JP4144052B2 - Method for producing antireflection film - Google Patents

Method for producing antireflection film Download PDF

Info

Publication number
JP4144052B2
JP4144052B2 JP27170097A JP27170097A JP4144052B2 JP 4144052 B2 JP4144052 B2 JP 4144052B2 JP 27170097 A JP27170097 A JP 27170097A JP 27170097 A JP27170097 A JP 27170097A JP 4144052 B2 JP4144052 B2 JP 4144052B2
Authority
JP
Japan
Prior art keywords
coating film
film
meth
ultraviolet
cured coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27170097A
Other languages
Japanese (ja)
Other versions
JPH11104562A (en
Inventor
智之 池田
達朗 吉田
哲也 伊藤
義隆 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP27170097A priority Critical patent/JP4144052B2/en
Publication of JPH11104562A publication Critical patent/JPH11104562A/en
Application granted granted Critical
Publication of JP4144052B2 publication Critical patent/JP4144052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックフィルム等の支持体に超薄膜の反射防止フィルムを連続的に形成する方法に関する。
【0002】
【従来の技術】
乾燥膜厚が1μm以下である超薄膜の硬化塗膜を支持体に施すことにより、種々の機能を支持体上に付与することが出来る。例えば、従来からプラスチックフィルム等の支持体上に反射防止膜として固形分を塗工し、乾燥膜厚約0.1μmの塗膜を設けることにより、支持体の表面反射率を減少させることが行われている。
【0003】
この様な超薄膜の塗工は、現在、真空コーティング法、化学反応法(CVT)、プラズマ重合法、浸漬法、スピンコート法、LB膜法等で行われている。しかしこれらの方法では大面積の支持体の塗工を行うことが困難であり、連続生産も不可能であり生産性が低という欠点があった。しかも、これらの従来法では、本発明で目的としている1μm以下の膜厚の塗膜を作製する上で、耐擦傷性や硬度などの物性的特性を満足する超薄膜を得ることが困難であった。
例えば、紫外線硬化法または電子線硬化法を用いて、連続的かつ非常に均一な膜厚で超薄膜の塗工を行う場合、ラジカル反応が大気中の酸素との競争反応となり、膜中の炭素−炭素二重結合の反応速度が非常に遅いという欠点がある。この様な条件下で耐擦傷性や硬度などの物性的特性を満足する超薄膜を連続的に製造することはこれまで困難であった。
【0004】
本発明の目的は、紫外線硬化法において、連続して極薄膜の塗膜を形成する際に、紫外線照射部分の酸素濃度を下げることにより、硬度や耐擦傷性に優れた反射防止フィルムを製造する方法を提供する事にある。
【0005】
【課題を解決するための手段】
すなわち本発明は、ガイドロール及び冷却ロールに支持された、厚さ10μm以上250μm以下の連続する支持体上に、紫外線硬化の可能な重合性単量体、光重合開始剤及び溶媒を必須成分として含む塗工液を塗布し、続いて溶媒を乾燥させ、膜厚0.005〜1μmの紫外線硬化性塗膜を形成し、該塗膜を有する支持体を、入り口部分及び出口部分を有する紫外線照射室に導き、該紫外線照射室内において、冷却ロール上の支持体に形成された紫外線硬化性塗膜に、該紫外線照射室の酸素濃度を1000ppm以下に保って紫外線を照射して硬化させ、紫外線照射室外へ排出する一連の操作を連続的にn回繰返して行い、且つ、前記紫外線照射室に導いた紫外線硬化性塗膜の表面に、不活性ガスを直接通気することを特徴とする膜厚n×(0.005〜1)μmの反射防止フィルムの製造方法である。
【0006】
【発明の実施の形態】
本発明で用いられる支持体は、目的に応じ適宜選択でき、通常支持体として用いることができるものであれば無機ガラスや金属薄板、木板、石板、プラスチック等、制限はないが、例えばポリエステル、ポリアクリル、ポリウレタン、ポリオレフィン、ポリカーボネート、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース、ポリエーテルスルホン、ポリスルホン、ポリエーテル、トリメチルペンテン、ポリエーテルケトン、ポリアクリロニトリルなどの素材からなるプラスチックフィルムやプラスチックシート等が特に好ましく用いられる。
【0007】
支持体の厚さは目的に応じて適宜選択されるが、本発明を利用して硬化塗膜を有するフィルムを製造する場合には、支持体の厚さは10μm以上250μm以下の厚さである。
【0008】
本発明の紫外線硬化性塗膜は通常紫外線照射によって重合が可能な成分を含む塗工液であればいかなるものでもかまわないが、好ましくは重合性単量体、光重合開始剤等の固形分と、溶媒等を場合により適量混合してなるものである。勿論、本発明の紫外線硬化性塗膜には、この他、本発明に示される特徴を妨げない範囲で、他の如何なる素材、試薬、物品などを配合して用いてもよい。
【0009】
尚、本発明において紫外線硬化性塗膜とは、紫外線硬化前の塗膜又は紫外線硬化性の塗工液を呼称するものであり、硬化塗膜とは、紫外線硬化後の塗膜を呼称するものである。
【0010】
本発明の紫外線硬化性塗膜に含まれる重合性単量体としては、紫外線硬化の可能な重合性単量体であり塗膜成分として適した物であればいかなる物を用いてもよく、単官能性単量体又は多官能性重合性単量体のいずれであっても用いることができる。好ましくは(メタ)アクリル酸とそのアルキルエステルや、フマル酸、マレイン酸、シトラコン酸、メサコン酸、イタコン酸、テトラヒドロフタル酸等の不飽和多塩基酸及びそれらのアルキルエステル、或いは脂肪酸のビニルエステルや、スチレン類、ビニルアルキルエーテル、ビニルアルキルケトン類等を用いることが出来る。特に好ましくは(メタ)アクリル酸メチル、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、テトラメチロールメタンテトラアクリレート、1,1,1−トリス(アクリロイルオキシエトキシエトキシ)プロパン、2,2−ビス(4−アクリロイルオキシエトキシエトキシフェニル)プロパン、2,2−ビス(4−アクリロイルオキシエトキシエトキシシクロヘキシル)プロパン、2,2−ビス(4−アクリロイルオキシエトキシエトキシフェニル)メタン、ネオペンチルグリコールジ(メタ)アクリレート、水添ジシクロペンタジエニルジ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートトリアクリレート、トリス(ヒドロキシエチル)イソシアヌレートジアクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、イソボルニルジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレートや、フマル酸ジイソプロピル、酢酸ビニル、プロピオン酸ビニル、スチレン、α−メチルスチレン、酢酸アリル、ドデシルビニルエーテル、ビニルメチルケトン、ビニルエチルケトン等を用いることが出来る。重合性単量体の含量は適宜定められるが、紫外線硬化性塗膜の塗工液全量に対し、およそ5重量%〜100重量%であることが好ましい。
【0011】
本発明の紫外線硬化性塗膜に含まれる光重合開始剤としては、通常使用される光重合開始剤であれば如何なるものでもかまわないが、使用する重合性単量体の種類や紫外線照射装置の分光波長等により適宜選択することができる。
例えば、好ましくはベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン化合物や、ベンゾフェノン、アセトフェノン、ミヒラーズケトン等のカルボニル化合物、或いはアゾビスイソブチロニトリル、アゾジベンゾベンゾイルなどのアゾ化合物や、アルキルチオキサントン類、αジケトンと三級アミンの混合物等を用いることが出来る。光重合開始剤は混合して用いてもよい。紫外線硬化性塗膜中の光重合開始剤の含量は、塗工条件に応じて適宜定めてもよいが、好ましくは塗工液中の全固形分量のうち0.01〜15重量%を用いることができ、さらに好ましくは0.1〜10重量%を用いることができる。
【0012】
本発明の紫外線硬化性塗膜に使用される溶媒としては、通常一般に使用する溶媒として適当な物なら特に限定されないが、紫外線硬化性塗膜の成分等に応じて適宜選択することができる。例えば、溶媒による紫外線硬化性塗膜の固形分の溶解性又は分散性や、支持体に対する濡れ性、或いは塗布する際の乾燥条件等を指標にして選択することができる。
【0013】
特に好ましい溶媒としては、ヘキサン、トルエン、キシレン、ベンゾトリフルオリド、ジイソプロピルエーテル、ジクロロメタン、メチルエチルケトン、酢酸ブチル、イソプロピルアルコール、ブタノール、酢酸プロピル、メチルイソブチルケトン等を用いることができる。溶媒の含量は、紫外線硬化性塗膜の塗工液としての性状を損なわない範囲で適宜定めることができるが、好ましくは溶媒に対し固形分濃度が0.1重量%〜99重量%になる範囲内で含められる。
【0014】
本発明の紫外線硬化性塗膜を、膜厚0.005〜1μmの厚さで支持体に塗布する塗工方法としては、紫外線硬化性塗膜の塗工液を支持体上に連続的に塗布する方法であり、かつ膜厚0.005〜1μmの塗工膜厚を形成する方法であれば、通常行われるいかなる方法を用いても良い。特にグラビアロールを用いた塗工方法は薄膜形成が容易なため、硬化塗膜を有するフィルムを製造する場合に好ましく用いられる。グラビアロール法としては、直接塗工液を支持体に塗布するダイレクト方式や、グラビアロールと支持体との間にオフセットロールを配置するオフセット方式等の方法が好ましく用いられる。またディップコート法やスピンコート法等の塗工方法を、硬化塗膜を有するシートを製造する場合に用いてもよい。またその他の最適な塗工方法を支持体の種類に応じて適宜試みることも一向にかまわない。
【0015】
本発明における硬化塗膜は、酸素濃度を1000ppm以下に保った条件で、支持体上に塗布した膜厚0.005〜1μmの紫外線硬化性塗膜を紫外線照射により重合硬化することにより得ることができる。
より詳細には、例えば図1に示される紫外線照射式硬化装置を用いて、支持体1上に塗布した膜厚0.005〜1μmの紫外線硬化性塗膜を、ガイドロール2で紫外線照射室4まで導き、酸素濃度1000ppm以下に保った紫外線照射室4内で紫外線照射により硬化させることで膜厚0.005〜1μmの硬化塗膜を得ることができる。
【0016】
この時、酸素濃度1000ppmを越えた条件で紫外線照射を行った場合は、紫外線硬化性塗膜の硬化度が不足し、そのため硬化塗膜の耐擦傷性、硬度、耐久性の欠如、紫外線硬化性塗膜にタックが生じることによる裏写り等が発生しやすい。また多層塗りの場合には、硬化が不完全であれば、溶媒による下層の溶解などの原因により、硬化塗膜の性能に大幅な低下を引き起こすことがあるため、酸素濃度を低く保つことは一層重要である。
【0017】
紫外線照射時に紫外線照射室の酸素濃度を1000ppm以下に保つには、紫外線硬化性塗膜や支持体に重大な影響を与えない範囲で、種々の方法を用いることができる。例えば、紫外線照射室中に窒素ガスやアルゴンガス等の不活性ガスを常時導入し、充満する方法等を好ましく用いることができる。このとき、紫外線照射室の室内体積は極力少なくして気密性を高めておくとよい。また、紫外線硬化性塗膜の紫外線照射を受ける部位が、酸素濃度1000ppm以下の低酸素雰囲気に維持されるならば、例えば照射室を含む装置周辺部分全体を完全気密化して、真空ポンプで減圧する等の手段を用いることもできる。
このうち、特に紫外線照射部分近傍に窒素ガスを通気する方法は、減圧装置など特殊な設備を必要とせず簡便であることから好ましく行われ、例えば図1に示す構造の紫外線照射式硬化装置を好ましく用いることができる。
【0018】
本発明で用いられる紫外線照射装置としては特に限定されないが、一般に使用される紫外線照射装置を好ましく用いることができる。例えば波長200nm〜500nmの紫外線を照射可能な超高圧水銀灯、高圧水銀灯、低圧水銀灯、キセノンランプ等を好ましく用いることができる。
【0019】
本発明の紫外線硬化性塗膜を塗布した支持体を、紫外線照射のために紫外線照射室に導く方法としては、例えば支持体がフィルムやシートの場合には、塗工の行程から紫外線照射式硬化装置の間にガイドロール等を設置し、紫外線照射式硬化装置の紫外線照射室内に支持体を連続的に導く等の工夫をして行うことができる。このように支持体を紫外線照射室に連続的に導き、紫外線照射を行うことは作業の簡便化の上から特に好ましい。
【0020】
この様にして製造される膜厚0.005〜1μmの硬化塗膜は、単層で形成しても多層で形成しても良い。多層にする場合は一度硬化した硬化塗膜上に、再度紫外線硬化性塗膜を塗工し、更に紫外線照射して硬化することで行われる。この行程は必要なだけ複数回反復することもできる。多層で形成される場合、膜厚はn回の塗工につきn×(0.005〜1)μmの厚さとなる。各層の紫外線硬化性塗膜の組成は同一であっても異なっていてもよい。
【0021】
本発明の方法で反射防止フィルムを製造する場合、支持体にプラスチックフィルムを用い、表面に紫外線硬化性塗膜を反射防止効果が現れるように塗布して、これを本発明の方法で重合硬化することにより、反射防止硬化塗膜を形成して得ることができる。
【0022】
本発明の紫外線硬化性塗膜には、含フッ素アクリレートを任意量含むことができる。含フッ素アクリレートとしては、溶液、分散液、コロイド溶液(ゾル)、又はこれらが混在した状態で安定であり、塗工が可能である液体として存在する等の条件を満たし、本発明の範囲内で使用できるならば、従来公知のいかなるものを用いてもよいが、特に好ましくは、2−ペルフルオロヘキシル−1−(ヒドロキシメチル)エチル=2−ビス((メタ)アクリロイルオキシメチル)プロピオナート、2−ペルフルオロヘキシル−1−((メタ)アクリロイルオキシ)エチル=2−((メタ)アクリロイルオキシメチル)−2−(ヒドロキシメチル)プロピオナート、2−ペルフルオロオクチル−1−(ヒドロキシメチル)エチル=2−ビス((メタ)アクリロイルオキシメチル)プロピオナート、2−ペルフルオロオクチル−1−((メタ)アクリロイルオキシメチル)エチル=2−((メタ)アクリロイルオキシメチル)−2−(ヒドロキシメチル)プロピオナート、3−ペルフルオロヘキシル−2−ヒドロキシプロピル=2−ビス((メタ)アクリロイルオキシメチル)プロピオナート、3−ペルフルオロヘキシル−2−((メタ)アクリロイルオキシ)プロピル=2−((メタ)アクリロイルオキシメチル)−2−(ヒドロキシメチル)プロピオナート、3−ペルフルオロオクチル−2−ヒドロキシプロピル=2−ビス((メタ)アクリロイルオキシメチル)プロピオナート、3−ペルフルオロオクチル−2−((メタ)アクリロイルオキシ)プロピル=2−((メタ)アクリロイルオキシメチル)−2−(ヒドロキシメチル)プロピオナート、(メタ)アクリル酸−2,2,2−トリフルオロエチル、(メタ)アクリル酸−2,2,3,3,3−ペンタフルオロプロピル、(メタ)アクリル酸−2,2,3,3,4,4,4−ヘプタフルオロブチル、(メタ)アクリル酸−2,2,3,3,4,4,5,5,5−ノナフルオロペンチル、(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,6−ウンデカフルオロヘキシル、(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,7−トリデカフルオロヘプチル、(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,8,8,8−ペンタデカフルオロオクチル、(メタ)アクリル酸−3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロオクチル、(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10−ノナデカフルオロデシル、(メタ)アクリル酸−3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10−ヘプタデカフルオロデシル、(メタ)アクリル酸−2−トリフルオロメチル−3,3,3−トリフルオロプロピル、(メタ)アクリル酸−3−トリフルオロメチル−4,4,4−トリフルオロブチル、(メタ)アクリル酸−1−メチル−2,2,3,3,3−ペンタフルオロプロピル、(メタ)アクリル酸−1−メチル−2,2,3,3,4,4,4−ヘプタフルオロブチル、ジ(メタ)アクリル酸−2,2,2−トリフルオロエチルエチレングリコール、ジ(メタ)アクリル酸−2,2,3,3,3−ペンタフルオロプロピルエチレングリコール、ジ(メタ)アクリル酸−2,2,3,3,4,4,4−ヘプタフルオロブチルエチレングリコール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,5−ノナフルオロペンチルエチレングリコール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,6−ウンデカフルオロヘキシルエチレングリコール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,7−トリデカフルオロヘプチルエチレングリコール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,8,8,8−ペンタデカフルオロオクチルエチレングリコール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10−ノナデカフルオロデシルエチレングリコール、ジ(メタ)アクリル酸−2,2,3,3−テトラフルオロブタンジオール、ジ(メタ)アクリル酸−2,2,3,3,4,4−ヘキサフルオロペンタジオール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5−オクタフルオロヘキサンジオール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6−デカフルオロヘプタンジオール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7−ドデカフルオロオクタンジオール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,8,8−テトラデカフルオロノナンジオール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9−ヘキサデカフルオロデカンジオール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10−オクタデカフルオロウンデカンジオール、ジ(メタ)アクリル酸−2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11−エイコサフルオロドデカンジオール等の含フッ素二官能(メタ)アクリル酸エステルや、テトラ(メタ)アクリル酸−4,4,5,5−テトラフルオロオクタン−1,2,7,8−テトラオール、テトラ(メタ)アクリル酸−4,4,5,5,6,6−ヘキサフルオロノナン−1,2,8,9−テトラオ−ル、テトラ(メタ)アクリル酸−4,4,5,5,6,6,7,7−オクタフルオロデカン−1,2,9,10−テトラオール、テトラ(メタ)アクリル酸−4,4,5,5,6,6,7,7,8,8−デカフルオロウンデカン−1,2,10,11−テトラオール、テトラ(メタ)アクリル酸−4,4,5,5,6,6,7,7,8,8,9,9−ドデカフルオロドデカン−1,2,11,12−テトラオール等の含フッ素四官能(メタ)アクリル酸エステル等を用いることが出来る。含フッ素アクリレートは単独で用いても混合物として用いてもどちらでもよく、分量や組成比も目的に応じ適宜定めることが出来る。
【0023】
本発明の反射防止性フィルムは、反射防止能を発現させるために単層で形成しても、多層で形成してもよい。また多層で形成される場合、各層の紫外線硬化性塗膜の組成は同一であっても異なっていてもいずれでもよい。このとき硬化塗膜の屈折率は1.5以下であることが好ましく、更に好ましくは1.46以下である。
【0024】
【実施例】
本発明を参考例、実施例、比較例を用いて更に詳細に説明する。
参考例1
図1の模式図に示した構成の紫外線照射式硬化装置を以下の要領で作成した。ステンレス板で囲んだ紫外線照射室4を工作し、接合部分をエポキシ樹脂でシールした。塗工フィルム1が、照射室前のガイドロール2を通り照射室に入れる様に、照射室入り口部分10に5mmのギャップを開けた。照射室内部には、予め照射室入り口部分10と照射室出口部分11及び、照射室内壁面にステンレスパイプを設置し、通気孔を設けて窒素供給部分3とした。これによりステンレスパイプに窒素を通気する事で紫外線照射室4内を窒素雰囲気にし、窒素通気流量を調節することで酸素濃度を制御できる様にした。この照射室4内部には取り込み口9を設け、ここから内部気体を吸引することにより、酸素濃度センサで酸素濃度が測定できる様にした。紫外線照射装置室5内には紫外線照射装置として空冷式超高圧水銀灯(160W/cm、ラインスピードが10m/分の時の照射紫外線量は400mJ/cm2、岩崎電気社製)を設置した。紫外線照射装置室5は照射により加熱されるので、照射装置後方から冷却空気を照射装置室5内に送れるようにした。更にこの照射装置室5から照射室4への冷却空気の流入を防ぐために、間に石英ガラス6を設置した。また紫外線照射室4も照射により加熱されるので、冷却ロール8を設けた。これにより塗工フィルムは冷却ロール8上で紫外線照射されるので加熱の影響を低減できた。紫外線照射後のフィルムは照射室出口部分11から排出され巻き取られる構造にした。
【0025】
参考実施例1
次の手順により硬化塗膜を作成し、耐溶媒性試験、耐擦傷性試験、密着性評価試験を行い性能を評価した。まず塗液として、重合性単量体であるジアクリル酸(ペルフルオロオクチル)メチルエチレングリコール400gと、光重合開始剤「Darocur 1173」(商品名、チバガイギー社製)8gと、トリフルオロメチルベンゼン4600gを混合して固形分濃度8.1重量%の塗工液Aを調整した。次に塗工液Aを用いて、市販のポリエチレンテレフタレートフィルムを支持体にして塗工を行った。塗工はグラビアロール法で行い、グラビアロールコーターとして「マイクログラビアコーター」(商品名、康井精機社製)を用い、グラビアロールとして「マイクログラビアローラー」(商品名、康井精機社製、メッシュ110/inch)を使用した。塗工速度は10m/分に調整し、マイクログラビアロールの回転速度は2.5m/分に調整して塗工方向に対して逆方向に回転させ塗工した。塗工後は100℃に設定した工程長さ5mの乾燥機内を通過させて溶媒を乾燥させ、乾燥膜厚約100nmの紫外線硬化性塗膜を有するフィルムを得た。更に紫外線硬化性塗膜を硬化させるため、窒素通気により紫外線照射室内の酸素濃度を200ppmにした参考例1の紫外線照射式硬化装置を通過させ、硬化塗膜を得た。
【0026】
得られた硬化塗膜に次の1〜3の評価試験を行った。
1.耐溶媒性試験
硬化塗膜表面にメタノール、エタノール、酢酸エチル、トルエン、アセトンから選択される溶媒0.5mlを滴下し、室温で1分間静置後、溶媒をふき取り硬化塗膜の状態を調べた。このとき硬化塗膜に変化がなければ耐溶媒性良好と見なし○とした。硬化塗膜層が溶解して消失する等の異変があれば耐溶媒性不良と見なし×とした。結果を表1に示した。
2.耐擦傷性試験
硬化塗膜表面を加重1Kg/cm2かけた「キムテックス」(商品名、クレシア社製)で、長さ2cmにわたり10往復擦った後、硬化塗膜の状態を調べた。このとき全く傷が付かず硬化塗膜に変化がなければ、耐擦傷性良好と見なし○とした。10本未満の傷が付いた場合は△、10本以上の著しい傷が付いたり硬化塗膜層が完全に剥離した場合は、耐擦傷性不良と見なし×とした。結果を表1に示した。
3.密着性試験
JIS K5400の試験法に準拠して碁盤目剥離試験を行い、硬化塗膜の密着性を評価した。結果を表1に示した。
【0027】
【表1】

Figure 0004144052
【0028】
以上の評価試験結果から、酸素濃度200ppmで硬化した硬化塗膜は耐溶媒性、耐擦傷性、密着性に関して良好な性能を持つことを確認した。
【0029】
参考実施例2
紫外線照射室内の酸素濃度を1000ppmにした以外は、参考実施例1と同様にして硬化塗膜を得た。更に参考実施例1と同様の評価試験を行い、結果を表1に示した。表1の評価試験結果から、酸素濃度1000ppmで硬化した硬化塗膜は耐溶媒性、耐擦傷性、密着性に関して良好な性能を持つことを確認した。
【0030】
参考比較例1
紫外線照射室内の酸素濃度を2000ppmにした以外は、参考実施例1と同様にして硬化塗膜を得た。更に参考実施例1と同様の評価試験を行い、結果を表1に示した。表1の評価試験結果から、酸素濃度2000ppmで硬化した硬化塗膜は酸素濃度1000ppm以下に保って硬化した硬化塗膜に比較し、耐擦傷性、密着性に関して劣ることを確認した。
【0031】
参考比較例2
紫外線照射室内に窒素通気を行わなかった以外は、参考実施例1と同様にして硬化塗膜を得た。更に参考実施例1と同様の評価試験を行い、結果を表1に示した。表1の評価試験結果から、窒素通気を行わず硬化した硬化塗膜は、耐溶媒性、耐擦傷性、密着性のいずれにおいても不良であることを確認した。
【0032】
実施例
次の手順により多層の硬化塗膜を作成し、耐溶媒性試験、耐擦傷性試験、密着性評価試験を行い性能を評価した。まず塗液として、塗工液B、C、Dを調整した。塗工液Bは、重合性単量体であるジペンタエリスリトールヘキサアクリレート(日立化成工業社製)1350gと、ポリエチレングリコールジアクリレート(新中村化学社製)900g、光重合開始剤「Irgacur 184」(商品名、チバガイギー社製)45gと、イソプロパノール1000gを混合して固形分濃度70重量%に調整した。塗工液Cは、重合性単量体であるジペンタエリスリトールトリアクリレート(共栄社油脂社製)84gと、「ZS−300」(商品名、住友大阪セメント社製、30%酸化亜鉛微粒子トルエン分散液)720g、光重合開始剤「Darocur 1173」(商品名、チバガイギー社製)6gと、イソプロパノール2940gを混合して固形分濃度8重量%に調整した。塗工液Dは、重合性単量体であるテトラアクリル酸−4,4,5,5,6,6−ヘキサフルオロノナン−1,2,8,9−テトラオール80gと、「XBA−STシリカゾル」(商品名、日産化学社製、コロイダルシリカ30%:キシレン45%:n−ブタノール25%)270g、光重合開始剤「Darocur 1173」(商品名)6gと、イソプロパノール2850gを混合して固形分濃度5重量%に調整した。
【0033】
次に塗工液Bを用いて、市販のトリアセチルセルロースフィルム(TACフィルム)を支持体にして塗工を行った。塗工はグラビアロール法で行い、グラビアロールコーターとして「マイクログラビアコーター」(商品名、康井精機社製)を用い、グラビアロールとして「マイクログラビアローラー」(商品名、康井精機社製、メッシュ180/inch)を使用した。塗工速度は10m/分に調整し、マイクログラビアロールの回転速度は20m/分に調整して塗工方向に対して逆方向に回転させ塗工した。塗工後は80℃に設定した工程長さ5mの乾燥機内を通過させて溶媒を乾燥させ、乾燥膜厚約4μmの紫外線硬化性塗膜を有するフィルムを得た。この紫外線硬化性塗膜を硬化させるため、窒素通気により紫外線照射室内の酸素濃度を200ppmにした参考例1の紫外線照射式硬化装置を通過させ、硬化塗膜(HC硬化塗膜層と呼称)を得た。これにより表面にHC硬化塗膜層を有するHC−TACフィルムを得た。
更に塗工液Cを用いて、HC−TACフィルムを支持体にしてHC硬化塗膜層上に塗工を行った。塗工はグラビアロール法で行い、グラビアロールコーターとして「マイクログラビアコーター」(商品名、康井精機社製)を用い、グラビアロールとして「マイクログラビアローラー」(商品名、康井精機社製、メッシュ180/inch)を使用した。塗工速度は10m/分に調整し、マイクログラビアロールの回転速度は3m/分に調整して塗工方向に対して逆方向に回転させ塗工した。塗工後は80℃に設定した工程長さ5mの乾燥機内を通過させて溶媒を乾燥させ、乾燥膜厚約100nmの紫外線硬化性塗膜を有するフィルムを得た。この紫外線硬化性塗膜を硬化させるため、窒素通気により紫外線照射室内の酸素濃度を200ppmにした参考例1の紫外線照射式硬化装置を通過させ、硬化塗膜(H硬化塗膜層と呼称)を得た。これにより最外面にH硬化塗膜層を有するH−HC−TACフィルムを得た。
最後に塗工液Dを用いて、H−HC−TACフィルムを支持体にしてH硬化塗膜層上に塗工を行った。塗工はグラビアロール法で行い、グラビアロールコーターとして「マイクログラビアコーター」(商品名、康井精機社製)を用い、グラビアロールとして「マイクログラビアローラー」(商品名、康井精機社製、メッシュ110/inch)を使用した。塗工速度は10m/分に調整し、マイクログラビアロールの回転速度は2m/分に調整して塗工方向に対して逆方向に回転させ塗工した。塗工後は80℃に設定した工程長さ5mの乾燥機内を通過させて溶媒を乾燥させ、乾燥膜厚約100nmの紫外線硬化性塗膜を有するフィルムを得た。この紫外線硬化性塗膜を硬化させるため、窒素通気により紫外線照射室内の酸素濃度を200ppmにした参考例1の紫外線照射式硬化装置を通過させ、硬化塗膜(L硬化塗膜層と呼称)を得た。
この様にしてL硬化塗膜層、H硬化塗膜層、HC硬化塗膜層を重層したL−H−HC−TACフィルムを得た。
【0034】
得られたL−H−HC−TACフィルムの硬化塗膜に、次の1〜4の評価試験を行った。
1.耐溶媒性試験
硬化塗膜表面にメタノール、エタノール、酢酸エチル、トルエン、アセトンから選択される溶媒0.5mlを滴下し、室温で1分間静置後、溶媒をふき取り硬化塗膜の状態を調べた。このとき硬化塗膜に変化がなければ耐溶媒性良好と見なし○とした。硬化塗膜層が溶解して消失する等の異変があれば耐溶媒性不良と見なし×とした。結果を表2に示した。
2.耐擦傷性試験A
硬化塗膜表面を加重1Kg/cm2かけた「キムテックス」(商品名、クレシア社製)で、長さ2cmにわたり10往復擦った後、硬化塗膜の状態を調べた。このとき全く傷が付かず硬化塗膜に変化がなければ、耐擦傷性良好と見なし○とした。10本未満の傷が付いた場合は△、10本以上の著しい傷が付いたり硬化塗膜層が完全に剥離した場合は、耐擦傷性不良と見なし×とした。結果を表2に示した。
3.耐擦傷性試験B
硬化塗膜表面を50g/cm2、100g/cm2、150g/cm2、250g/cm2、500g/cm2から選択される加重をかけた「キムテックス」(商品名、クレシア社製)で、長さ2cmにわたり10往復擦った後、硬化塗膜の状態を調べた。このとき10本以上の著しい傷が付いたり硬化塗膜層が完全に剥離した場合の加重を調べた。結果を表2に示した。
4.密着性試験
JIS K5400の試験法に準拠して碁盤目剥離試験を行い、硬化塗膜の密着性を評価した。結果を表2に示した。
【0035】
【表2】
Figure 0004144052
【0036】
以上の評価試験結果から、硬化塗膜は耐溶媒性、耐擦傷性、密着性に関して良好な性能を持つことを確認した。
【0037】
実施例
L硬化塗膜層を硬化させる時の紫外線照射室内の酸素濃度を1000ppmにした以外は、実施例と同様にして硬化塗膜を得た。更に実施例と同様の評価試験を行い、結果を表2に示した。表2の評価試験結果から硬化塗膜は耐溶媒性、耐擦傷性、密着性に関して良好な性能を持つことを確認した。
【0038】
実施例
H硬化塗膜層を硬化させる時の紫外線照射室内の酸素濃度を1000ppmにした以外は、実施例と同様にして硬化塗膜を得た。更に実施例と同様の評価試験を行い、結果を表2に示した。表2の評価試験結果から硬化塗膜は耐溶媒性、耐擦傷性、密着性に関して良好な性能を持つことを確認した。
【0039】
実施例
HC硬化塗膜層を硬化させる時の紫外線照射室内の酸素濃度を1000ppmにした以外は、実施例と同様にして硬化塗膜を得た。更に実施例と同様の評価試験を行い、結果を表2に示した。表2の評価試験結果から硬化塗膜は耐溶媒性、耐擦傷性、密着性に関して良好な性能を持つことを確認した。
【0040】
比較例
L硬化塗膜層を硬化させる時に紫外線照射室内に窒素通気を行わなかった以外は、実施例と同様にして硬化塗膜を得た。更に実施例と同様の評価試験を行い、結果を表2に示した。表2の評価試験結果から硬化塗膜は耐溶媒性、耐擦傷性、密着性のいずれにおいても不良であることを確認した。
【0041】
比較例
HC硬化塗膜層、H硬化塗膜層、L硬化塗膜層のそれぞれを硬化させる時の紫外線照射室内の酸素濃度を2000ppmにした以外は、実施例と同様にして硬化塗膜を得た。更に実施例と同様の評価試験を行い、結果を表2に示した。表2の評価試験結果から硬化塗膜は耐擦傷性に関して劣ることを確認した。
【0042】
比較例
HC硬化塗膜層、H硬化塗膜層、L硬化塗膜層のそれぞれを硬化させる時に紫外線照射室内に窒素通気を行わなかった以外は、実施例と同様にして硬化塗膜を得た。更に実施例と同様の評価試験を行い、結果を表2に示した。表2の評価試験結果から硬化塗膜は耐溶媒性、耐擦傷性、密着性のいずれにおいても不良であることを確認した。
【0043】
【発明の効果】
本発明の硬化塗膜の製造方法では、膜厚0.005〜1μmの硬化塗膜を連続的に製造するにあたり、酸素濃度を1000ppm以下に保って紫外線硬化を行うことで、耐擦傷性、硬度、耐久性が非常に良好であり、工業的に非常に有用な硬化塗膜を得ることができた。
【図面の簡単な説明】
【図1】側面から見た紫外線照射式硬化装置の模式図。
【図2】正面から見た紫外線照射式硬化装置の模式図。
【符号の説明】
(1)塗工フィルム
(2)ガイドロール
(3)ステンレスパイプおよび窒素供給口部分
(4)紫外線照射室
(5)紫外線照射装置室
(6)石英ガラス
(7)冷却空気入り口
(8)水冷式冷却ロール
(9)取り込み口および酸素濃度センサ
(10)照射室入り口部分
(11)照射室出口部分[0001]
BACKGROUND OF THE INVENTION
  The present invention provides an ultra-thin film on a support such as a plastic film.Antireflection filmRelates to a method for continuously forming the film.
[0002]
[Prior art]
Various functions can be imparted on the support by applying an ultra-thin cured coating film having a dry film thickness of 1 μm or less to the support. For example, the surface reflectance of a support has been conventionally reduced by applying a solid content as an antireflection film on a support such as a plastic film and providing a coating having a dry film thickness of about 0.1 μm. It has been broken.
[0003]
Such ultra-thin film coating is currently performed by vacuum coating, chemical reaction (CVT), plasma polymerization, dipping, spin coating, LB film, and the like. However, these methods have the disadvantages that it is difficult to apply a large-area support, continuous production is impossible, and productivity is low. In addition, in these conventional methods, it is difficult to obtain an ultrathin film satisfying physical properties such as scratch resistance and hardness in producing a coating film having a thickness of 1 μm or less, which is the object of the present invention. It was.
For example, when applying ultra-thin films with a continuous and very uniform film thickness using UV curing or electron beam curing, the radical reaction becomes a competitive reaction with oxygen in the atmosphere, and the carbon in the film -There is a drawback that the reaction rate of the carbon double bond is very slow. Under these conditions, it has been difficult to continuously produce ultrathin films that satisfy physical properties such as scratch resistance and hardness.
[0004]
  The object of the present invention is to provide excellent hardness and scratch resistance by lowering the oxygen concentration in the UV-irradiated part when continuously forming a very thin coating film in the UV curing method.Antireflection filmIt is to provide a method of manufacturing.
[0005]
[Means for Solving the Problems]
  That is, the present invention comprises an ultraviolet curable polymerizable monomer, a photopolymerization initiator, and a solvent as essential components on a continuous support having a thickness of 10 μm to 250 μm supported by a guide roll and a cooling roll. A coating liquid containing the coating is applied, and then the solvent is dried to form an ultraviolet curable coating film having a film thickness of 0.005 to 1 μm, and the support having the coating film is irradiated with ultraviolet rays having an entrance portion and an exit portion. In the ultraviolet irradiation chamber, the ultraviolet curable coating film formed on the support on the cooling roll is cured by irradiating with ultraviolet rays while maintaining the oxygen concentration in the ultraviolet irradiation chamber at 1000 ppm or less. A series of operations for discharging to the outside is repeated n times continuously, and an inert gas is formed on the surface of the ultraviolet curable coating film led to the ultraviolet irradiation chamber.DirectlyThickness n × (0.005 to 1) μm, characterized by ventilationAntireflection filmIt is a manufacturing method.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The support used in the present invention can be appropriately selected according to the purpose, and is not limited as long as it can be used as a normal support, such as inorganic glass, metal thin plate, wood board, stone board, plastic, etc. Plastic films and plastic sheets made of materials such as acrylic, polyurethane, polyolefin, polycarbonate, triacetyl cellulose, diacetyl cellulose, acetate butyrate cellulose, polyethersulfone, polysulfone, polyether, trimethylpentene, polyetherketone, polyacrylonitrile, etc. Particularly preferably used.
[0007]
  The thickness of the support is appropriately selected according to the purpose, but when manufacturing a film having a cured coating film using the present invention, the thickness of the support isIs 1With a thickness of 0 μm or more and 250 μm or lessis there.
[0008]
The UV curable coating film of the present invention may be any coating liquid as long as it contains a component that can be polymerized by UV irradiation, but preferably has a solid content such as a polymerizable monomer and a photopolymerization initiator. In some cases, an appropriate amount of a solvent or the like is mixed. Of course, the ultraviolet curable coating film of the present invention may be used with any other materials, reagents, articles, etc., as long as the characteristics shown in the present invention are not hindered.
[0009]
In the present invention, the UV curable coating film refers to a coating film before UV curing or a UV curable coating solution, and the cured coating film refers to a coating film after UV curing. It is.
[0010]
As the polymerizable monomer contained in the ultraviolet curable coating film of the present invention, any monomer may be used as long as it is a polymerizable monomer capable of ultraviolet curing and is suitable as a coating film component. Either a functional monomer or a polyfunctional polymerizable monomer can be used. Preferably, (meth) acrylic acid and its alkyl ester, fumaric acid, maleic acid, citraconic acid, mesaconic acid, itaconic acid, tetrahydrophthalic acid and other unsaturated polybasic acids and their alkyl esters, or fatty acid vinyl esters, Styrenes, vinyl alkyl ethers, vinyl alkyl ketones and the like can be used. Particularly preferably, methyl (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane Di (meth) acrylate, tetramethylolmethane tetraacrylate, 1,1,1-tris (acryloyloxyethoxyethoxy) ) Propane, 2,2-bis (4-acryloyloxyethoxyethoxyphenyl) propane, 2,2-bis (4-acryloyloxyethoxyethoxycyclohexyl) propane, 2,2-bis (4-acryloyloxyethoxyethoxyphenyl) methane , Neopentyl glycol di (meth) acrylate, hydrogenated dicyclopentadienyl di (meth) acrylate, tris (hydroxyethyl) isocyanurate triacrylate, tris (hydroxyethyl) isocyanurate diacrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, isobornyl di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate Polyalkylene glycol di (meth) acrylates such as polytetramethylene glycol di (meth) acrylate, diisopropyl fumarate, vinyl acetate, vinyl propionate, styrene, α-methylstyrene, allyl acetate, dodecyl vinyl ether, vinyl methyl ketone Vinyl ethyl ketone can be used. Although the content of the polymerizable monomer is appropriately determined, it is preferably about 5% by weight to 100% by weight with respect to the total amount of the coating solution for the ultraviolet curable coating film.
[0011]
The photopolymerization initiator contained in the ultraviolet curable coating film of the present invention may be any photopolymerization initiator that is usually used, but the type of polymerizable monomer used and the ultraviolet irradiation device It can be appropriately selected depending on the spectral wavelength or the like.
For example, preferably a benzoin compound such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, a carbonyl compound such as benzophenone, acetophenone, Michler's ketone, or an azo compound such as azobisisobutyronitrile, azodibenzobenzoyl, Alkylthioxanthones, a mixture of α-diketone and tertiary amine, and the like can be used. You may mix and use a photoinitiator. The content of the photopolymerization initiator in the ultraviolet curable coating film may be appropriately determined according to the coating conditions, but preferably 0.01 to 15% by weight of the total solid content in the coating liquid is used. More preferably, 0.1 to 10% by weight can be used.
[0012]
  Main departureThe solvent used for the bright UV-curable coating film is not particularly limited as long as it is a suitable solvent for general use, but can be appropriately selected according to the components of the UV-curable coating film. For example, the solubility or dispersibility of the solid content of the ultraviolet curable coating film by the solvent, the wettability with respect to the support, or the drying conditions at the time of coating can be selected as an index.
[0013]
As a particularly preferable solvent, hexane, toluene, xylene, benzotrifluoride, diisopropyl ether, dichloromethane, methyl ethyl ketone, butyl acetate, isopropyl alcohol, butanol, propyl acetate, methyl isobutyl ketone, and the like can be used. The content of the solvent can be determined as appropriate as long as the properties of the UV curable coating film as a coating liquid are not impaired, but preferably the solid content concentration is 0.1% by weight to 99% by weight with respect to the solvent. Included within.
[0014]
As a coating method for applying the ultraviolet curable coating film of the present invention to a support with a thickness of 0.005 to 1 μm, a coating solution of the ultraviolet curable coating film is continuously applied on the support. Any conventional method may be used as long as it is a method for forming a coating film thickness of 0.005 to 1 μm. In particular, a coating method using a gravure roll is preferably used when a film having a cured coating film is produced because a thin film can be easily formed. As the gravure roll method, methods such as a direct method in which a coating solution is directly applied to a support and an offset method in which an offset roll is disposed between the gravure roll and the support are preferably used. Moreover, you may use coating methods, such as a dip coat method and a spin coat method, when manufacturing the sheet | seat which has a cured coating film. In addition, other optimum coating methods may be tried as appropriate depending on the type of support.
[0015]
The cured coating film according to the present invention can be obtained by polymerizing and curing an ultraviolet curable coating film having a film thickness of 0.005 to 1 μm applied on the support under the condition that the oxygen concentration is kept at 1000 ppm or less. it can.
More specifically, for example, an ultraviolet curable coating film having a film thickness of 0.005 to 1 μm applied on the support 1 using an ultraviolet irradiation type curing device shown in FIG. The cured coating film having a film thickness of 0.005 to 1 μm can be obtained by curing by ultraviolet irradiation in the ultraviolet irradiation chamber 4 maintained at an oxygen concentration of 1000 ppm or less.
[0016]
At this time, when the ultraviolet ray irradiation is performed under the condition where the oxygen concentration exceeds 1000 ppm, the degree of cure of the ultraviolet curable coating film is insufficient, and therefore the cured film has a scratch resistance, hardness, lack of durability, and ultraviolet curable properties. The show-through due to the occurrence of tackiness on the coating film is likely to occur. In the case of multi-layer coating, if the curing is incomplete, it may cause a significant decrease in the performance of the cured coating film due to the dissolution of the lower layer by the solvent. is important.
[0017]
In order to keep the oxygen concentration in the ultraviolet irradiation chamber at 1000 ppm or less during ultraviolet irradiation, various methods can be used as long as the ultraviolet curable coating film and the support are not significantly affected. For example, a method of constantly introducing and filling an inert gas such as nitrogen gas or argon gas into the ultraviolet irradiation chamber can be preferably used. At this time, it is preferable to increase the airtightness by reducing the volume of the ultraviolet irradiation chamber as much as possible. Further, if the part of the ultraviolet curable coating that is irradiated with ultraviolet rays is maintained in a low oxygen atmosphere with an oxygen concentration of 1000 ppm or less, for example, the entire peripheral portion of the apparatus including the irradiation chamber is completely sealed and reduced in pressure with a vacuum pump. Such means can also be used.
Among these, the method of ventilating nitrogen gas in the vicinity of the ultraviolet irradiation portion is preferably performed because it does not require special equipment such as a decompression device and is simple, and for example, an ultraviolet irradiation curing device having a structure shown in FIG. 1 is preferable. Can be used.
[0018]
Although it does not specifically limit as an ultraviolet irradiation device used by this invention, The ultraviolet irradiation device generally used can be used preferably. For example, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp or the like that can irradiate ultraviolet rays having a wavelength of 200 nm to 500 nm can be preferably used.
[0019]
As a method of guiding the support coated with the ultraviolet curable coating film of the present invention to an ultraviolet irradiation chamber for ultraviolet irradiation, for example, when the support is a film or a sheet, UV irradiation type curing is performed from the coating process. A guide roll or the like can be installed between the devices, and the device can be devised such as continuously guiding the support into the ultraviolet irradiation chamber of the ultraviolet irradiation type curing device. In this way, it is particularly preferable to carry out ultraviolet irradiation by continuously guiding the support to the ultraviolet irradiation chamber in order to simplify the work.
[0020]
The cured coating film having a film thickness of 0.005 to 1 μm produced in this manner may be formed as a single layer or multiple layers. In the case of forming a multilayer, an ultraviolet curable coating is applied again on the cured coating once cured, and further cured by irradiation with ultraviolet rays. This process can be repeated as many times as necessary. When formed in a multilayer, the film thickness is nx (0.005 to 1) [mu] m per n coatings. The composition of the ultraviolet curable coating film of each layer may be the same or different.
[0021]
When an antireflection film is produced by the method of the present invention, a plastic film is used as a support, and an ultraviolet curable coating is applied on the surface so that an antireflection effect appears, and this is polymerized and cured by the method of the present invention. Thus, an antireflection cured coating film can be formed and obtained.
[0022]
The ultraviolet curable coating film of the present invention can contain an arbitrary amount of fluorine-containing acrylate. The fluorine-containing acrylate satisfies the condition that it is stable as a solution, dispersion, colloidal solution (sol), or a mixture of these, and exists as a liquid that can be applied, and within the scope of the present invention. Any conventionally known compounds may be used as long as they can be used, but 2-perfluorohexyl-1- (hydroxymethyl) ethyl = 2-bis ((meth) acryloyloxymethyl) propionate, 2-perfluoro is particularly preferable. Hexyl-1-((meth) acryloyloxy) ethyl = 2-((meth) acryloyloxymethyl) -2- (hydroxymethyl) propionate, 2-perfluorooctyl-1- (hydroxymethyl) ethyl = 2-bis (( (Meth) acryloyloxymethyl) propionate, 2-perfluorooctyl-1-(( Ta) acryloyloxymethyl) ethyl = 2-((meth) acryloyloxymethyl) -2- (hydroxymethyl) propionate, 3-perfluorohexyl-2-hydroxypropyl = 2-bis ((meth) acryloyloxymethyl) propionate, 3-perfluorohexyl-2-((meth) acryloyloxy) propyl = 2-((meth) acryloyloxymethyl) -2- (hydroxymethyl) propionate, 3-perfluorooctyl-2-hydroxypropyl = 2-bis (( (Meth) acryloyloxymethyl) propionate, 3-perfluorooctyl-2-((meth) acryloyloxy) propyl = 2-((meth) acryloyloxymethyl) -2- (hydroxymethyl) propionate, (meth) acrylic acid- , 2,2-trifluoroethyl, (meth) acrylic acid-2,2,3,3,3-pentafluoropropyl, (meth) acrylic acid-2,2,3,3,4,4,4-hepta Fluorobutyl, (meth) acrylic acid-2,2,3,3,4,4,5,5,5-nonafluoropentyl, (meth) acrylic acid-2,2,3,3,4,4,5 , 5,6,6,6-undecafluorohexyl, (meth) acrylic acid-2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptyl (Meth) acrylic acid-2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl, (meth) acrylic acid-3, 3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl, (meth) acrylic acid-2,2,3 , 3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluorodecyl, (meth) acrylic acid-3,3,4 4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl, (meth) acrylic acid-2-trifluoromethyl-3,3,3 -Trifluoropropyl, (meth) acrylic acid-3-trifluoromethyl-4,4,4-trifluorobutyl, (meth) acrylic acid-1-methyl-2,2,3,3,3-pentafluoropropyl , (Meth) acrylic acid-1-methyl-2,2,3,3,4,4,4-heptafluorobutyl, di (meth) acrylic acid-2,2,2-trifluoroethylethylene glycol, di ( (Meth) acrylic acid-2,2,3,3,3-pentafluoropropyl ester Lenglycol, di (meth) acrylic acid-2,2,3,3,4,4,4-heptafluorobutylethylene glycol, di (meth) acrylic acid-2,2,3,3,4,4,5 , 5,5-nonafluoropentylethylene glycol, di (meth) acrylic acid-2,2,3,3,4,4,5,5,6,6,6-undecafluorohexylethylene glycol, di (meth) ) Acrylic acid-2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptylethylene glycol, di (meth) acrylic acid-2,2,3 3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctylethylene glycol, di (meth) acrylic acid-2,2,3,3,4,4,4 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10- Nadecafluorodecylethylene glycol, di (meth) acrylic acid-2,2,3,3-tetrafluorobutanediol, di (meth) acrylic acid-2,2,3,3,4,4-hexafluoropentadiol , Di (meth) acrylic acid-2,2,3,3,4,4,5,5-octafluorohexanediol, di (meth) acrylic acid-2,2,3,3,4,4,5, 5,6,6-decafluoroheptanediol, di (meth) acrylic acid-2,2,3,3,4,4,5,5,6,6,7,7-dodecafluorooctanediol, di (meth) ) Acrylic acid-2,2,3,3,4,4,5,5,6,6,7,7,8,8-tetradecafluorononanediol, di (meth) acrylic acid-2,2,3 , 3,4,4,5,5,6,6,7,7,8,8,9,9-hex Sadecafluorodecanediol, di (meth) acrylic acid-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-octa Decafluoroundecanediol, di (meth) acrylic acid-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11, Fluorine-containing bifunctional (meth) acrylic acid ester such as 11-eicosafluorododecanediol, tetra (meth) acrylic acid-4,4,5,5-tetrafluorooctane-1,2,7,8-tetraol Tetra (meth) acrylic acid-4,4,5,5,6,6-hexafluorononane-1,2,8,9-tetraol, tetra (meth) acrylic acid-4,4,5,5 , 6,6,7,7-octafluorodecane-1,2,9,10-tetraol, Tora (meth) acrylic acid-4,4,5,5,6,6,7,7,8,8-decafluoroundecane-1,2,10,11-tetraol, tetra (meth) acrylic acid-4 , 4,5,5,6,6,7,7,8,8,9,9-dodecafluorododecane-1,2,11,12-tetraol, etc. Can be used. The fluorine-containing acrylate may be used alone or as a mixture, and the amount and composition ratio can be appropriately determined according to the purpose.
[0023]
The antireflection film of the present invention may be formed of a single layer or multiple layers in order to exhibit antireflection ability. Moreover, when forming in a multilayer, the composition of the ultraviolet curable coating film of each layer may be the same or different. At this time, the refractive index of the cured coating film is preferably 1.5 or less, and more preferably 1.46 or less.
[0024]
【Example】
The present invention will be described in further detail using reference examples, examples, and comparative examples.
Reference example 1
An ultraviolet irradiation curing device having the configuration shown in the schematic diagram of FIG. 1 was prepared as follows. The ultraviolet irradiation chamber 4 surrounded by a stainless steel plate was machined, and the joint portion was sealed with epoxy resin. A gap of 5 mm was opened in the irradiation chamber entrance 10 so that the coating film 1 passed through the guide roll 2 in front of the irradiation chamber and entered the irradiation chamber. In the irradiation chamber, a nitrogen pipe was provided in advance by installing a stainless steel pipe on the irradiation chamber inlet portion 10, the irradiation chamber outlet portion 11, and the irradiation chamber wall surface, and providing a vent hole. As a result, nitrogen was passed through the stainless steel pipe to create a nitrogen atmosphere in the ultraviolet irradiation chamber 4, and the oxygen concentration could be controlled by adjusting the nitrogen flow rate. An intake port 9 is provided inside the irradiation chamber 4, and the internal gas is sucked from the intake port 9 so that the oxygen concentration can be measured with an oxygen concentration sensor. In the ultraviolet irradiation device chamber 5, an air-cooled ultra-high pressure mercury lamp (160 W / cm, when the line speed is 10 m / min is 400 mJ / cm as an ultraviolet irradiation device.2, Manufactured by Iwasaki Electric Co., Ltd.). Since the ultraviolet irradiation device chamber 5 is heated by irradiation, cooling air can be sent into the irradiation device chamber 5 from behind the irradiation device. Further, in order to prevent the cooling air from flowing from the irradiation device chamber 5 into the irradiation chamber 4, a quartz glass 6 was installed therebetween. Moreover, since the ultraviolet irradiation chamber 4 is also heated by irradiation, the cooling roll 8 was provided. Thereby, since the coating film was irradiated with ultraviolet rays on the cooling roll 8, the influence of heating could be reduced. The film after the ultraviolet irradiation was discharged from the irradiation chamber outlet portion 11 and wound up.
[0025]
  referenceExample 1
  A cured coating film was prepared by the following procedure, and the performance was evaluated by performing a solvent resistance test, an abrasion resistance test, and an adhesion evaluation test. First, 400 g of diacrylic acid (perfluorooctyl) methyl ethylene glycol as a polymerizable monomer, 8 g of a photopolymerization initiator “Darocur 1173” (trade name, manufactured by Ciba Geigy) and 4600 g of trifluoromethylbenzene are mixed. Then, a coating liquid A having a solid content concentration of 8.1% by weight was prepared. Next, the coating liquid A was used for coating with a commercially available polyethylene terephthalate film as a support. Coating is performed by the gravure roll method, using “Micro Gravure Coater” (trade name, manufactured by Yasui Seiki Co., Ltd.) as the gravure roll coater, and “Micro Gravure Roller” (trade name, manufactured by Yasui Seiki Co., Ltd., mesh) as the gravure roll. 110 / inch) was used. The coating speed was adjusted to 10 m / min, the rotation speed of the micro gravure roll was adjusted to 2.5 m / min, and the coating was rotated in the direction opposite to the coating direction. After coating, the solvent was dried by passing through a dryer having a process length of 5 m set at 100 ° C. to obtain a film having an ultraviolet curable coating film having a dry film thickness of about 100 nm. Further, in order to cure the ultraviolet curable coating film, the cured coating film was obtained by passing through the ultraviolet irradiation type curing apparatus of Reference Example 1 in which the oxygen concentration in the ultraviolet irradiation chamber was 200 ppm by nitrogen ventilation.
[0026]
The obtained cured coating film was subjected to the following evaluation tests 1 to 3.
1. Solvent resistance test
On the surface of the cured coating film, 0.5 ml of a solvent selected from methanol, ethanol, ethyl acetate, toluene, and acetone was dropped, and after standing at room temperature for 1 minute, the solvent was wiped off to examine the state of the cured coating film. At this time, if there was no change in the cured coating film, the solvent resistance was considered good, and it was rated as “Good”. If there was an abnormality such as dissolution and disappearance of the cured coating film layer, it was regarded as poor solvent resistance and was evaluated as x. The results are shown in Table 1.
2. Scratch resistance test
Weight of cured coating surface is 1kg / cm2The applied “Kimtex” (trade name, manufactured by Crecia) was rubbed 10 reciprocations over a length of 2 cm, and then the state of the cured coating film was examined. At this time, if there was no scratch and no change in the cured coating film, the scratch resistance was considered good, and it was evaluated as ◯. When there were less than 10 scratches, Δ was marked with 10 or more marked scratches, or when the cured coating layer was completely peeled off, it was regarded as poor scratch resistance. The results are shown in Table 1.
3. Adhesion test
A cross-cut peel test was performed in accordance with the test method of JIS K5400 to evaluate the adhesion of the cured coating film. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004144052
[0028]
From the above evaluation test results, it was confirmed that the cured coating film cured at an oxygen concentration of 200 ppm had good performance with respect to solvent resistance, scratch resistance and adhesion.
[0029]
  referenceExample 2
  Except for setting the oxygen concentration in the ultraviolet irradiation chamber to 1000 ppm,referenceA cured coating film was obtained in the same manner as in Example 1. MorereferenceThe same evaluation test as in Example 1 was performed, and the results are shown in Table 1. From the evaluation test results in Table 1, it was confirmed that the cured coating film cured at an oxygen concentration of 1000 ppm had good performance with respect to solvent resistance, scratch resistance and adhesion.
[0030]
  referenceComparative Example 1
  Except for setting the oxygen concentration in the ultraviolet irradiation chamber to 2000 ppm,referenceA cured coating film was obtained in the same manner as in Example 1. MorereferenceThe same evaluation test as in Example 1 was performed, and the results are shown in Table 1. From the evaluation test results in Table 1, it was confirmed that a cured coating film cured at an oxygen concentration of 2000 ppm was inferior in terms of scratch resistance and adhesion as compared with a cured coating film cured at an oxygen concentration of 1000 ppm or less.
[0031]
  referenceComparative Example 2
  Except that nitrogen was not vented into the ultraviolet irradiation chamber,referenceA cured coating film was obtained in the same manner as in Example 1. MorereferenceThe same evaluation test as in Example 1 was performed, and the results are shown in Table 1. From the evaluation test results shown in Table 1, it was confirmed that the cured coating film cured without performing nitrogen aeration was poor in any of solvent resistance, scratch resistance and adhesion.
[0032]
  Example1
  A multilayer cured coating film was prepared by the following procedure, and the performance was evaluated by performing a solvent resistance test, an abrasion resistance test, and an adhesion evaluation test. First, coating liquids B, C, and D were prepared as coating liquids. The coating liquid B was 1350 g of dipentaerythritol hexaacrylate (manufactured by Hitachi Chemical Co., Ltd.) which is a polymerizable monomer, 900 g of polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), a photopolymerization initiator “Irgacur 184” ( (Trade name, manufactured by Ciba Geigy) 45 g and 1000 g of isopropanol were mixed to adjust the solid content concentration to 70 wt%. Coating liquid C is dipentaerythritol triacrylate (manufactured by Kyoeisha Yushi Co., Ltd.) 84 g which is a polymerizable monomer, and “ZS-300” (trade name, manufactured by Sumitomo Osaka Cement Co., Ltd., 30% zinc oxide fine particle toluene dispersion. ) 720 g, 6 g of photopolymerization initiator “Darocur 1173” (trade name, manufactured by Ciba Geigy) and 2940 g of isopropanol were mixed to adjust the solid content concentration to 8% by weight. The coating liquid D includes tetraacrylic acid-4,4,5,5,6,6-hexafluorononane-1,2,8,9-tetraol 80 g which is a polymerizable monomer, and “XBA-ST”. 270 g of “Silica sol” (trade name, manufactured by Nissan Chemical Co., Ltd., colloidal silica 30%: xylene 45%: n-butanol 25%), 6 g of the photopolymerization initiator “Darocur 1173” (trade name), and 2850 g of isopropanol are mixed to form a solid The partial concentration was adjusted to 5% by weight.
[0033]
Next, the coating liquid B was used for coating with a commercially available triacetyl cellulose film (TAC film) as a support. Coating is performed by the gravure roll method, using “Micro Gravure Coater” (trade name, manufactured by Yasui Seiki Co., Ltd.) as the gravure roll coater, and “Micro Gravure Roller” (trade name, manufactured by Yasui Seiki Co., Ltd., mesh) as the gravure roll. 180 / inch) was used. The coating speed was adjusted to 10 m / min, the rotation speed of the micro gravure roll was adjusted to 20 m / min, and the coating was rotated in the direction opposite to the coating direction. After coating, the solvent was dried by passing through a 5 m process length dryer set at 80 ° C. to obtain a film having an ultraviolet curable coating film with a dry film thickness of about 4 μm. In order to cure this ultraviolet curable coating film, the cured coating film (referred to as HC cured coating layer) was passed through the ultraviolet irradiation type curing device of Reference Example 1 in which the oxygen concentration in the ultraviolet irradiation chamber was 200 ppm by nitrogen ventilation. Obtained. As a result, an HC-TAC film having an HC cured coating layer on the surface was obtained.
Furthermore, using the coating liquid C, coating was performed on the HC cured coating layer using the HC-TAC film as a support. Coating is performed by the gravure roll method, using “Micro Gravure Coater” (trade name, manufactured by Yasui Seiki Co., Ltd.) as the gravure roll coater, and “Micro Gravure Roller” (trade name, manufactured by Yasui Seiki Co., Ltd., mesh) as the gravure roll. 180 / inch) was used. The coating speed was adjusted to 10 m / min, the rotation speed of the micro gravure roll was adjusted to 3 m / min, and the coating was rotated in the direction opposite to the coating direction. After coating, the solvent was dried by passing through a 5 m process length dryer set at 80 ° C. to obtain a film having an ultraviolet curable coating film with a dry film thickness of about 100 nm. In order to cure this ultraviolet curable coating film, the cured coating film (referred to as the H cured coating layer) was passed through the ultraviolet irradiation curing device of Reference Example 1 in which the oxygen concentration in the ultraviolet irradiation chamber was 200 ppm by nitrogen ventilation. Obtained. As a result, an H-HC-TAC film having an H-cured coating film layer on the outermost surface was obtained.
Finally, using the coating liquid D, coating was performed on the H-cured coating film layer using the H-HC-TAC film as a support. Coating is performed by the gravure roll method, using “Micro Gravure Coater” (trade name, manufactured by Yasui Seiki Co., Ltd.) as the gravure roll coater, and “Micro Gravure Roller” (trade name, manufactured by Yasui Seiki Co., Ltd., mesh) as the gravure roll. 110 / inch) was used. The coating speed was adjusted to 10 m / min, the rotation speed of the micro gravure roll was adjusted to 2 m / min, and the coating was rotated in the direction opposite to the coating direction. After coating, the solvent was dried by passing through a 5 m process length dryer set at 80 ° C. to obtain a film having an ultraviolet curable coating film with a dry film thickness of about 100 nm. In order to cure this ultraviolet curable coating film, the cured coating film (referred to as L cured coating layer) was passed through the ultraviolet irradiation type curing device of Reference Example 1 in which the oxygen concentration in the ultraviolet irradiation chamber was 200 ppm by nitrogen ventilation. Obtained.
In this manner, an LH-HC-TAC film in which an L cured coating layer, an H cured coating layer, and an HC cured coating layer were overlaid was obtained.
[0034]
The following evaluation tests 1 to 4 were performed on the cured coating film of the obtained LH-HC-TAC film.
1. Solvent resistance test
On the surface of the cured coating film, 0.5 ml of a solvent selected from methanol, ethanol, ethyl acetate, toluene, and acetone was dropped, and after standing at room temperature for 1 minute, the solvent was wiped off to examine the state of the cured coating film. At this time, if there was no change in the cured coating film, the solvent resistance was considered good, and it was rated as “Good”. If there was an abnormality such as dissolution and disappearance of the cured coating film layer, it was regarded as poor solvent resistance and was evaluated as x. The results are shown in Table 2.
2. Scratch resistance test A
Weight of cured coating surface is 1kg / cm2The applied “Kimtex” (trade name, manufactured by Crecia) was rubbed 10 reciprocations over a length of 2 cm, and then the state of the cured coating film was examined. At this time, if there was no scratch and no change in the cured coating film, the scratch resistance was considered good, and it was evaluated as ◯. When there were less than 10 scratches, Δ was marked with 10 or more marked scratches, or when the cured coating layer was completely peeled off, it was regarded as poor scratch resistance. The results are shown in Table 2.
3. Scratch resistance test B
The surface of the cured coating is 50 g / cm2, 100 g / cm2150 g / cm2250 g / cm2500 g / cm2After being rubbed 10 reciprocations over a length of 2 cm with “Kimtex” (trade name, manufactured by Crecia Co., Ltd.) with a weight selected from the following, the state of the cured coating film was examined. At this time, the load when 10 or more remarkable scratches were attached or the cured coating layer was completely peeled was examined. The results are shown in Table 2.
4). Adhesion test
A cross-cut peel test was performed in accordance with the test method of JIS K5400 to evaluate the adhesion of the cured coating film. The results are shown in Table 2.
[0035]
[Table 2]
Figure 0004144052
[0036]
From the above evaluation test results, it was confirmed that the cured coating film had good performance with respect to solvent resistance, scratch resistance and adhesion.
[0037]
  Example2
  Example except that the oxygen concentration in the ultraviolet irradiation chamber when curing the L-cured coating layer was 1000 ppm1In the same manner, a cured coating film was obtained. Further examples1The same evaluation test was performed, and the results are shown in Table 2. From the evaluation test results in Table 2, it was confirmed that the cured coating film had good performance with respect to solvent resistance, scratch resistance and adhesion.
[0038]
  Example3
  Example, except that the oxygen concentration in the ultraviolet irradiation chamber when curing the H-cured coating layer was 1000 ppm1In the same manner, a cured coating film was obtained. Further examples1The same evaluation test was performed, and the results are shown in Table 2. From the evaluation test results in Table 2, it was confirmed that the cured coating film had good performance with respect to solvent resistance, scratch resistance and adhesion.
[0039]
  Example4
  Example except that the oxygen concentration in the ultraviolet irradiation chamber when curing the HC cured coating layer was 1000 ppm1In the same manner, a cured coating film was obtained. Further examples1The same evaluation test was performed, and the results are shown in Table 2. From the evaluation test results in Table 2, it was confirmed that the cured coating film had good performance with respect to solvent resistance, scratch resistance and adhesion.
[0040]
  Comparative example1
  Example except that nitrogen was not passed through the ultraviolet irradiation chamber when the L-cured coating layer was cured.1In the same manner, a cured coating film was obtained. Further examples1The same evaluation test was performed, and the results are shown in Table 2. From the evaluation test results in Table 2, it was confirmed that the cured coating film was poor in any of solvent resistance, scratch resistance and adhesion.
[0041]
  Comparative example2
  Example except that the oxygen concentration in the ultraviolet irradiation chamber when curing each of the HC cured coating layer, the H cured coating layer, and the L cured coating layer was 2000 ppm1In the same manner, a cured coating film was obtained. Further examples1The same evaluation test was performed, and the results are shown in Table 2. From the evaluation test results in Table 2, it was confirmed that the cured coating film was inferior in terms of scratch resistance.
[0042]
  Comparative example3
  Except that nitrogen was not passed through the ultraviolet irradiation chamber when each of the HC cured coating layer, H cured coating layer, and L cured coating layer was cured.1In the same manner, a cured coating film was obtained. Further examples1The same evaluation test was performed, and the results are shown in Table 2. From the evaluation test results in Table 2, it was confirmed that the cured coating film was poor in any of solvent resistance, scratch resistance and adhesion.
[0043]
【The invention's effect】
In the method for producing a cured coating film according to the present invention, in continuously producing a cured coating film having a film thickness of 0.005 to 1 μm, ultraviolet curing is performed while maintaining the oxygen concentration at 1000 ppm or less, so that the scratch resistance and hardness are maintained. Durability was very good, and industrially very useful cured coatings could be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of an ultraviolet irradiation type curing device viewed from the side.
FIG. 2 is a schematic view of an ultraviolet ray irradiation type curing device viewed from the front.
[Explanation of symbols]
(1) Coating film
(2) Guide roll
(3) Stainless steel pipe and nitrogen supply port
(4) UV irradiation room
(5) UV irradiation room
(6) Quartz glass
(7) Cooling air inlet
(8) Water-cooled cooling roll
(9) Intake port and oxygen concentration sensor
(10) Irradiation room entrance
(11) Irradiation chamber exit

Claims (2)

ガイドロール及び冷却ロールに支持された、厚さ10μm以上250μm以下の連続する支持体上に、紫外線硬化の可能な重合性単量体、光重合開始剤及び溶媒を必須成分として含む塗工液を塗布し、続いて溶媒を乾燥させ、膜厚0.005〜1μmの紫外線硬化性塗膜を形成し、該塗膜を有する支持体を、入り口部分及び出口部分を有する紫外線照射室に導き、該紫外線照射室内において、冷却ロール上の支持体に形成された紫外線硬化性塗膜に、該紫外線照射室の酸素濃度を1000ppm以下に保って紫外線を照射して硬化させ、紫外線照射室外へ排出する一連の操作を連続的にn回繰返して行い、
且つ、前記紫外線照射室に導いた紫外線硬化性塗膜の表面に、不活性ガスを直接通気することを特徴とする膜厚n×(0.005〜1)μmの反射防止フィルムの製造方法。
On a continuous support having a thickness of 10 μm or more and 250 μm or less supported by a guide roll and a cooling roll, a coating liquid containing an ultraviolet curable polymerizable monomer, a photopolymerization initiator and a solvent as essential components And then drying the solvent to form an ultraviolet curable coating film having a film thickness of 0.005 to 1 μm, and leading the support having the coating film to an ultraviolet irradiation chamber having an entrance part and an exit part, In the ultraviolet irradiation chamber, the ultraviolet curable coating film formed on the support on the cooling roll is cured by irradiating the ultraviolet ray with the oxygen concentration in the ultraviolet irradiation chamber kept at 1000 ppm or less, and discharged outside the ultraviolet irradiation chamber. Is repeated n times continuously,
In addition, a method for producing an antireflection film having a film thickness of n × (0.005 to 1 μm), wherein an inert gas is directly ventilated on the surface of the ultraviolet curable coating film guided to the ultraviolet irradiation chamber.
支持体がプラスチックフィルムである請求項1に記載の反射防止フィルムの製造方法。The method for producing an antireflection film according to claim 1, wherein the support is a plastic film.
JP27170097A 1997-10-03 1997-10-03 Method for producing antireflection film Expired - Fee Related JP4144052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27170097A JP4144052B2 (en) 1997-10-03 1997-10-03 Method for producing antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27170097A JP4144052B2 (en) 1997-10-03 1997-10-03 Method for producing antireflection film

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006300147A Division JP4360396B2 (en) 2006-11-06 2006-11-06 UV irradiation type curing device
JP2007302659A Division JP4867900B2 (en) 2007-11-22 2007-11-22 Method for producing antireflection film

Publications (2)

Publication Number Publication Date
JPH11104562A JPH11104562A (en) 1999-04-20
JP4144052B2 true JP4144052B2 (en) 2008-09-03

Family

ID=17503635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27170097A Expired - Fee Related JP4144052B2 (en) 1997-10-03 1997-10-03 Method for producing antireflection film

Country Status (1)

Country Link
JP (1) JP4144052B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261856B2 (en) * 2001-08-23 2013-08-14 凸版印刷株式会社 Anti-glare film and method for producing the same
JP2005148376A (en) * 2003-11-14 2005-06-09 Sumitomo Osaka Cement Co Ltd Film and reflection preventing film
JP2005144849A (en) * 2003-11-14 2005-06-09 Sumitomo Osaka Cement Co Ltd Transparent conductive film and reflection preventing transparent conductive film
JP4547579B2 (en) * 2005-03-10 2010-09-22 富士フイルム株式会社 Curing method of coating film
JP4710368B2 (en) * 2005-03-18 2011-06-29 富士フイルム株式会社 Coating film curing method and apparatus
JP4805628B2 (en) * 2005-08-03 2011-11-02 豊田合成株式会社 MULTILAYER COATING FORMATION METHOD, COATING AND COATED ARTICLE USED FOR THE METHOD
CN102574151B (en) 2009-10-24 2014-04-09 3M创新有限公司 Process for gradient nanovoided article
JP5346969B2 (en) 2011-03-04 2013-11-20 富士フイルム株式会社 Method for producing antiglare film
CN114164583B (en) * 2021-12-07 2023-09-26 蓝廷新能源科技(绍兴)有限责任公司 Air-bearing roller type micro-concave coating method and device
CN115400907B (en) * 2022-09-16 2024-05-07 四川汇利实业有限公司 Process and equipment for preparing laser PVC (polyvinyl chloride)

Also Published As

Publication number Publication date
JPH11104562A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
US5773126A (en) Composite film having a surface slip property
JP4144052B2 (en) Method for producing antireflection film
EP2085496B1 (en) Method for producing functional film
JP4547579B2 (en) Curing method of coating film
JP4429515B2 (en) Polymer resin laminate, method for producing the same, and molded article comprising the laminate
KR101578254B1 (en) Method for manufacture of resin laminated body
JP4135232B2 (en) Hard coat film or sheet
JP2008129130A (en) Hard coat film
JP4360396B2 (en) UV irradiation type curing device
JP4819464B2 (en) Coating method, and manufacturing method of optical film and antireflection film
JP4536417B2 (en) Gas barrier film
JP4867900B2 (en) Method for producing antireflection film
JP2001205179A (en) Method for manufacturing hard coat film and hard coat film obtained by the method
JP2001194504A (en) Antireflection hard coated film or sheet
CN113993923A (en) Resin composition, optical fiber, and method for producing optical fiber
JP2017040834A (en) Optical sheet and method for producing optical sheet
JP5438097B2 (en) Method for producing antiglare film
JP2003306619A (en) Photosensitive resin composition for hard-coating agent and film having cured skin comprising the same
JP2004309932A (en) Base material for display element, display panel, display device and method for manufacturing base material for display element
JP2001162732A (en) Film having cured layer of radiation curable resin composition
JP3592765B2 (en) Optical functional film and method for producing the same
JP2000167999A (en) Film having hardened film layer of radiation curable resin composition
KR100246508B1 (en) Method of forming coating film
JP4075498B2 (en) Antiglare laminate and display medium
JP3484551B2 (en) Slippery film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees