JP4071200B2 - Ammonia refrigeration equipment - Google Patents

Ammonia refrigeration equipment Download PDF

Info

Publication number
JP4071200B2
JP4071200B2 JP2004025091A JP2004025091A JP4071200B2 JP 4071200 B2 JP4071200 B2 JP 4071200B2 JP 2004025091 A JP2004025091 A JP 2004025091A JP 2004025091 A JP2004025091 A JP 2004025091A JP 4071200 B2 JP4071200 B2 JP 4071200B2
Authority
JP
Japan
Prior art keywords
ammonia
refrigerator room
water
air
dilution chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004025091A
Other languages
Japanese (ja)
Other versions
JP2005214573A (en
Inventor
雅彦 熊谷
勝彦 杉田
徹 松田
勝久 山口
幸 三木
賢二 生駒
秀晃 尾花
佳寛 黒川
勇二 大下
佳子 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
TOYO. SS. CO., LTD.
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD., Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Chubu Electric Power Co Inc filed Critical TOYO. SS. CO., LTD.
Priority to JP2004025091A priority Critical patent/JP4071200B2/en
Publication of JP2005214573A publication Critical patent/JP2005214573A/en
Application granted granted Critical
Publication of JP4071200B2 publication Critical patent/JP4071200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明はアンモニアを冷媒とする冷媒回路を備え、冷熱を生成するアンモニア冷凍装置に関し、より詳しくは冷媒たるアンモニアの漏洩時に、アンモニアの除害を的確に行なうことができるアンモニア冷凍装置に関する。   The present invention relates to an ammonia refrigeration apparatus that includes a refrigerant circuit that uses ammonia as a refrigerant and generates cold heat, and more particularly to an ammonia refrigeration apparatus that can accurately detoxify ammonia when ammonia as a refrigerant leaks.

近年、フロンガスによる環境破壊の問題から圧縮式冷凍装置の冷媒にアンモニアが使用されるケースが増加している。   In recent years, ammonia is used as a refrigerant in a compression refrigeration apparatus due to the problem of environmental destruction caused by chlorofluorocarbons.

しかしながら、アンモニアは高濃度であると人体に有毒な物質であり、大気汚染防止法では「人の健康又は生活環境に係る被害が生ずるおそれがある物質」と定義される特定物質に指定され、アンモニアの大気への排出量は厳格に管理されなければならない。   However, ammonia is a substance that is toxic to the human body at high concentrations, and is designated as a specific substance defined as “a substance that may cause damage to human health or the living environment” under the Air Pollution Control Act. Emissions into the atmosphere must be strictly controlled.

アンモニア冷凍装置においては、冷媒回路における配管の経時変化や、地震等の災害により接続部の緩みや損傷が生じ、アンモニアガスが漏洩することがあり、この漏洩を皆無とすることは不可能である。   In the ammonia refrigeration system, the connection portion may be loosened or damaged due to changes in piping in the refrigerant circuit or due to disasters such as earthquakes, and ammonia gas may leak, and it is impossible to eliminate this leakage. .

したがって、アンモニアガスが漏洩した場合には漏洩したアンモニアガスが装置外部に高濃度のまま放出されないようにすることが求められ、従来からアンモニアの水への溶解量が大であることを利用してアンモニアガスが含まれる空気を水と接触させることによってアンモニアガス濃度を低減させるという除害手段があり、冷凍装置のケーシング内部に直接水を散布し、散布した水とケーシング内空気との接触により水にアンモニアを溶解させて回収する散水方式の除害手段(特許文献1参照)や、ケーシング内の空気を外部のスクラバー装置に導出し、このスクラバー装置内にて散布される水と接触させて水にアンモニアを溶解させて回収し、水との接触によりアンモニア濃度の低下した空気をスクラバー装置から排出するスクラバー方式の除害手段(特許文献2および3参照)がある。   Therefore, when ammonia gas leaks, it is required to prevent the leaked ammonia gas from being released at a high concentration outside the device. Conventionally, the amount of ammonia dissolved in water is large. There is a detoxifying means to reduce the ammonia gas concentration by bringing the air containing ammonia gas into contact with water. Water is sprayed directly inside the casing of the refrigeration system, and water is brought into contact with the sprayed water and the air in the casing. Sprinkling-type abatement means (see Patent Document 1) that recovers ammonia by dissolving it in the air, and the air in the casing is led out to an external scrubber device and brought into contact with the water sprayed in the scrubber device. Scrubber method in which ammonia is dissolved and recovered, and air whose ammonia concentration has decreased due to contact with water is discharged from the scrubber device There are abatement means (see Patent Documents 2 and 3).

上記散水方式のものでは、ケーシング内に散布した水が冷媒回路を構成する機器や配管および制御機器にも散布されるので、これらの機器特に電気系統に短絡等の悪影響が及ぶおそれがあり、アンモニアガス漏洩後における冷凍装置の復旧に手間と時間が掛かるという問題があり、しかもケーシング内に大量の水を散布しなければならないので、散布後に回収したアンモニアを含有する水の量が大であって回収した水の除害費用が嵩むという問題もある。   In the above watering method, the water sprayed in the casing is also sprayed on the equipment, piping and control equipment that make up the refrigerant circuit. There is a problem that it takes time and time to restore the refrigeration system after gas leakage, and a large amount of water must be sprayed into the casing, so the amount of water containing ammonia recovered after spraying is large. There is also a problem that the cost for removing the collected water increases.

また、上記スクラバー方式のものでは冷凍装置とは別に前記水槽を備えるスクラバー設備を設けなければならず、装置コストが嵩み、しかも水槽内の水の除害費用も上述した散水方式と同様に掛かる。
特開2001−99447、第1−5頁、図1および図2 特開2001−347127、第1−4頁、図1および図2 特開2001−145819、第1−10頁、図1
In addition, in the scrubber system, a scrubber facility provided with the water tank must be provided separately from the refrigeration apparatus, the apparatus cost increases, and the water abatement cost in the water tank is also the same as the watering system described above. .
JP 2001-99447, pp. 1-5, FIG. 1 and FIG. JP-A-2001-347127, page 1-4, FIG. 1 and FIG. JP 2001-145819, page 1-10, FIG.

本発明の目的とするところは、アンモニアガスが漏洩した際にアンモニアガスが装置のケーシング外へ高濃度で漏洩するのを防止できて安全性が高く、しかもケーシング内のアンモニアガスを新鮮外気によって極めて低濃度で安全な状態となるように希釈してから徐々に外部へ放出することにより、アンモニアガスを溶解せしめた水を回収する必要がなくて水の無害化費用が掛からず、さらに冷媒回路を構成する機器に直接水が掛かるようなことがなくて装置の復旧を速やかに行なうことができ、またスクラバー装置のような外部のアンモニア回収用の装置が不要で装置コストの低減を期すことができるアンモニア冷凍装置を提供することにある。   The object of the present invention is to prevent the ammonia gas from leaking out of the casing of the apparatus at a high concentration when the ammonia gas leaks, and is highly safe. By diluting it to a safe state at a low concentration and then gradually releasing it to the outside, there is no need to recover the water in which ammonia gas is dissolved, so there is no cost for detoxifying the water, and the refrigerant circuit There is no direct water splashing on the equipment that makes up the equipment, and the equipment can be restored quickly, and an external ammonia recovery equipment such as a scrubber equipment is not required, thereby reducing equipment costs. The object is to provide an ammonia refrigerating apparatus.

上記目的を達成するために、本発明のアンモニア冷凍装置は、アンモニアを冷媒とする冷媒回路を備える冷凍機室と、この冷凍機室に第1の開閉機構を介して連通する希釈室を備え、前記冷凍機室はアンモニアセンサと、第2の開閉機構を有する外気吸入口と、除害塔とを備え、この除害塔は冷凍機室内の内部に設けられた水槽内の水と冷凍機室内の空気との接触によって冷凍機室内のアンモニアガスを水に溶解せしめて冷凍機室内のアンモニア濃度を低減せしめる構成としてあり、この除害塔内と前記希釈室内とを連通する通気流路を設け、また、前記希釈室は通常運転時は閉ざされているが、前記アンモニアセンサによりアンモニアの漏洩が検知されると開成される第3の開閉機構を有する外気吸入口と、希釈室内の空気を外部に排出する排気ファンを有する排気口を備え、通常運転時には前記第1の開閉機構および第2の開閉機構が開成されていて冷凍機室の外気吸入口から冷凍機室内に流入した外気が冷凍機室に設けられた冷媒回路の外気側熱交換器を流過し、希釈室を経て前記排気口から排出され、前記アンモニアセンサによりアンモニアの漏洩が検知されると冷媒回路の運転が停止されるとともに第1の開閉機構および第2の開閉機構が閉止されて、前記通気流路から希釈室内に送られる除害塔通過後の空気が希釈室の外気吸入口からの空気により希釈されて前記排気口から外部に排出されるようにした構成のものとしてある。   In order to achieve the above object, an ammonia refrigerating apparatus of the present invention includes a refrigerator room having a refrigerant circuit using ammonia as a refrigerant, and a dilution chamber communicating with the refrigerator room via a first opening / closing mechanism, The refrigerator room includes an ammonia sensor, an outside air inlet having a second opening / closing mechanism, and a detoxification tower. The detoxification tower has water in a water tank provided in the refrigerator room and the refrigerator room. The ammonia gas in the refrigerator room is dissolved in water by contact with the air to reduce the ammonia concentration in the refrigerator room, and a ventilation channel that communicates between the abatement tower and the dilution chamber is provided. The dilution chamber is closed during normal operation, but the outside air inlet having a third opening / closing mechanism that is opened when ammonia leakage is detected by the ammonia sensor, and the air in the dilution chamber to the outside Drain An exhaust port having an exhaust fan is provided, and the first open / close mechanism and the second open / close mechanism are opened during normal operation, and outside air that has flowed into the refrigerator room from the outside air intake port of the refrigerator room is provided in the refrigerator room. The refrigerant circuit passes through the outside air side heat exchanger, is discharged from the exhaust port through the dilution chamber, and when the ammonia sensor detects leakage of ammonia, the operation of the refrigerant circuit is stopped and the first The opening / closing mechanism and the second opening / closing mechanism are closed, and the air after passing through the detoxification tower sent from the ventilation channel to the dilution chamber is diluted by the air from the outside air intake port of the dilution chamber, and is then released from the exhaust port to the outside. It is configured to be discharged.

また、前記外気側熱交換器を蒸発式凝縮器で構成し、通常運転時には前記水槽内の水をこの蒸発式凝縮器に散布して同凝縮器におけるアンモニアガスの液化用冷熱源として利用する構成としてある。   In addition, the outside air side heat exchanger is constituted by an evaporative condenser, and the water in the water tank is dispersed in the evaporative condenser during normal operation and used as a cold heat source for liquefying ammonia gas in the condenser It is as.

さらに前記除害塔は、冷凍機室内の内部に設けられた水槽の上方に、開口下部が水槽内の水面上に臨み、水槽から供給される水が内部に散布されるとともに内部に冷凍機室内の空気が供給されて水と空気の接触によって冷凍機室内のアンモニアガスを水に溶解せしめて冷凍機室内のアンモニア濃度を低減せしめる構成としてある。   Furthermore, the abatement tower has a lower opening facing the water surface in the water tank above the water tank provided inside the refrigerator room, and water supplied from the water tank is scattered inside and the refrigerator room is inside. Is supplied, and the ammonia gas in the refrigerator room is dissolved in water by contact of water and air to reduce the ammonia concentration in the refrigerator room.

以下、本発明に係るアンモニア冷凍装置の実施例を添付図面に示す具体例に基づいて詳細に説明する。
ケーシング1内は水平に設けられた第1の開閉機構たる第1シャッター2によって上部の希釈室3と下部の冷凍機室4とに区画されていて、第1シャッター2の直下には冷媒回路を構成する外気側熱交換器たる蒸発式凝縮器5を設けてある。
Embodiments of an ammonia refrigerating apparatus according to the present invention will be described below in detail based on specific examples shown in the accompanying drawings.
The casing 1 is partitioned into an upper dilution chamber 3 and a lower refrigerator chamber 4 by a first shutter 2 which is a first opening / closing mechanism provided horizontally, and a refrigerant circuit is provided immediately below the first shutter 2. An evaporative condenser 5 as an outside air heat exchanger is provided.

しかして冷媒回路は、圧縮機6、蒸発式凝縮器5、負荷側熱交換器7を備えるヒートポンプ式のアンモニア冷媒回路としてあって、冷媒流路の制御により、上記負荷側熱交換器において外部の負荷側から供給される水やブラインを冷却または加熱して冷水(冷ブライン)または温水(温ブライン)を負荷側に送る構成となっており、上記蒸発式凝縮器以外の機器は冷凍機室4内に設けられたドレン流過パネル30の下方に収容されている。
なおドレン流過パネル30は冷凍機室内を気密に区画するものではなく、冷凍機室内の空気は同パネルの周囲から上下方向に流通できるようになっている。
Thus, the refrigerant circuit is a heat pump type ammonia refrigerant circuit including the compressor 6, the evaporative condenser 5, and the load side heat exchanger 7. The refrigerant side of the load side heat exchanger is controlled by controlling the refrigerant flow path. Water or brine supplied from the load side is cooled or heated to send cold water (cold brine) or warm water (warm brine) to the load side. Equipment other than the evaporative condenser is the refrigerator room 4. It is accommodated below a drain flow panel 30 provided inside.
The drain flow panel 30 does not partition the refrigerator room in an airtight manner, and the air in the refrigerator room can be circulated in the vertical direction from the periphery of the panel.

上記冷凍機室4の底部には、上記蒸発式凝縮器5へ散布する水を貯留する水槽8を設けてあり、この水槽に一端が接続された送水管9の他端を、常時駆動される送水ポンプ10および切替弁11を介して前記希釈室3内に設けた散水ノズル12、12に接続してある。   A water tank 8 is provided at the bottom of the refrigerator room 4 to store the water to be sprayed on the evaporative condenser 5. The other end of the water pipe 9 having one end connected to the water tank is always driven. It is connected to watering nozzles 12, 12 provided in the dilution chamber 3 through a water pump 10 and a switching valve 11.

また、上記送水管9における送水ポンプと切替弁との間に一端が接続された分岐送水管13の他端を、切替弁14を介して除害塔15内の第1の散水ノズル15aに接続してあり、さらに同分岐送水管13における切替弁14の上流側に一端が接続されたバイパス管16の他端を、除害塔15内の第2の散水ノズル15bに接続してある。   Further, the other end of the branch water supply pipe 13 whose one end is connected between the water supply pump and the switching valve in the water supply pipe 9 is connected to the first watering nozzle 15a in the detoxification tower 15 via the switching valve 14. In addition, the other end of the bypass pipe 16 whose one end is connected to the upstream side of the switching valve 14 in the branch water supply pipe 13 is connected to the second watering nozzle 15 b in the detoxification tower 15.

しかして、上記除害塔15は、有蓋筒状であって開口下部が前記水槽8の水面上に臨み、上部に設けた除害用ファン17から冷凍機室4内の空気を内部に導入するように構成したものとしてあり、冷凍機室内の空気に含まれるアンモニアガスを上記第1または第2の散水ノズル15a、15bから散布される水に溶解せしめてアンモニアガスを回収するようにしたものであり、この除害塔15の下端寄り側面には通気流路18の下端を接続してあって、同通気流路の上端は前記希釈室3内に開口している。
なお、上記通気流路18の途中にはバルブ18aを設けてあって、通気流路の通風量を調節できるようにしてあり、また同バルブ18aの下流側における通気流路の途中には、先端が冷凍機室4内に開口する吸気枝管32を設けてあり、この吸気枝管の途中にもバルブ32aを設けてあって、通気流路18によって希釈室へ送られる空気のうち、除害塔15を流過した空気と冷凍機室内から通気流路へ直接流入する空気の割合を適宜調節できるようにしてある。
Thus, the abatement tower 15 has a covered cylinder shape, and the lower opening portion faces the water surface of the water tank 8, and the air in the refrigerator room 4 is introduced into the interior from the abatement fan 17 provided in the upper portion. The ammonia gas contained in the air in the refrigerator room is dissolved in the water sprayed from the first or second watering nozzles 15a, 15b to recover the ammonia gas. There is a lower end of the aeration channel 18 connected to the side surface near the lower end of the detoxification tower 15, and the upper end of the aeration channel opens into the dilution chamber 3.
A valve 18a is provided in the middle of the ventilation channel 18 so that the air flow rate of the ventilation channel can be adjusted, and a tip is provided in the middle of the ventilation channel on the downstream side of the valve 18a. Is provided with an intake branch pipe 32 that opens into the refrigerator chamber 4, and a valve 32 a is provided in the middle of the intake branch pipe to remove harmful substances out of the air that is sent to the dilution chamber by the ventilation channel 18. The ratio of the air that has passed through the tower 15 and the air that directly flows into the ventilation channel from the refrigerator room can be adjusted as appropriate.

また、冷凍機室4のケーシング1側面には、第2の開閉機構たる第2シャッター31を備える外気吸入口19と、常時開かれている外気吸入口20を設けてある。   In addition, on the side surface of the casing 1 of the refrigerator room 4, an outside air inlet 19 including a second shutter 31 as a second opening / closing mechanism and an outside air inlet 20 that is always open are provided.

そして、前記希釈室3におけるケーシング側面には外気吸入口21を設けてあるとともに、ケーシング上板部には排気口22、22を設けてあって、これら排気口にはそれぞれ常時駆動される排気ファン23、23を設けてある。   An outside air suction port 21 is provided on the side surface of the casing in the dilution chamber 3, and exhaust ports 22 and 22 are provided on the upper plate portion of the casing. 23 and 23 are provided.

なお本実施例において、上記外気吸入口21は前記第1シャッター2が開かれた状態では同シャッターの最も外側に位置する羽根によってほぼ塞がれた状態となって外気の流入が制限され、第1シャッターが閉ざされると全開となるように構成されている。
すなわち、第1シャッター2は外気吸入口21を開閉するための第3の開閉機構をも兼ねている。
In this embodiment, when the first shutter 2 is opened, the outside air inlet 21 is substantially blocked by the blades located on the outermost side of the shutter, and the inflow of outside air is restricted. It is configured to be fully opened when one shutter is closed.
That is, the first shutter 2 also serves as a third opening / closing mechanism for opening / closing the outside air inlet 21.

しかしながら、この外気吸入口21に第1シャッター2とは別の第3の開閉機構たる専用のシャッターを設け、第1シャッター2が開かれている間は閉ざされ、第1シャッターが閉ざされると開かれる構成とする場合もある。   However, a dedicated shutter that is a third opening / closing mechanism different from the first shutter 2 is provided at the outside air inlet 21 and is closed while the first shutter 2 is open, and is opened when the first shutter is closed. In some cases, it may be configured.

図1において符号24は冷凍機室4内のアンモニア濃度を検出する第1アンモニアセンサ、25は希釈室3内のアンモニア濃度を検出する第2アンモニアセンサ、26は負荷側へ供給する冷水または温水中のアンモニア濃度を検出する第3アンモニアセンサ、27は制御盤をそれぞれ示しており、第1乃至第3のアンモニアセンサで検出されたアンモニア濃度の値は制御盤27において確認できるようになっており、各センサにて検出されるアンモニア濃度の値に基づいて制御盤27の制御回路が装置各部の制御を行なうようになっており、制御の具体例については後述する。   In FIG. 1, reference numeral 24 is a first ammonia sensor for detecting the ammonia concentration in the refrigerator room 4, 25 is a second ammonia sensor for detecting the ammonia concentration in the dilution chamber 3, and 26 is cold water or hot water supplied to the load side. A third ammonia sensor 27 for detecting the ammonia concentration of each of them, 27 indicates a control panel, and the value of the ammonia concentration detected by the first to third ammonia sensors can be confirmed on the control panel 27, The control circuit of the control panel 27 controls each part of the apparatus based on the ammonia concentration value detected by each sensor, and specific examples of the control will be described later.

なお、上記第1アンモニアセンサ24は、冷凍機室4内のアンモニア濃度が極めて高くなるとセンサが破損するおそれがあるので、一端がケーシング側面に開口し、他端が第1アンモニアセンサの近傍に開口する送気管28を設けてあり、第1アンモニアセンサにて検出されるアンモニア濃度が所定の値を超えると、送気管28の入口に設けた送気ファン29が自動的に駆動されて第1アンモニアセンサまわりに外気が供給され、第1アンモニアセンサの破損を防止するように構成してある。   The first ammonia sensor 24 may be damaged when the ammonia concentration in the refrigerator room 4 becomes extremely high. Therefore, one end is opened on the side of the casing, and the other end is opened near the first ammonia sensor. When the ammonia concentration detected by the first ammonia sensor exceeds a predetermined value, the air supply fan 29 provided at the inlet of the air supply pipe 28 is automatically driven and the first ammonia is provided. Outside air is supplied around the sensor to prevent the first ammonia sensor from being damaged.

次ぎに、上述した構成の装置の運転制御の詳細を図2、3に示すフローチャートに基づいて説明する。
運転制御は、冷媒回路が駆動されて冷凍運転が行なわれている状態の通常運転モード、冷凍機室内にアンモニアガスが漏洩した場合の除害運転モード、装置内のアンモニアガスを徐々に外部に放出して装置内のアンモニアガス濃度を低下させる放出運転モードに分けられる。
Next, details of operation control of the apparatus having the above-described configuration will be described based on the flowcharts shown in FIGS.
Operation control includes normal operation mode in which the refrigerant circuit is driven and refrigeration operation is performed, detoxification operation mode when ammonia gas leaks into the refrigerator room, and the ammonia gas in the device is gradually released to the outside. Thus, it is divided into a discharge operation mode in which the ammonia gas concentration in the apparatus is lowered.

通常運転モードにおいては、圧縮機6の駆動によって負荷側熱交換器7にて冷水または温水が生成され、負荷側に供給され、冷水供給運転と温水供給運転はヒートポンプ回路の運転制御により切り替えられる。   In the normal operation mode, cold water or hot water is generated in the load side heat exchanger 7 by driving the compressor 6 and supplied to the load side, and the cold water supply operation and the hot water supply operation are switched by operation control of the heat pump circuit.

より詳しくは、冷水を生成する場合、圧縮機からのアンモニアガス冷媒が蒸発式凝縮器5に送られて冷却されて液化し、図示を省略した膨張弁を経て負荷側熱交換器7にて気化してその気化潜熱によって負荷側からの水を冷却し、再び気化して圧縮機に戻される。   More specifically, when cold water is generated, the ammonia gas refrigerant from the compressor is sent to the evaporative condenser 5 to be cooled and liquefied, and is passed through an expansion valve (not shown) to be discharged in the load side heat exchanger 7. The water from the load side is cooled by the latent heat of vaporization, vaporized again, and returned to the compressor.

この際、第1シャッター2および第2シャッター31は開成されているとともに切替弁11が開成され、前記送水管9によって水槽8からの水が希釈室3内の散水ノズル12、12から蒸発式凝縮器5に散布され、散布された水は排気ファン23、23の駆動により外気吸入口19から吸入され蒸発式凝縮器を下から上に向かって通過する空気と接触して冷却されるとともに蒸発式凝縮器を上から下に向かって通過して前記ドレン流過パネル30にて回収され、図示を省略したドレンパイプによって水槽内に戻される。   At this time, the first shutter 2 and the second shutter 31 are opened, the switching valve 11 is opened, and the water from the water tank 8 is evaporated by the water supply pipe 9 from the water spray nozzles 12 and 12 in the dilution chamber 3. The sprayed water is sprayed into the container 5, and the sprayed water is sucked from the outside air inlet 19 by driving the exhaust fans 23, 23, is cooled in contact with the air passing through the evaporating condenser from the bottom to the top, and is evaporated It passes through the condenser from the top to the bottom and is collected by the drain flow panel 30 and returned to the water tank by a drain pipe (not shown).

また、温水を生成する場合には圧縮機からのアンモニアガス冷媒が高温のまま負荷側熱交換器に送られ、負荷側からの水を加熱して液化し、図示省略の膨張弁を経て蒸発式凝縮器に送られ、同蒸発式凝縮器にて気化して圧縮機に戻される。この際、前記送水管9の切替弁11は閉止されて蒸発式凝縮器への前記散水ノズル12、12からの水の散布は行なわれず、排気ファン23、23の駆動により蒸発式凝縮器を流過する空気との熱交換により同蒸発式凝縮器における冷媒の気化が行なわれる。   In addition, when generating hot water, the ammonia gas refrigerant from the compressor is sent to the load side heat exchanger with high temperature, the water from the load side is heated and liquefied, and evaporates through an expansion valve (not shown). It is sent to the condenser, vaporized by the evaporating condenser and returned to the compressor. At this time, the switching valve 11 of the water supply pipe 9 is closed so that water is not sprayed from the water spray nozzles 12 and 12 to the evaporative condenser, and the evaporative condenser flows by driving the exhaust fans 23 and 23. The refrigerant is vaporized in the evaporative condenser by heat exchange with excess air.

ところで、冷凍機室4内の除害塔15においては常に冷凍機室内空気の吸入と水の散布が行なわれるようになっており、具体的には除害用ファン17が常に駆動して冷凍機室内の空気が除害塔内に吸入され、かつ、前記バイパス管16によって水槽8からの水が除害塔内の散水ノズル15bから常に散布され、この散水ノズルから散布された水と除害塔内に吸入された空気との接触により、通常運転時において冷凍機室内に極めて低濃度のアンモニアの漏れがあった場合でも空気中のアンモニアを除去できるようにしてある。   By the way, in the abatement tower 15 in the refrigerator room 4, the intake of the refrigerator room air and the spraying of water are always performed. Specifically, the abatement fan 17 is always driven and the refrigerator is driven. Indoor air is sucked into the detoxification tower, and water from the water tank 8 is always sprayed from the water spray nozzle 15b in the detoxification tower by the bypass pipe 16, and the water sprayed from the water spray nozzle and the detoxification tower Due to the contact with the air sucked in, the ammonia in the air can be removed even when a very low concentration of ammonia leaks in the refrigerator room during normal operation.

なお、上記散水ノズル15bからの散水を常に行なうようにしてあるのは、アンモニアが漏洩した際に通常運転から除害運転に切り替えられるまでのタイムラグが存在し、このタイムラグの間にも最小限の除害運転が行なわれるようにするためでもある。
また、上記除害用ファン17は通常運転時には駆動させず、前記排気ファン23、23の駆動による負圧だけで除害塔内から希釈室への送気がなされるようにして省エネルギ化を図る場合もある。
The reason that the watering from the watering nozzle 15b is always performed is that there is a time lag until the operation is switched from the normal operation to the abatement operation when ammonia leaks. This is also to ensure that abatement operation is performed.
The abatement fan 17 is not driven during normal operation, and energy is saved by supplying air from the abatement tower to the dilution chamber only by the negative pressure generated by driving the exhaust fans 23 and 23. In some cases

上述した通常運転モードは、第1または第2のアンモニアセンサ24、25で検出されるアンモニア濃度が予め設定された値、例えば100ppm未満である場合の運転モードであり、上記検出値が例えば100ppm以上になると制御盤27からの指令により、除害運転モードに自動的に切り替わるようになっている。   The normal operation mode described above is an operation mode when the ammonia concentration detected by the first or second ammonia sensor 24, 25 is a preset value, for example, less than 100 ppm, and the detected value is, for example, 100 ppm or more. Then, in accordance with a command from the control panel 27, the mode is automatically switched to the abatement operation mode.

なお、第1または第2のアンモニアセンサで検出されるアンモニア濃度が100ppm未満であっても、それ以下の所定の基準値、例えば50ppm以上になると制御盤27の警告ランプ(例えば黄色表示)を点灯させて装置の管理者に知らせるようにする。   Even if the ammonia concentration detected by the first or second ammonia sensor is less than 100 ppm, the warning lamp (for example, yellow display) of the control panel 27 is turned on when the ammonia concentration is lower than a predetermined reference value, for example, 50 ppm or more. To inform the administrator of the device.

また、図2のフローチャートには示されていないが、第3のアンモニアセンサ26において、負荷側へ供給する水中のアンモニア濃度が予め設定された値以上となった場合にも、冷媒回路の運転および負荷側への水の供給を停止し、除害運転モードに切り替えられるようにする。   Although not shown in the flowchart of FIG. 2, when the ammonia concentration in the water supplied to the load side becomes equal to or higher than a preset value in the third ammonia sensor 26, the operation of the refrigerant circuit and Stop the supply of water to the load side so that it can be switched to the abatement operation mode.

しかして、除害運転モードに切り替わると、制御盤27において警告ランプ(例えば赤色表示)が点灯されるとともに警告音が発せられ、また第1および第2シャッター2、31が閉止され、また希釈室3の外気吸入口21は第1シャッターの閉止によりこの外気吸入口を塞いでいた第1シャッターの羽根が除かれて開放される。   Thus, when the operation mode is switched to the abatement operation mode, a warning lamp (for example, red display) is turned on in the control panel 27, a warning sound is emitted, the first and second shutters 2 and 31 are closed, and the dilution chamber is turned on. 3 is opened by closing the first shutter and removing the blades of the first shutter that blocked the outside air suction port.

さらに、送水管9における切替弁11が閉止されるとともに分岐送水管13の切替弁14が開成され、送水ポンプ10によって水槽8から導出された水の全量が除害塔15へ供給される。   Further, the switching valve 11 in the water supply pipe 9 is closed and the switching valve 14 in the branch water supply pipe 13 is opened, and the entire amount of water led out from the water tank 8 by the water supply pump 10 is supplied to the detoxification tower 15.

この除害運転モードにおいては、冷凍機室4が、第1および第2シャッター2、31の閉止によって外気と遮断され、冷凍機室内の高濃度のアンモニアを含有する空気がケーシング1外に漏出しないようになっており、装置周辺の安全が確保される。
なお、冷凍機室内と希釈室とは通気流路18によって連通しているとともに排気ファン23、23が駆動されているので、冷凍機室は希釈室とともに負圧となり、したがって外気吸入口20が常時開口していてもこの吸入口からアンモニアを含有する空気が漏出することはない。
In this detoxifying operation mode, the refrigerator room 4 is shut off from the outside air by closing the first and second shutters 2 and 31, and air containing high-concentration ammonia in the refrigerator room does not leak out of the casing 1. As a result, safety around the device is ensured.
Since the refrigerator chamber and the dilution chamber are communicated with each other by the ventilation channel 18 and the exhaust fans 23 and 23 are driven, the refrigerator chamber has a negative pressure together with the dilution chamber. Even if it opens, the air containing ammonia does not leak out from this inlet.

除害運転モードへの切り替えが行なわれた場合、装置管理者は直ちに装置周辺の人を避難させるとともに装置の保守を行なうサービスマンに連絡を取り、必要に応じては地方自治体への報告や近隣住民の避難を呼びかける。   When switching to the detoxifying operation mode, the equipment administrator immediately evacuates the person around the equipment and contacts a service person who performs maintenance of the equipment. Invite residents to evacuate.

除害運転モードにおいては冷凍機室4内のアンモニア濃度が高いが、除害塔15の運転によって徐々に冷凍機室内のアンモニア濃度が低下し、前記サービスマンは制御盤27に示される冷凍機室内のアンモニア濃度をチェックしてその濃度が危険値未満となったことを確認してから必要な安全措置を施した後、アンモニア漏洩箇所の修理等の処置を行なう。   In the detoxification operation mode, the ammonia concentration in the refrigerator room 4 is high, but the ammonia concentration in the refrigerator room gradually decreases as the detoxification tower 15 is operated. After checking the ammonia concentration and confirming that the concentration is less than the dangerous value, the necessary safety measures are taken, and then measures such as repairing the ammonia leakage point are performed.

なお、冷凍機室4内の空気の一部は除害塔15と希釈室3内を連通する通気流路18により希釈室内に流出し、排気口22、22から外部に放出されるが、この放出量は冷凍機室内に極めて高濃度のアンモニアガスが漏出した場合においても排気口から放出される空気のアンモニアガス濃度が所定の放出基準値未満となるよう、通気流路による空気の流量を装置設計時において予め決めておく。   A part of the air in the refrigerator room 4 flows into the dilution chamber through the ventilation channel 18 communicating with the abatement tower 15 and the dilution chamber 3, and is discharged to the outside through the exhaust ports 22 and 22. The amount of air discharged is controlled by the air flow path so that the ammonia gas concentration of the air discharged from the exhaust port is less than the predetermined release reference value even when extremely high concentration of ammonia gas leaks into the refrigerator room. Predetermined at the time of design.

また、冷凍機室内における第1アンモニアセンサ24にて検出されるアンモニア濃度が極めて高い場合、例えば400ppm以上である場合、センサが破損するおそれがあるので、前述のように送気ファン29を駆動せしめて送気管28からセンサまわりに新鮮外気を供給してセンサまわりのアンモニア濃度を低下せしめ、センサの破損を防止するセンサ保護運転を行うことができるようにしてある。なお、同保護運転中においては所定時間間隔で断続的にアンモニア濃度をチェックし、同濃度が低下すると保護運転が終了するようになっている。   Further, when the ammonia concentration detected by the first ammonia sensor 24 in the refrigerator room is extremely high, for example, when it is 400 ppm or more, the sensor may be damaged. Therefore, the air supply fan 29 is driven as described above. Thus, fresh outside air is supplied around the sensor from the air supply pipe 28 to reduce the ammonia concentration around the sensor, so that the sensor protection operation can be performed to prevent the sensor from being damaged. During the protection operation, the ammonia concentration is intermittently checked at predetermined time intervals, and the protection operation ends when the concentration decreases.

アンモニア漏洩箇所の修理が完了したら、制御盤27における手動操作により除害運転モードから大気放出運転モードに切り替える。   When the repair of the ammonia leakage portion is completed, the operation is switched from the abatement operation mode to the atmospheric discharge operation mode by manual operation on the control panel 27.

この大気放出運転モードは、漏洩箇所の修理が完了しても冷凍機室4内はアンモニア濃度が高い状態となっており、また水槽8内の水には多量のアンモニアが溶解している状態であるので、これらのアンモニアを放出可能な濃度に希釈してから徐々に大気に放出し、冷凍機室内および水槽内の水中のアンモニアを低下させる運転モードである。   In this atmospheric discharge operation mode, even if the repair of the leaked part is completed, the inside of the refrigerator room 4 is in a state where the ammonia concentration is high, and a large amount of ammonia is dissolved in the water in the water tank 8. Therefore, it is an operation mode in which these ammonias are diluted to a releasable concentration and then gradually released into the atmosphere to reduce the ammonia in the water in the refrigerator room and in the water tank.

しかして、大気放出運転モードにおいては送水管9の切替弁11が開成されるとともに、分岐送水管13の切替弁14が閉止され、水槽内の水が希釈室3内の散水ノズル12、12に送られて希釈室内に散布され、希釈室内の空気と接触して水中のアンモニアが同空気中に放出されるようになっている。
なお、希釈室内に散布された水は図示を省略したドレン流路によって水槽内に戻されるようになっている。
Thus, in the atmospheric discharge operation mode, the switching valve 11 of the water supply pipe 9 is opened, the switching valve 14 of the branch water supply pipe 13 is closed, and the water in the water tank is supplied to the watering nozzles 12 and 12 in the dilution chamber 3. It is sent and sprayed into the dilution chamber, and in contact with the air in the dilution chamber, ammonia in the water is released into the air.
The water sprayed in the dilution chamber is returned to the water tank by a drain channel (not shown).

この際、希釈室3内の空気は、排気ファン23、23の駆動によって外気吸入口21から吸入される大量の新鮮外気により、放出基準値未満の低濃度に希釈されて放出される。   At this time, the air in the dilution chamber 3 is diluted with a large amount of fresh outside air sucked from the outside air suction port 21 by driving the exhaust fans 23 and 23 and is discharged after being diluted to a low concentration less than the reference discharge value.

上述した大気放出運転モードにおいては、冷凍機室内における第1アンモニアセンサ24にて検出されるアンモニア濃度の値が所定の値、例えば5ppm未満となると自動的に終了し、その後サービスマンによるチェックを受けた後、通常運転に手動で復帰される。   In the above-described atmospheric discharge operation mode, when the value of the ammonia concentration detected by the first ammonia sensor 24 in the refrigerator room falls below a predetermined value, for example, less than 5 ppm, it automatically ends, and then checked by a service person. Then, return to normal operation manually.

上述した実施例においては、蒸発式凝縮器5に供給する水を希釈室3内の散水ノズル12、12から散布する構成としてあるが、この散水ノズルとは別に蒸発式凝縮器5専用の散水ノズルを別途設ける場合もある。   In the embodiment described above, the water supplied to the evaporative condenser 5 is dispersed from the water spray nozzles 12 and 12 in the dilution chamber 3. May be provided separately.

また、冷凍機室4内と希釈室3内を連通する通気流路18の途中に開閉弁を設け、除害運転モードや大気放出運転モードにおいて希釈室内におけるアンモニア濃度が異常に高濃度となった場合に通気流路による空気の流量を絞ったり、あるいは遮断したりすることができるようにする場合もある。   In addition, an on-off valve is provided in the middle of the ventilation passage 18 that communicates between the refrigerator room 4 and the dilution chamber 3, and the ammonia concentration in the dilution chamber becomes abnormally high in the abatement operation mode or the atmospheric discharge operation mode. In some cases, the flow rate of air through the ventilation channel may be reduced or blocked.

本発明に係るアンモニア冷凍装置は上述した構成のものとしてあるので、冷凍機室内においてアンモニアが漏出した場合には冷凍機室が外部と遮断されて高濃度のアンモニアガスが装置外部に漏出するのが確実に防止され、アンモニア漏洩事故時における安全性が十分に確保される。   Since the ammonia refrigeration apparatus according to the present invention has the above-described configuration, when ammonia leaks in the refrigerator room, the refrigerator room is shut off from the outside, and high-concentration ammonia gas leaks out of the apparatus. It is surely prevented and sufficient safety is ensured in the event of an ammonia leakage accident.

また、冷凍機室内に除害塔を設けてあるので、冷凍機室内のアンモニアガス濃度をこの除害塔の駆動によって十分に低下せしめることができ、冷凍機室内を外部と遮断した状態で同室内のアンモニア濃度を確実に低下させることができる。   In addition, since a detoxification tower is provided in the refrigerator room, the ammonia gas concentration in the refrigerator room can be sufficiently reduced by driving the detoxification tower, and the room is shut off from the outside. It is possible to reliably reduce the ammonia concentration.

さらに、アンモニア漏洩箇所の修理を完了した後において冷凍機室内や水槽内の水中に残存するアンモニアを、希釈室にて大量の新鮮な外気で安全なアンモニア濃度の空気となるまで希釈し、徐々に大気に放出する構成としてあるので、冷凍機室内の残存アンモニアを確実に除去することができるとともに、水槽内の除害用水中のアンモニアも放出することができ、除害水の中和処理等の化学的な処理を別途行なう必要がなく、アンモニアが漏洩した場合の事後処理を容易に行なうことができる。   Furthermore, after completing the repair of the ammonia leak location, the ammonia remaining in the water in the refrigerator room and the water tank is diluted in a dilution chamber until it becomes a safe ammonia concentration air with a large amount of fresh outside air, and gradually Since it is configured to be released to the atmosphere, residual ammonia in the refrigerator room can be surely removed and ammonia in the water for detoxification in the aquarium can also be released, such as neutralizing treatment of detoxified water, etc. There is no need to perform chemical treatment separately, and post-treatment when ammonia leaks can be easily performed.

また、従来の散水方式のもののように冷媒回路やその付帯機器にアンモニア除害用の水が直接散布されることがないので、アンモニア漏洩後における復旧作業を迅速に行なうことができる。   Further, unlike the conventional watering method, the water for removing ammonia is not directly sprayed on the refrigerant circuit and its auxiliary equipment, so that the recovery operation after the leakage of ammonia can be performed quickly.

さらに、従来のスクラバー方式のもののように装置外部にスクラバー装置のような別途の設備を設ける必要がなく、装置コストの低減を図ることができるとともに、装置の設置スペースを小なるものとすることができる。   Furthermore, unlike the conventional scrubber system, there is no need to provide a separate facility such as a scrubber device outside the device, which can reduce the cost of the device and reduce the installation space of the device. it can.

本発明に係る装置の構成を示す縦断面図。The longitudinal section showing the composition of the device concerning the present invention. 除害運転モードにおける制御の流れを示すフローチャート。The flowchart which shows the flow of control in the removal operation mode. 大気放出運転モードにおける制御の流れを示すフローチャート。The flowchart which shows the flow of control in an atmospheric | air release operation mode.

符号の説明Explanation of symbols

1 ケーシング 2 第1シャッター
3 希釈室 4 冷凍機室
5 蒸発式凝縮器 6 圧縮機
7 負荷側熱交換器 8 水槽
9 送水管 10 送水ポンプ
11 切替弁 12 散水ノズル
13 分岐送水管 14 切替弁
15 除害塔 16 バイパス管
17 除害用ファン 18 通気流路
19 外気吸入口 20 外気吸入口
21 外気吸入口 22 排気口
23 排気ファン 24 第1アンモニアセンサ
25 第2アンモニアセンサ 26 第3アンモニアセンサ
27 制御盤 28 送気管
29 送気ファン 30 ドレン流過パネル
31 第2シャッター 32 吸気枝管
DESCRIPTION OF SYMBOLS 1 Casing 2 1st shutter 3 Dilution room 4 Refrigerator room 5 Evaporation type condenser 6 Compressor 7 Load side heat exchanger 8 Water tank 9 Water supply pipe 10 Water supply pump 11 Switching valve 12 Sprinkling nozzle 13 Branch water supply pipe 14 Switching valve 15 Removal Destruction tower 16 Bypass pipe 17 Detoxification fan 18 Ventilation flow path 19 Outside air inlet 20 Outside air inlet 21 Outside air inlet 22 Exhaust outlet 23 Exhaust fan 24 First ammonia sensor 25 Second ammonia sensor 26 Third ammonia sensor 27 Control panel 28 Air Pipe 29 Air Fan 30 Drain Overflow Panel 31 Second Shutter 32 Intake Branch Pipe

Claims (3)

アンモニアを冷媒とする冷媒回路を備える冷凍機室と、この冷凍機室に第1の開閉機構を介して連通する希釈室を備え、前記冷凍機室はアンモニアセンサと、第2の開閉機構を有する外気吸入口と、除害塔とを備え、この除害塔は冷凍機室内の内部に設けられた水槽内の水と冷凍機室内の空気との接触によって冷凍機室内のアンモニアガスを水に溶解せしめて冷凍機室内のアンモニア濃度を低減せしめる構成としてあり、この除害塔内と前記希釈室内とを連通する通気流路を設け、また、前記希釈室は通常運転時は閉ざされているが、前記アンモニアセンサによりアンモニアの漏洩が検知されると開成される第3の開閉機構を有する外気吸入口と、希釈室内の空気を外部に排出する排気ファンを有する排気口を備え、通常運転時には前記第1および第2の開閉機構が開成されていて冷凍機室の外気吸入口から冷凍機室内に流入した外気が冷凍機室に設けられた冷媒回路の外気側熱交換器を流過し、希釈室を経て前記排気口から排出され、前記アンモニアセンサによりアンモニアの漏洩が検知されると冷媒回路の運転が停止されるとともに第1および第2の開閉機構が閉止されて、前記通気流路から希釈室内に送られる除害塔通過後の空気が希釈室の外気吸入口からの空気により希釈されて前記排気口から外部に排出されるように構成してなるアンモニア冷凍装置。   A refrigerator room having a refrigerant circuit using ammonia as a refrigerant, and a dilution chamber communicating with the refrigerator room via a first opening / closing mechanism are provided, and the refrigerator room has an ammonia sensor and a second opening / closing mechanism. An external air inlet and a detoxification tower are provided. The detoxification tower dissolves ammonia gas in the refrigerator room into water by contact between water in the water tank provided inside the refrigerator room and air in the refrigerator room. It is configured to reduce the ammonia concentration in the refrigerator room, and is provided with a ventilation channel that communicates between the detoxification tower and the dilution chamber, and the dilution chamber is closed during normal operation, An external air inlet having a third opening / closing mechanism that is opened when ammonia leakage is detected by the ammonia sensor; and an exhaust outlet having an exhaust fan for discharging the air in the dilution chamber to the outside. 1 And the second opening / closing mechanism is opened, and the outside air flowing into the refrigerator room from the outside air inlet of the refrigerator room flows through the outside heat exchanger of the refrigerant circuit provided in the refrigerator room, Then, when the ammonia sensor detects leakage of ammonia through the exhaust port, the operation of the refrigerant circuit is stopped and the first and second opening / closing mechanisms are closed, so that the vent passage enters the dilution chamber. An ammonia refrigeration apparatus configured such that air after passing through a detoxification tower is diluted with air from an outside air intake port of a dilution chamber and is discharged to the outside from the exhaust port. 前記外気側熱交換器を蒸発式凝縮器で構成し、通常運転時には前記水槽内の水をこの蒸発式凝縮器に散布して同凝縮器におけるアンモニアガスの液化用冷熱源として利用するように構成してなる請求項1に記載のアンモニア冷凍装置。   The outside air side heat exchanger is configured by an evaporative condenser, and the water in the water tank is dispersed in the evaporative condenser during normal operation and used as a cold heat source for liquefying ammonia gas in the condenser. The ammonia refrigeration apparatus according to claim 1. 前記除害塔は、冷凍機室内の内部に設けられた水槽の上方に、水槽から供給される水が内部に散布されるとともに内部に冷凍機室内の空気が供給されて水と空気の接触によって冷凍機室内のアンモニアガスを水に溶解せしめて冷凍機室内のアンモニア濃度を低減せしめる構成としてなる請求項1に記載のアンモニア冷凍装置。   The detoxification tower is formed by spraying water supplied from the water tank above the water tank provided inside the refrigerator room and supplying the air in the refrigerator room to the inside by contacting the water and air. 2. The ammonia refrigerating apparatus according to claim 1, wherein ammonia concentration in the refrigerator room is dissolved in water to reduce the ammonia concentration in the refrigerator room.
JP2004025091A 2004-02-02 2004-02-02 Ammonia refrigeration equipment Expired - Fee Related JP4071200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025091A JP4071200B2 (en) 2004-02-02 2004-02-02 Ammonia refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025091A JP4071200B2 (en) 2004-02-02 2004-02-02 Ammonia refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2005214573A JP2005214573A (en) 2005-08-11
JP4071200B2 true JP4071200B2 (en) 2008-04-02

Family

ID=34907563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025091A Expired - Fee Related JP4071200B2 (en) 2004-02-02 2004-02-02 Ammonia refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4071200B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840533A (en) * 2017-03-02 2017-06-13 佛山市顺德区环威电器有限公司 A kind of refrigerator or wine cabinet or the special small-sized ammonia refrigeration diffusion absorbing refrigerator NH_3 leakage real-time detection processing method of refrigerating box

Also Published As

Publication number Publication date
JP2005214573A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
BRPI0416759B1 (en) Ammonia / CO2 refrigeration system, system for producing CO2 brine
JP4356939B2 (en) Leaky ammonia removal method and apparatus
KR101170012B1 (en) Heat pump style constant temperature humidifier
JP4071200B2 (en) Ammonia refrigeration equipment
JP2010210129A (en) Cooling system
JP4156145B2 (en) Air-cooled air conditioner with leaked ammonia removal equipment
JP4145255B2 (en) Ammonia refrigeration equipment
US20170338130A1 (en) Ion implanter comprising integrated ventilation system
KR20180128571A (en) Continuous desorbing system for regeneration of solid absorbent
JP3066828B1 (en) Ammonia refrigeration system leakage ammonia elimination device
JP4317767B2 (en) Ammonia refrigeration system with waste ammonia water purification device
CN112999849B (en) Processing device for chlorine leakage accident
JP3447828B2 (en) Refrigerant gas control device for heat pump system
JP4145254B2 (en) Ammonia refrigeration equipment
JPH05312370A (en) Ventilation device
JP4002507B2 (en) NH3 heat pump
KR200335257Y1 (en) Safety device of dehumidifier
JP4362383B2 (en) Detoxification device for ammonia refrigeration equipment
JP7541387B2 (en) Cooling system
JPH10238909A (en) Method and apparatus for efficiently recovering refrigerant as well as adsorption tank
CN110564441A (en) Safe recovery system and recovery process for VOCs in styrene storage tank
JP2013047608A (en) Cooling system
KR100670952B1 (en) Gas Engine Heat Pump Apparatus with a Leakage Gas Purge Device
JP2816523B2 (en) Package refrigerator
EP4357233A1 (en) Floating body

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4071200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees