 to evaporate, and the refrigerant from the load side heat exchanger is returned to the suction side of the compressor through the four-way valve 24, and sent out from the discharge side of the compressor 8 during the heating operation. The refrigerant gas is sent to the load side heat exchanger 10 through the four-way valve 24 and liquefied, sent to the outside air side heat exchanger 5 through the check valve 26 and the first expansion valve 9a, and evaporated, and the outside air side heat exchange. The refrigerant circuit is configured so that the refrigerant from the compressor is returned to the suction side of the compressor via the four-way valve 24.
[0019]
The load side heat exchanger 10 cools a cooling medium such as brine or water by the vaporization latent heat of the refrigerant, or heats the cooling medium by a discharge gas from the compressor, and the cooling medium from the load side heat exchanger is, for example, It is supplied to each heat exchanger 11 for air conditioning provided in the air-conditioned room.
[0020]
Further, the inner bottom of the casing 1 is a water tank 12 for storing water to be supplied to the watering nozzle 6, and the other end of the water supply pipe 13 having one end facing the water tank 12 is connected to the watering nozzle 6 via the water supply pump 14. It is connected to the.
[0021]
A filter 15 is provided at the water tank side end of the water supply pipe 13, and a purification device 16 is provided downstream of the water supply pump 14 in the middle of the water supply pipe. The impurities are removed as much as possible.
[0022]
Further, the other end of a drain pipe 17 having one end connected to the drain port 4 at the lowermost part of the air passage 2 faces the water tank 12, and a drain valve 21 described later is provided in the middle of the drain pipe. These drain pipes and drain valves constitute drain means. In addition, the water supply to the water tank 12 is appropriately performed by a water supply pipe 18.
[0023]
Thus, one end of a branch water injection pipe 19 is connected to the middle of the water supply pipe 13, and the other water inlet of this branch water injection pipe faces the air passage 2 through the water injection valve 20. A water injection means for supplying water from the water injection port into the air passage 2 by driving the pump 14 is configured.
[0024]
The water injection valve 20 is closed while the cooling operation is performed in the refrigerant circuit. However, when the cooling operation is stopped, the water injection valve 20 is opened for a predetermined time, and water in the water tank 12 is supplied to the air passage 2 as required. Water is poured up to a height HL, and the structure is closed again.
[0025]
Further, the drain valve 21 is provided in the middle of the drain pipe 17, and the drain valve is opened while the cooling operation in the refrigerant circuit is being performed, but is closed when the cooling operation is stopped. The configuration is established before the cooling operation is started again.
[0026]
In this embodiment, the refrigerant is ammonia. When ammonia is used as the refrigerant, the inside of the casing must be set to a negative pressure so that the ammonia does not escape from the casing 1 when ammonia leaks. In the apparatus of the embodiment, an exhaust port 22 that communicates the air passage 2 and the inside of the casing is provided on the inlet side of the blower 7, and the air in the casing is sucked from the exhaust port by the negative pressure on the blower inlet side. The inside of the casing is configured to have a negative pressure, and air is sucked into the casing from an air intake port 23 formed in a side surface of the casing. However, when the refrigerant other than ammonia is used, it is not necessary to provide the exhaust port 22 and the air intake port 23.
[0027]
Next, the operation of the apparatus of the present invention configured as described above will be described.
During a normal cooling operation, the water supply pump 14, the blower 7, and the compressor 8 are driven with the water injection valve 20 closed and the drain valve 21 opened as shown in the operation chart of FIG. .
[0028]
Water in the water tank 12 is sprayed from the water spray nozzle 6 by the water supply pump 14, the outside air side heat exchanger 5 is cooled and dropped onto the partition plate 3, and returned from the drain port 4 to the water tank 12 through the drain pipe 17.
[0029]
Thus, the refrigerant discharged from the compressor 8 is sent to the outside air side heat exchanger 5 through the four-way valve 24 as shown in FIG. 1, and is cooled and liquefied by the latent heat of evaporation of water sprayed from the water spray nozzle 6. The first expansion valve 9a is bypassed by the check valve 25, the pressure is reduced by the second expansion valve 9b, vaporized in the load side heat exchanger 10, and supplied to the air conditioner heat exchanger 11 of the air-conditioned room. Heat is exchanged with brine and water, and is returned to the compressor 8 via the four-way valve 24.
[0030]
When the driving of the compressor 8 is stopped, that is, when the cooling operation is stopped, the blower 7 is also stopped, the water injection valve 20 is opened and the drain valve 21 is closed, but the water pump 14 is maintained in the driving state. .
[0031]
When the water pump 14 is driven, water in the water tank 12 is sent from the water spray nozzle 5 and the branch water injection pipe 19 into the air passage 2 and accumulated, and when the outside air side heat exchanger 5 as a whole reaches a water level HL where it is immersed in water, the water is supplied. The pump drive is stopped. In addition, the drive stop of the water pump may be performed by timer control, or a sensor for detecting an upper limit water level such as a float switch may be provided in the air passage 2.
[0032]
As described above, when the outside air heat exchanger 5 is immersed in water when the cooling operation is stopped, even if impurities in the water sprayed on the outside air heat exchanger are attached to the surface of the heat exchanger, the same Since the surface of the heat exchanger is not dried, there is no possibility of impurities being deposited, and therefore, a decrease in heat transfer performance on the surface of the outside air heat exchanger is prevented.
[0033]
When the cooling operation is started, first, the drain valve 21 is opened, and the water in the air passage 2 is returned from the drain pipe 17 to the water tank 12, and then the compressor 8 and the blower 7 are driven and the water pump 14 is turned on. Driven and normal cooling operation is started. The start of driving of the compressor 8 and the like may be controlled by this timer by setting in advance a time from when the drain valve 21 is opened until all the water in the air passage 2 is discharged. In some cases, a sensor for detecting a lower limit water level such as a float switch is provided in the air passage 2 and is controlled by this sensor.
[0034]
The refrigeration apparatus of the present embodiment is of a heat pump type that can perform a heating operation in addition to the cooling operation described above, and the operation during the heating operation will be described below.
[0035]
At the time of heating operation, as shown in the operation chart shown in FIG. 4, watering to the outside air heat exchanger 5 is always stopped, specifically, the watering pump 14 is always stopped, the water injection valve 20 is always closed, and drainage is performed. With the valve 21 opened, the blower 7 and the compressor 8 are driven.
[0036]
Thus, the refrigerant discharged from the compressor 8 is sent to the load-side heat exchanger 10 through the four-way valve 24 as shown in FIG. 3, and water or brine sent from the external air-conditioning heat exchanger 11 is used. The heat is exchanged with the cooling medium and liquefied, bypasses the second expansion valve 9b by the check valve 26, is depressurized by the first expansion valve 9a, is vaporized in the outside air heat exchanger 5, and is in the air passage 2. Heat is exchanged with the outside air flowing through, and the refrigerant is returned to the compressor 8 through the four-way valve 24.
[0037]
When the driving of the compressor 8 is stopped, that is, when the heating operation is stopped, the blower 7 is also stopped, and the water pump 14 is also stopped as in the heating operation.
[0038]
As described above, during the heating operation, water is not sprayed to the outside air heat exchanger 5 and there is no possibility of scale deposition on the surface of the heat exchanger, so water is not stored in the air passage 2. .
[0039]
In the above-described embodiment, ammonia is used as the refrigerant. Therefore, the compressor 8, the expansion valve 9b, and the load side heat exchanger 10 are provided in the casing 1, but when the refrigerant is not ammonia, these compressors are provided. 8. The expansion valve 9b and the load side heat exchanger 10 may be provided outside the casing 1 in some cases.
[0040]
In the above-described embodiment, water used for watering that is stored in the water tank 12 in the casing 1 is used as water that is injected into the air passage 2 to immerse the outside air heat exchanger. Apart from water, water from outside such as tap water may be directly injected into the air passage 2.
[0041]
In the present embodiment, the heat pump type refrigeration apparatus that can switch between the cooling operation and the heating operation has been described.
[0042]
【The invention's effect】
According to the apparatus of the present invention, during the cooling operation, air for cooling the outdoor air side heat exchanger is caused to flow through the air passage, and water is sprayed from the water spray nozzle to the heat exchanger so that the outdoor air side heat is discharged. Although the exchanger is cooled, when the cooling operation is stopped, water is supplied into the air passage and the discharge of water from the air passage is stopped to store the water in the air passage. The entire exchanger is immersed in water.
[0043]
Therefore, the surface of the outside air heat exchanger is not dried by contact with the water sprayed from the watering nozzle to the heat exchanger or the water stored in the air passage, so that impurities in the water can be exchanged with the outside air. Scale deposition that crystallizes on the surface of the heat exchanger is prevented, and there is almost no risk of heat transfer performance degradation due to scale depositing on the surface of the heat exchanger. Therefore, it is possible to reduce the device cost and reduce the size of the device.
[0044]
In addition, since there is no risk of scale deposition, even if fins are provided on the surface of the outside air heat exchanger, there is no need to consider the deterioration of heat transfer performance due to scale deposition on the fin surface. It is possible to further improve the heat transfer performance and further reduce the size of the outside air heat exchanger.
[0045]
Furthermore, there is an advantage that the scale removal work at the time of maintenance is unnecessary, and maintenance and inspection work can be easily performed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a cooling operation state of an embodiment according to the present invention.
FIG. 2 is an operation chart at the time of cooling operation in each part of the refrigeration apparatus according to the present invention.
FIG. 3 is a longitudinal sectional view showing a heating operation state of an embodiment according to the present invention.
FIG. 4 is an operation chart at the time of heating operation in each part of the refrigeration apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Casing 2 Air passage 3 Partition plate 4 Drain port 5 Outside air side heat exchanger 6 Sprinkling nozzle 7 Blower 8 Compressor 9a First expansion valve 9b Second expansion valve 10 Load side heat exchanger 11 Air conditioner heat exchanger 12 Water tank 13 Water supply pipe 14 Water supply pump 15 Filter 16 Purification device 17 Drain pipe 18 Water supply pipe 19 Branch water injection pipe 20 Water injection valve 21 Drain valve 22 Exhaust port 23 Air intake port 24 Four-way valve 25, 26 Check valve

Claims (1)

外気側熱交換器に冷却用の空気を流過せしめるための空気通路を、同通路内に水を溜めることができる形状に構成するとともに、同空気通路内に水を供給する注水手段と、空気通路内の水を排出する排水手段とを備え、冷却運転時においては空気通路内において前記外気側熱交換器へ冷却用の水が散布され、散布された水は外気側熱交換器を流過して冷却した後、前記排水手段により排出されるが、冷却運転が停止されると前記排水手段が閉止されるとともに注水手段により空気通路内に水が貯留されて外気側熱交換器全体が水に浸漬されるようにした冷凍装置。An air passage for allowing cooling air to flow through the outside air heat exchanger is configured to have a shape capable of storing water in the passage, and water injection means for supplying water into the air passage, and air And a drainage means for discharging water in the passage. During cooling operation, cooling water is sprayed to the outside air heat exchanger in the air passage, and the sprayed water flows through the outside air heat exchanger. However, when the cooling operation is stopped, the drainage unit is closed and water is stored in the air passage by the water injection unit, so that the entire outside air side heat exchanger is A refrigeration system soaked in
JP2002199162A 2002-07-08 2002-07-08 Refrigeration equipment Expired - Fee Related JP3961352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199162A JP3961352B2 (en) 2002-07-08 2002-07-08 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199162A JP3961352B2 (en) 2002-07-08 2002-07-08 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2004044822A JP2004044822A (en) 2004-02-12
JP3961352B2 true JP3961352B2 (en) 2007-08-22

Family

ID=31706413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199162A Expired - Fee Related JP3961352B2 (en) 2002-07-08 2002-07-08 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3961352B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105972697B (en) * 2016-05-26 2019-03-12 海信(山东)空调有限公司 Air-conditioning
CN106352607A (en) * 2016-10-13 2017-01-25 北京市轨道交通设计研究院有限公司 Evaporative condensation device
CN108469188A (en) * 2018-03-08 2018-08-31 青岛大学 A kind of cooling tower demisting and sub-cooled return water waste heat grade lifting system

Also Published As

Publication number Publication date
JP2004044822A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US10012399B2 (en) Window-type air conditioning system with water cooling unit
US5390502A (en) Non-freeze closed loop evaporated cooling system
KR101170012B1 (en) Heat pump style constant temperature humidifier
JP2004218861A (en) Drain pan anti-freezing structure in heat pump-type hot water supply unit
KR101305234B1 (en) Evaporative condeser with free cooling
JP3961352B2 (en) Refrigeration equipment
JP2006336911A (en) Indoor unit for air conditioner
KR20080000025U (en) Ice air cooler
CN112611072A (en) Control method of cooling and heating air conditioner
JP2014214918A (en) Cooling storage unit cooler
JP3996321B2 (en) Air conditioner and its control method
KR20030002379A (en) humidifier possess both air cleaner and air conditioning apparatus
JP2008051367A (en) Low-temperature storage for agricultural product
JP2953453B2 (en) Air conditioner
KR200350184Y1 (en) a humidifcation apparatus
JP7147177B2 (en) Indirect evaporative air cooler
JP2010216708A (en) Water receiving tray
JP4665332B2 (en) Air conditioner
US20240053054A1 (en) Air conditioner having water nozzle cleaning system and water nozzle cleaning method used therein
JPH0650564A (en) Integral air conditioner for both room cooler and heater
JP3895449B2 (en) Overload avoidance control method for air source heat pump device
JP4243036B2 (en) Engine exhaust treatment device and engine-driven heat pump device using the same
CN214249876U (en) Air conditioner and outdoor unit thereof
JP2007170698A (en) Control method of cooling device
JP4145254B2 (en) Ammonia refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees