JP4142166B2 - Separator, manufacturing method thereof, and electrochemical device using the same - Google Patents

Separator, manufacturing method thereof, and electrochemical device using the same Download PDF

Info

Publication number
JP4142166B2
JP4142166B2 JP25605998A JP25605998A JP4142166B2 JP 4142166 B2 JP4142166 B2 JP 4142166B2 JP 25605998 A JP25605998 A JP 25605998A JP 25605998 A JP25605998 A JP 25605998A JP 4142166 B2 JP4142166 B2 JP 4142166B2
Authority
JP
Japan
Prior art keywords
separator
polymer
electrolytic solution
fiber cloth
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25605998A
Other languages
Japanese (ja)
Other versions
JPH11242951A (en
Inventor
恒男 桑原
幸子 平林
一英 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP25605998A priority Critical patent/JP4142166B2/en
Publication of JPH11242951A publication Critical patent/JPH11242951A/en
Application granted granted Critical
Publication of JP4142166B2 publication Critical patent/JP4142166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、電池、キャパシタ、ディスプレイ、センサー等の電気化学デバイスに好適に用いられるセパレータ、その製造方法、およびこのセパレータを用いた電気化学デバイスに関する。
【0002】
【従来の技術】
従来の電気化学デバイスにおいては、電解質として水溶液あるいは有機溶媒を用いた非水溶液(電解液)が多く用いられてきたが、密閉の必要性、安全性の確保等に問題があるため、柔軟性、弾性、軽量性、薄膜形成性、透明性等を持ち合わせたイオン導電性セパレータの必要性が増してきている。特に、エレクトロニクス製品の重要部品である電池、キャパシタ等の電気化学デバイスにおいては、軽量化、コンパクト化、形状自由度、大面積化等の要請から、イオン導電性高分子を電解質に用いる電気化学デバイスの開発が積極的に進められている。
【0003】
イオン導電性高分子を用いた例として、ポリエチレンオキシド(PEO)や、ポリプロピレンオキシド(PPO)等のポリエーテルおよびその誘導体などの高分子とLi等を含む電解質塩とよりなるタイプ(均一型、ドライ型)、高分子に可塑剤を混合して、電気化学的特性を改善したタイプ(ハイブリッド型・ゲル型)、また、電解質の複合塩を高分子で保持したタイプ(PIS:Polymer in Salt )等がある。
【0004】
現在、セパレータ(SPE)を用いたポリマーバッテリーの開発においては、その高いイオン伝導度から、主にゲル型のSPEが研究の中心であり、PEO系、PAN(ポリアクリロニトリル)系、PVDF(ポリフッ化ビニリデン)系等の高分子が実用性が高いとされている。しかし、ゲル型のSPEは、ドライ型のSPEに比べ、本質的に耐熱性、機械強度が劣っていることから、その用途によっては耐熱性、機械強度等を強化する必要がある。
【0005】
特開昭60−165058号公報には、短繊維状物質により強化された均一系、およびゲル系のSPEが開示されており、耐漏液性、保存性、強度、導電率が十分であるとしている。製法としては、高分子、電解質、および必要に応じ高沸点溶媒を低沸点溶媒に溶解させた溶液中に短繊維物質を浸漬、あるいは溶液を短繊維物質に塗布することで得られるとしている。しかしながら、具体的な強度、導電率等のデータは示されていない。
【0006】
特開昭60−195878号公報には高分子化合物よりなる膜に、イオン導電性材料を坦持させたセパレータが示されており、PP不繊布とPVDF/LiClO4 /PCゲル電解質を一体化した膜で、5.0×10-5 S/cmのイオン伝導度を得ている。また、その製法は上記の公報と同様である。
【0007】
さらに、特開昭63−40270号公報にはPP不繊布にポリエーテル系電解質を含浸させた固体電解質が、高温特性に優れる旨記載されている。
【0008】
ゲル型のSPEの製造方法としては、高分子を溶媒に溶解し、そこに電解液等を混合した後、これを種々の方法で基材に塗布し、溶媒を揮発させてSPEフィルムを得る方法が一般的である。また、高分子を直接電解液に溶解させ、塗布あるいは押出法によりSPEフィルムを製造する方法も提案されている。しかしながら、電気化学デバイスに用いられる有機電解液は一般に水を嫌うため、これらの方法を用いて工業的にSPEを製造しようとする場合、全工程をドライな雰囲気に維持する必要があり、多額な設備投資・維持費が必要になると共に、工程内の在庫管理も容易ではない。
【0009】
米国特許第5,418,091号には、高分子溶液に可塑剤を加え、これを基材に塗布後、溶媒を揮発させてフィルムを作製し、ここから可塑剤を抽出し、形成された空隙に電解液を含浸させるというSPEの製造方法が記載されている。この方法では、電解液を用いるのは含浸工程、封入工程のみで、それより前の工程では通常環境下で作業できることから、設備投資・維持費が大幅に低減できる。また、塗布・乾燥後、あるいは可塑剤抽出後にSPEをフィルム状態でストックできるため、在庫管理が容易となる。しかし、この方法では抽出工程として、多量の溶媒に可塑剤含有高分子フィルムを複数回浸漬させる必要があり、この工程が生産性、量産性を大きく低下させると共に、多量の廃溶剤の処理が必要となり、環境の点でも問題がある。また、抽出は可塑剤含有高分子フィルムを減圧下で加熱することでも達成されるが、この場合も生産性、量産性に大きく影響し、設備の導入、コストの上昇が不可避である。さらに、最近では、可塑剤の環境への影響も問題視されている。
【0010】
このような問題点に鑑み、本発明者らは新規な電気化学デバイスの製造法として、特願平9−95030号において、高い膨潤性を有するSPE、およびこれを用いた電気化学デバイスを提案するに至った。しかし、さらに耐熱性、機械強度等を必要とする用途にも対応しうるSPEの開発が求められている。
【0011】
【発明が解決しようとする課題】
この発明の目的は、高分子固体電解質を含有する耐熱性、機械的強度、保液性、イオン伝導度に優れた電気化学デバイス用セパレータ、およびその製造方法を提供し、これを用いた電気化学デバイスの安全性を向上させ、その使用範囲を広げることである。
【0012】
【課題を解決するための手段】
このような目的は、以下の本発明の構成により達成される。
【0013】
(1) 繊維布であるシート、電解液、およびこの電解液によって高分子が膨潤して得られる高分子固体電解質を有し、前記繊維布の両表面近傍に前記高分子固体電解質の含有率が多く、その内部では前記電解液の含有率が多くなっており、前記繊維布の体積占有率が25%以下であり、前記高分子固体電解質の体積占有率が40%以上75%以下である、セパレータ。
) 前記高分子の電解液による膨潤度が2以上である上記(1)のセパレータ。
) 前記高分子がフッ素を含有する上記(1)または(2)のセパレータ。
) 前記高分子がフッ化ビニリデン単位を含有する上記(1)〜()のいずれかのセパレータ。
) 高分子が溶解状態の溶液を繊維布であるシートの両面に塗布し、かつ溶媒を蒸発させて繊維布/高分子複合体を得、さらに、この繊維布/高分子複合体に電解液を含浸させて上記(1)〜()のいずれかのセパレータを得るセパレータの製造方法。
) 上記(1)〜()のいずれかのセパレータを用いた電気化学デバイス。
【0014】
【作用】
繊維状の基体に高分子溶液を塗布し、溶媒を揮発させて繊維/高分子複合体を得る場合、繊維状の基体(シート)中に均一に高分子材料が存在することはないので、高分子材料・溶媒種、溶液濃度、塗布量、塗布・乾燥条件等を調整することにより、塗布面近傍に高分子材料を多く存在させることが可能である。この操作を表裏で繰り返すことにより、両表面近傍に高分子材料が多く存在した繊維/高分子複合体が得られる。厚さ方向に不均一な複合体は反りを生じることがあるが、この構造では平坦な複合体を得ることができる。
【0015】
この繊維/高分子複合体に電解液を含浸させると、高分子材料の部分は膨潤して高分子固体電解質(以下、SPE)となり、中央の繊維が多い部分には電解液がそのまま保持される。このセパレータの保液性は、電解液の液状成分を全く含まないSPEに比べれば若干劣るが、電解液を保持した繊維状の基体に比べるとはるかに優れている。一方、そのイオン伝導度(σ)は、電解液を保持した繊維状の基体(ほぼ電解液のσを示す)ほど高くないものの、十分実用に足る値を示す。
【0016】
このセパレータは、両表面近傍に柔軟性のあるSPEを多く含むため、接触する電極とのコンタクトが良好で、熱処理等を行うことにより、電極/セパレータ界面をさらに安定させることも可能である。
【0017】
なお、特開平9−293636号公報、特開平9−293637号公報において、含フッ素ポリマーイオン交換樹脂等で結着せしめた無機繊維シート(ガラス繊維シート)からなるセパレータが開示されている。しかし、ここで用いられている樹脂は電解液によって膨潤するものではなく、無機繊維間に絡みつき、繊維と繊維の間を架橋したり、繊維を覆ったりして無機繊維シートを結着しているにすぎない。本発明では、高分子にも電解液を含浸し、高分子固体電解質を形成している。しかも、繊維布の両表面近傍に高分子固体電解質の含有率が多く、その内部では電解液の含有率が多い構成であるので、高い保液性と高いイオン伝導度とが得られる。
【0018】
【発明の実施の形態】
本発明のセパレータは、繊維布、高分子固体電解質(SPE)、および電解液からなり、SPEは高分子材料が電解液によって膨潤することにより得られる。
【0019】
<高分子材料>
本発明のセパレータに用いられる高分子は、用いられる電解液によって膨潤することが必要であり、膨潤の度合いは2以上であることが好ましい。膨潤の度合い(膨潤度)とは、高分子材料に電解液を含浸、膨潤させた前後の重量比とする。つまり、膨潤度が2とは、電解液の含浸により高分子の重量が2倍になったことを示し、膨潤後の電解液/高分子材料重量比が1/1であることを示す。また、膨潤度は強度および保液性との兼ね合いもあるが、一般に4程度以下であることが好ましい。
【0020】
電池、キャパシタ等の電気化学デバイスに用いられる種々の電解液に高膨潤する材料としては、フッ素、好ましくはフッ化ビニリデン(略称VDF)単位を含有するものが好ましく、例えば、VDF−HFP(ヘキサフルオロプロピレン)2元共重合体、VDF−HFP−TFE(4フッ化エチレン)3元共重合体、VDF−CTFE(塩化3フッ化エチレン)2元共重合体等が知られている。
【0021】
VDF−HFP2元共重合体では、HFPの含有量が45wt%以下、特に3〜30wt%の範囲の共重合体が特に好ましい。VDF−HFP−TFE3元共重合体では、VDFの含有量が55mol%以上であり、HFPの含有量が10〜45mol%であり、TFEの含有量が0〜35mol%(ただし0は除く)である共重合体が特に好ましい。VDF−CTFE2元共重合体では、CTFEの含有量が5〜50mol%の範囲の共重合体が特に好ましい。これらの共重合体は、通常、ランダム共重合体を用いるが、ブロック共重合体であってもよい。
【0022】
分子量は、材料の強度の点で、重量平均分子量Mwが20,000程度以上、好ましくは30,000程度以上、さらに好ましくは50,000程度以上あることが必要である。Mwの上限は、通常、5,000,000程度である。
【0023】
これらの高分子材料は、溶液に溶解して繊維布に塗布、あるいは含浸される。
【0024】
これらの高分子材料は、例えば、VDF−CTFE共重合体は、セントラル硝子(株)製の商品名、「セフラルソフト(G150,G180)」、日本ソルベイ(株)より商品名、「ソレフ31508」等として販売されている。また、VDF−HFP共重合体は、エルフアトケム社製の商品名、「KynarFlex2750 (VDF:HFP=85:15wt%)」、「KynarFlex2801 (VDF:HFP=90:10wt%)」等、日本ソルベイ(株)より、商品名、「ソレフ11008」、「ソレフ11010」、「ソレフ21508」、「ソレフ21510」等として販売されている。
【0025】
<電解液>
電解液は一般に電解質塩と溶媒よりなる。リチウム電池への応用を考えると電解質塩にはリチウムが含有されている必要があり、具体的にはLiPF6 、LiClO4 、LiBF4 、LiAsF6 、LiSO3 CF3 、LiN(CF3 SO22 等の電解質塩が適用可能である。また、電気2重層キャパシタに用いる場合は、上記のLiを含むアルカリ金属塩の他に、過塩素酸テトラエチルアンモニウム、ホウフッ化テトラエチルアンモニウム等の四級アンモニウム塩等が使用できる。その他、応用する電気化学デバイスに応じて、後述の溶媒と相溶する電解質塩を適宜選択すればよい。このような電解質塩は単独で用いてもよいし、複数の塩を所定の比率で混合して用いてもよい。
【0026】
電解質用の有機溶媒としては、上記高分子材料、電解質塩との相溶性の良好なものであれば特に限定されるものではないが、リチウム電池やキャパシタ等の電気化学デバイスへの応用を考えると、高い電圧をかけた場合にも分解の起こらないものが好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等の環式エーテル、1,3−ジオキソラン、4−メチルジオキソラン等の環式エーテル、γ−ブチロラクトン等のラクトン、スルホラン等を好ましく用いることができる。その他、応用するデバイス等に応じて公知の溶媒の中から好適なものを適宜選択すればよい。
【0027】
電解液における電解質塩の濃度は、好ましくは0.3〜5 mol/lであり、通常1 mol/l辺りで最も高い電導性を示す。
【0028】
<繊維布>
本発明のセパレータに用いられる繊維布は、導電性を持たないものであれば材質は特に限定されるものではないが、セパレータに要求される特性により、耐熱性、強度、厚さ、嵩比重等を適宜選択すればよい。これらの繊維の長さとしては1〜100mm程度、繊維径としては1〜100μm 程度が好ましく、繊維布の厚さとしては、10〜500μm 程度が好ましい。また、嵩比重は0.05〜0.8程度が好ましい。このような繊維布として、例えば、ガラス、アスベスト、石英等の無機系繊維、セルロース等の植物繊維、動物性繊維、合成繊維等が挙げられ、フエルト等の不繊布等を用いることもできる。
【0029】
<製造方法>
次にセパレータの具体的な作製方法を述べる。先ず、電解液を膨潤しうる高分子材料を所定の溶媒に溶解する。溶解方法としては、所定の溶媒に高分子材料を添加し、室温あるいは必要により加熱してマグネチックスターラー、ホモジナイザー等の撹拌機、ボールミル、ス−パーサンドミル、加圧ニーダー等の分散機を用いて分散・溶解すればよい。このときの溶媒は高分子が溶解可能な各種溶媒から適宜選択すればよい。例えば、N、N−ジメチルホルムアミド(DMF)、ジメチルアセトアミド、N−メチルピロリドン、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール類、アセトニトリル、テトラヒドロフラン(THF)、トルエン等を用いることが好ましい。溶媒に対する高分子の濃度は、両材料種、繊維布の材質・構造、セパレータの組成設計等により適宜好適な値とすればよいが、通常3〜20wt%程度である。
【0030】
得られた高分子溶液を繊維布に塗布し、溶媒を乾燥させる。高分子溶液を繊維布に塗布するための手段は特に限定されず、繊維布の材質や形状等に応じて適宜決定すればよい。一般に、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が使用可能である。乾燥方法は減圧、あるいは加熱乾燥しても、風乾でもよい。この操作を必要により複数回行う。また、繊維布の表裏双方に均一な塗布膜が得られるように塗布することが好ましい。このようにして、所望の繊維/高分子複合体が得られる。
【0031】
そして、この繊維/高分子複合体に電解液を含浸させることにより、本発明のセパレータを得ることができる。本発明の方法により製造されたセパレータは、好ましくは繊維布の表面付近にSPEが多く存在し、その内部には電解液が多く存在する傾斜構造を有する。このため、電極等との接着性に優れると共に、イオン伝導度は電解液のそれに近く、優れた特性を有する。中央部の電解液/SPE比は、表面部の電解液/SPE比に対し、1.5倍以上であることが好ましい。
【0032】
セパレータ中の繊維の体積占有率は25%以下、好ましくは20%以下とすることで、特性の優れたセパレータが得られる。さらに、SPEの占有体積は40〜75%、その残りを電解液の液状成分とすることが好ましい。このようにすることで、強度、保液性、イオン伝導度σのバランスのとれたセパレータとなる。
【0033】
<充填剤>
上記のSPEの強度、剛性、耐圧性、粘着性等に不都合がある場合は、SPEにシリカ、アルミナ等の無機または有機の充填剤(フィラー)を添加することでそれらを改善することができる。加える充填剤の材質、粒度、形状、充填量に特に制限はないが、SPEのイオン伝導度は本質的に充填量とともに低下する。充填量は30wt%以下にすることが好ましい。
【0034】
<電気化学デバイス>
本発明のセパレータは、電池、キャパシタ、ECディスプレイ、センサ等電気化学デバイスに用いることができ、特にリチウム電池、キャパシタに好適に用いることができる。
【0035】
<リチウム電池>
本発明のセパレータを使用したリチウム電池の構造は特に限定されないが、通常、正極および負極と、本発明のセパレータとから構成され、積層型電池や円筒型電池等に適用される。
【0036】
また、電極としては上記セパレータと組み合わせて用いることが好ましく、このような電極としては、リチウム電池の電極として公知のものの中から適宜選択して使用すればよい。また、電極として電極活物質と上記SPEとの組成物を用いることも可能である。
【0037】
負極は、炭素、リチウム金属、リチウム合金あるいは酸化物材料のような負極活物質からなり、正極は、リチウムイオンがインターカレート・デインターカレート可能な酸化物または炭素のような正極活物質からなる。
【0038】
活物質として用いる炭素は、例えば、天然あるいは人造の黒鉛、樹脂焼成炭素材料、炭素繊維などから適宜選択すればよい。これらは粉末として用いられる。これらのうち好ましいものは、黒鉛であり、その平均粒子径は1〜30μm 、特に5〜25μm であることが好ましい。平均粒子径が小さすぎると、充放電サイクル寿命が短くなり、また、容量のばらつき(個体差)が大きくなる傾向にある。平均粒子径が大きすぎると、容量のばらつきが著しく大きくなり、平均容量が小さくなってしまう。平均粒子径が大きい場合に容量のばらつきが生じるのは、黒鉛と集電体との接触や黒鉛同士の接触にばらつきが生じるためと考えられる。
【0039】
リチウムイオンがインターカレート・デインターカレート可能な酸化物としては、リチウムを含む複合酸化物が好ましく、例えば、LiCoO2 、LiMn24 、LiNiO2 、LiV24 などが挙げられる。
【0040】
<電気2重層キャパシタ>
本発明のセパレータが使用される電気2重層キャパシタの構造は特に限定されないが、通常、一対の分極性電極がセパレータを介して配置されており、分極性電極およびセパレータの周辺部には絶縁性ガスケットが配置されている。このような電気2重層キャパシタはコイン型、ロール型、積層型等と称されるいずれのものであってもよい。
【0041】
分極性電極の電極層は、活性炭等の多孔質材料を活物質とし、これにバインダとして種々の合成樹脂、あるいは上記SPE等を混合し、これをシート状に形成したものを用いることができる。この電極層は、集電体上に形成してもよい。さらに、活物質として活性炭等の繊維を用いてもよいし、必要に応じて導電性の高い物質を混合してもよい。
【0042】
分極性電極に用いられる集電体は、各種汎用の金属板、導電性ブチルゴム等の導電性ゴム等などであってよく、またアルミニウム、ニッケル等の金属の溶射によって形成してもよく、上記電極層の片面に金属メッシュを付設してもよい。
【0043】
電気2重層キャパシタには、このような分極性電極と、上記セパレータとを組み合わせる。
【0044】
絶縁性ガスケットとしては、ポリプロピレン、ブチルゴム等の絶縁体を用いればよい。
【0045】
【実施例】
以下に実施例を挙げ、本発明を具体的に説明する。
【0046】
[実施例1]
VDF:HFP=94:6(mol%)のフッ素樹脂をMEK(メチルエチルケトン)に溶解して、濃度15wt%の高分子溶液を得た。この高分子溶液を直径19mmに打ち抜いたガラス繊維布(厚さ約0.25mm、嵩比重=0.2)に、塗布量0.1gとなるよう均一に塗布し、風乾させた。次に、この高分子/繊維複合体を裏返して同様に溶液0.1gを塗布し、風乾させた。
【0047】
次いで、得られた高分子/繊維複合体をさらに直径15mmに打ち抜いて形を整えた後十分に減圧乾燥し、Arの充填されたグローブボックス中で1M−(C254NBF4/PC〔プロピレンカーボネート(純度:99.5%以上、水分含有率:50 ppm以下)〕電解液に2時間浸漬して電解液を含浸させた。このときの繊維の占有体積は8%、高分子固体電解質の占有体積は45%であった。また、高分子の膨潤度は2.2であった。電解液から複合体フィルムを引き上げ、表面の電解液を拭き取り、このセパレータのイオン伝導度を下記の方法により測定したところ、4mS/cmと高いイオン伝導度が得られた。セパレータは十分な強度を示した。
【0048】
<イオン伝導度測定法>
得られたセパレータにつき、SUS電極を用いた導電率測定用セルを使用し、グローブボックス内で電極間の交流インピーダンスを測定した。イオン伝導度は複素インピーダンス解析により求めた。測定装置はソーラトロン社製SI1255型インピーダンスアナライザーを用い、測定範囲は1〜1MHzとした。
【0049】
[実施例2]
実施例1において、フッ素樹脂溶液の濃度を8wt%とし、実施例1と同様な直径19mmに打ち抜いたガラス繊維布の表裏に2回ずつ0.15gのフッ素樹脂溶液を交互に塗布、風乾させた以外は実施例1と同様にしてセパレータを作製し、イオン伝導度を測定したところ、3mS/cmと高いイオン伝導度を示した。このときの繊維の占有体積は8%、高分子固体電解質の占有体積は72%であった。
【0050】
[実施例3]
実施例1において得られたのと同様の高分子/繊維複合体をさらに直径15mmに打ち抜いて形を整えた後十分に減圧乾燥し、Arの充填されたグローブボックス中で1M−LiPF6/EC+DMC(EC:DMC=1:1、純度:99.5%以上、水分含有率:50 ppm以下)電解液に2時間浸漬して電解液を含浸させた。このセパレータのイオン伝導度を測定したところ、2mS/cmと高いイオン伝導度が得られた。
【0051】
[比較例1]
実施例1において、ガラス繊維布の表裏に塗布する高分子溶液の塗布量を、0.25gとしたほかは実施例1と同様の方法でセパレータを得た。
【0052】
得られたセパレータの電解液含浸前後での重量変化を測定したところ、このセパレータ中に液状の電解液は殆どなく、多くはSPEとして存在していることが推察された。このセパレータの繊維占有体積は8%、高分子固体電解質の占有体積は92%であった。このセパレータのイオン伝導度を測定したところ、0.2mS/cmと電気化学デバイスを作製するには不十分な値を示した。
【0053】
[比較例2]
実施例1において、ガラス繊維布の代わりにパルプ繊維布(厚さ約0.2mm、嵩比重0.6)を用いたほかは実施例1と同様の方法でセパレータを得た。このセパレータの繊維占有体積は50%、高分子固体電解質の占有体積は50%であった。
【0054】
このセパレータのイオン伝導度を測定したところ、0.1mS/cmと電気化学デバイスを作製するには不十分な値を示した。
【0055】
[実施例4]
実施例2のセパレータを用いて2032型のコイン型電気2重層キャパシタを作製した。電極活物質であるヤシガラ活性炭5gと、カーボンブラック1.4gを十分に乾燥させた後、実施例2で用いた8wt%のフッ素樹脂溶液40gと混合し、十分分散させた後、PET基板上に0.8mmクリアランスのアプリケータを用いて塗布し、風乾させた。この電極シートから直径13mmの電極2枚を打ち抜き、十分乾燥させた後、グローブボックス内で1M−(C254NBF4/PC溶液に2時間浸漬し、電解液を含浸させた。
【0056】
次いで、上記で得られた電極と、実施例2のセパレータとをグローブボックス内でコイン型セルに組み込み、コイン型電気2重層キャパシタを得た。この際、チタニウム板を集電体とし、SUS製のスプリングで密着性を確保した。このキャパシタは、1mA/cm2 の電流密度で、1V −2V 間で充放電が確認でき、25F/g-ACの静電容量を示した。また、2V 満充電時の漏れ電流は、0.01mA以下と良好な特性であった。
【0057】
[実施例5]
実施例4のコイン型電気2重層キャパシタにおいて、ガスケットを汎用のPP(ポリプロピレン)から耐熱性を有するエンプラ製のものに替えてコインセルを組み、200℃で30秒間の熱処理を行った後に、充放電特性を測定したところ、静電容量、漏れ電流の値に変化は見られなかった。
【0058】
[比較例3]
実施例5のコイン型電気2重層キャパシタにおいて、実施例1のフッ素樹脂溶液を乾燥させて得たフィルムを、実施例1と同様の方法で電解液を含浸させて得たセパレータ(厚さ0.05mm、イオン伝導度1mS/cm)を用いてコインセルを組み、200℃で30秒間の熱処理前後の充放電特性を比較したところ、熱処理前には良好な特性を示したが、熱処理後には短絡して特性評価が不可能であった。
【0059】
[実施例6]
高分子にVDF:HFP:TFE=60:15:25(mol%)のフッ素ゴム成形体を用い、高分子溶液にゴムの重量の1/4のシリカ充填剤(CABOT社製CAB−O−SIL;TS−530)を加えて十分に分散させたものをガラス繊維布に塗布した以外は実施例1と同様にしてセパレータを作製し、イオン伝導度を測定したところ、3mS/cmと高いイオン伝導度を示した。このときの繊維の占有体積は8%、高分子固体電解質の占有体積はシリカ充填剤を含めて45%であった。また、高分子の膨潤度は2.1であった。
【0060】
[実施例7]
高分子にVDF:HFP:TFE=60:15:25(mol%)のフッ素ゴム成形体を用い、高分子溶液にゴムの重量の1/4のシリカ充填剤(CABOT社製CAB−O−SIL;TS−530)を加えて十分に分散させたものをガラス繊維布に塗布した以外は実施例2と同様にしてセパレータを作製し、イオン伝導度を測定したところ、2.5mS/cmと高いイオン伝導度を示した。このときの繊維の占有体積は8%、高分子固体電解質の占有体積はシリカ充填剤を含めて72%であった。
【0061】
[実施例8]
実施例6において得られた高分子/繊維複合体に1M−LiPF6/EC+DMC電解液を含浸させた以外は実施例3と同様にしてセパレータを作製し、イオン伝導度を測定したところ、1.5mS/cmと高いイオン伝導度を示した。
【0062】
[比較例4]
実施例6において、ガラス繊維布の表裏に塗布する高分子溶液の塗布量を、0.25gとしたほかは実施例6と同様の方法でセパレータを得た。
【0063】
得られたセパレータの電解液含浸前後での重量変化を測定したところ、このセパレータ中に液状の電解液は殆どなく、多くはSPEとして存在していることが推察された。このセパレータの繊維占有体積は8%、高分子固体電解質の占有体積はシリカ充填剤を含めて92%であった。このセパレータのイオン伝導度を測定したところ、0.15mS/cmと電気化学デバイスを作製するには不十分な値を示した。
【0064】
[比較例5]
実施例6において、ガラス繊維布の代わりにパルプ繊維布(厚さ約0.2mm、嵩比重0.6)を用いたほかは実施例6と同様の方法でセパレータを得た。このセパレータの繊維占有体積は50%、高分子固体電解質の占有体積はシリカ充填剤を含めて50%であった。
【0065】
このセパレータのイオン伝導度を測定したところ、0.1mS/cmと電気化学デバイスを作製するには不十分な値を示した。
【0066】
[実施例9]
実施例7のセパレータを用いた他は実施例4と同様にして2032型のコイン型電気2重層キャパシタを作製した。このキャパシタは、1mA/cm2 の電流密度で、1V −2V 間で充放電が確認でき、25F/g-ACの静電容量を示した。また、2V 満充電時の漏れ電流は、0.01mA以下と良好な特性であった。
【0067】
[実施例10]
実施例3のセパレータを用いてリチウム2次電池を作製した。
【0068】
実施例2で用いた8wt%のフッ素樹脂溶液40gと、正極活物質としてコバルト酸リチウム(セイミケミカル社製、粒径2〜3μm )43gおよびアセチレンブラック(電気化学工業社製商品名HS−100)3gとを混合し、十分分散させて正極用塗布液とした。この塗布液をアルミ箔(縦30mm、横30mm、厚み30μm )にメタルマスク印刷機で直径15mmの円形状に印刷し、24時間放置してDMFを蒸発させ、正極とした。この電極の膜厚は0.15mmであった。
【0069】
実施例2で用いた8wt%のフッ素樹脂溶液40gと、負極活物質として黒鉛(ロンザ社製、商品名SFG25、90%累積粒径25μm )9gとを混合し、十分分散させて負極用塗布液とした。この塗布液を銅箔(縦30mm、横30mm、厚み30μm )にメタルマスク印刷機で直径15mmの円形状に印刷し、24時間放置してDMFを蒸発させ、負極とした。この電極の膜厚は0.15mmであった。
【0070】
この両金属箔を直径15mmの円形に切り出し、両塗布膜の間に実施例3のセパレータを挟み、周囲をポリオレフィン系のホットメルト接着剤でシールしてコイン型リチウムイオン2次電池を得た。
【0071】
このリチウム電池は0.1mA/cm2の電流密度で2−4V 間での充放電が可能で、電池として正常に駆動していることが確認でき、セパレータと両電極との密着性に問題のないことがわかった。
【0072】
[実施例11]
実施例8のセパレータを用いた他は実施例10と同様にしてリチウム2次電池を作製した。このリチウム電池は0.1mA/cm2の電流密度で2−4V 間での充放電が可能で、電池として正常に駆動していることが確認でき、セパレータと両電極との密着性に問題のないことがわかった。
【0073】
上記実施例、比較例では電気化学デバイスとして主に電気2重層キャパシタについて説明したが、実施例10、11に示したように本発明のセパレータをリチウム電池等の電池に応用した場合にも、同様の効果が得られることは明らかである。また、それ以外のディスプレイやセンサーなど種々の電子化学デバイスへ応用することができる。
【0074】
【発明の効果】
以上のように、本発明によれば、高分子固体電解質を含有する耐熱性、機械的強度、保液性、イオン伝導度に優れた電気化学デバイス用セパレータ、およびその製造方法を提供でき、これを用いた電気化学デバイスの安全性を向上させ、使用範囲の広い電気化学デバイスを提供できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator suitably used for an electrochemical device such as a battery, a capacitor, a display, and a sensor, a method for producing the separator, and an electrochemical device using the separator.
[0002]
[Prior art]
In conventional electrochemical devices, an aqueous solution or a non-aqueous solution (electrolytic solution) using an organic solvent has been often used as an electrolyte, but there is a problem in the necessity of sealing, ensuring safety, etc. There is an increasing need for ion conductive separators having elasticity, light weight, thin film formation, transparency, and the like. In particular, in electrochemical devices such as batteries and capacitors, which are important parts of electronic products, electrochemical devices that use ionic conductive polymers as electrolytes due to demands for weight reduction, compactness, shape flexibility, large area, etc. Development is actively underway.
[0003]
As an example using an ion conductive polymer, a type (uniform type, dry type) composed of a polymer such as polyethylene oxide (PEO), polyether such as polypropylene oxide (PPO) and derivatives thereof, and an electrolyte salt containing Li or the like. Type), a type in which a plasticizer is mixed with a polymer to improve electrochemical characteristics (hybrid type / gel type), a type in which a composite salt of an electrolyte is held in a polymer (PIS: Polymer in Salt), etc. There is.
[0004]
At present, in the development of polymer batteries using separators (SPE), mainly due to their high ionic conductivity, gel-type SPE is the focus of research. PEO, PAN (polyacrylonitrile), PVDF (polyfluoride) Polymers such as vinylidene) are considered to be highly practical. However, gel-type SPE is inherently inferior in heat resistance and mechanical strength as compared to dry-type SPE, and therefore it is necessary to enhance heat resistance, mechanical strength, and the like depending on the application.
[0005]
Japanese Laid-Open Patent Publication No. 60-165058 discloses homogeneous and gel-based SPE reinforced with short fibrous materials, which are said to have sufficient leakage resistance, storage stability, strength and electrical conductivity. . The production method is obtained by immersing a short fiber material in a solution in which a polymer, an electrolyte, and, if necessary, a high-boiling solvent are dissolved in a low-boiling solvent, or applying the solution to the short fiber material. However, specific data such as strength and conductivity are not shown.
[0006]
JP-A-60-195878 discloses a separator in which an ion conductive material is supported on a film made of a polymer compound, and a PP non-woven cloth and PVDF / LiClO 4 / PC gel electrolyte are integrated. The membrane has an ionic conductivity of 5.0 × 10 −5 S / cm. Moreover, the manufacturing method is the same as that of said gazette.
[0007]
Furthermore, Japanese Patent Application Laid-Open No. 63-40270 describes that a solid electrolyte obtained by impregnating a PP non-woven fabric with a polyether electrolyte is excellent in high temperature characteristics.
[0008]
As a method for producing a gel-type SPE, a polymer is dissolved in a solvent, an electrolyte solution or the like is mixed therewith, and then applied to a substrate by various methods, and the solvent is volatilized to obtain an SPE film. Is common. There has also been proposed a method in which a polymer is directly dissolved in an electrolytic solution and an SPE film is produced by coating or extrusion. However, since organic electrolytes used in electrochemical devices generally dislike water, when trying to produce SPE industrially using these methods, it is necessary to maintain the entire process in a dry atmosphere, which is expensive. Capital investment and maintenance costs are required, and inventory management in the process is not easy.
[0009]
US Pat. No. 5,418,091 was formed by adding a plasticizer to a polymer solution, applying it to a substrate, volatilizing the solvent to produce a film, and extracting the plasticizer therefrom. An SPE manufacturing method is described in which a void is impregnated with an electrolytic solution. In this method, the electrolytic solution is used only in the impregnation step and the sealing step, and the previous steps can be performed in a normal environment, so that the capital investment and maintenance costs can be greatly reduced. Moreover, since SPE can be stocked in a film state after coating / drying or after plasticizer extraction, inventory management becomes easy. However, in this method, it is necessary to immerse the plasticizer-containing polymer film multiple times in a large amount of solvent as an extraction step. This step greatly reduces productivity and mass productivity, and requires treatment of a large amount of waste solvent. There is also a problem in terms of the environment. Extraction can also be achieved by heating the plasticizer-containing polymer film under reduced pressure. In this case, too, productivity and mass productivity are greatly affected, and introduction of equipment and cost increase are inevitable. Furthermore, recently, the influence of plasticizers on the environment has been regarded as a problem.
[0010]
In view of such problems, the present inventors propose, in Japanese Patent Application No. 9-95030, an SPE having high swellability and an electrochemical device using the same as a novel method for producing an electrochemical device. It came to. However, there is a demand for the development of SPE that can also be used for applications that require heat resistance, mechanical strength, and the like.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a separator for an electrochemical device containing a polymer solid electrolyte and excellent in heat resistance, mechanical strength, liquid retention, and ionic conductivity, and a method for producing the same, and electrochemical using the same It is to improve the safety of the device and expand its range of use.
[0012]
[Means for Solving the Problems]
Such an object is achieved by the following configuration of the present invention.
[0013]
(1) sheet is a fiber fabric, the electrolytic solution, and the polymer by electrolytic solution have a polymeric solid electrolyte obtained by swelling, the content of the solid polymer electrolyte on both surfaces near the fiber cloth In many of them, the content of the electrolyte solution is increased, the volume occupancy of the fiber cloth is 25% or less, and the volume occupancy of the polymer solid electrolyte is 40% or more and 75% or less. Separator.
( 2 ) The separator according to (1 ), wherein the degree of swelling of the polymer by an electrolytic solution is 2 or more.
( 3 ) The separator according to (1) or (2) , wherein the polymer contains fluorine.
( 4 ) The separator according to any one of (1) to ( 3 ), wherein the polymer contains a vinylidene fluoride unit.
( 5 ) A solution in which a polymer is dissolved is applied to both sides of a sheet of fiber cloth, and the solvent is evaporated to obtain a fiber cloth / polymer composite. Further, the fiber cloth / polymer composite is electrolyzed. The manufacturing method of the separator which obtains the separator in any one of said (1)-( 4 ) by impregnating a liquid.
( 6 ) The electrochemical device using the separator in any one of said (1)-( 4 ).
[0014]
[Action]
When a polymer solution is applied to a fibrous substrate and the solvent is volatilized to obtain a fiber / polymer composite, there is no uniform polymer material in the fibrous substrate (sheet). By adjusting the molecular material / solvent type, the solution concentration, the coating amount, the coating / drying conditions, etc., it is possible to have a large amount of the polymer material in the vicinity of the coated surface. By repeating this operation on both sides, a fiber / polymer composite in which a large amount of polymer material is present in the vicinity of both surfaces can be obtained. Although a composite that is not uniform in the thickness direction may be warped, a flat composite can be obtained with this structure.
[0015]
When this fiber / polymer composite is impregnated with an electrolyte solution, the polymer material portion swells to become a polymer solid electrolyte (hereinafter referred to as SPE), and the electrolyte solution is held as it is in a portion where there are many fibers in the center. . Although the liquid retention of this separator is slightly inferior to SPE that does not contain any liquid component of the electrolytic solution, it is far superior to the fibrous substrate holding the electrolytic solution. On the other hand, the ionic conductivity (σ) is not as high as that of the fibrous substrate holding the electrolytic solution (substantially indicating σ of the electrolytic solution), but is sufficiently satisfactory for practical use.
[0016]
Since this separator contains a lot of flexible SPE in the vicinity of both surfaces, the contact with the contacting electrode is good, and it is possible to further stabilize the electrode / separator interface by performing heat treatment or the like.
[0017]
JP-A-9-293636 and JP-A-9-293637 disclose a separator made of an inorganic fiber sheet (glass fiber sheet) bound with a fluorine-containing polymer ion exchange resin or the like. However, the resin used here is not swelled by the electrolyte solution, but is entangled between the inorganic fibers, bridging between the fibers or covering the fibers to bind the inorganic fiber sheet. Only. In the present invention, the polymer is impregnated with the electrolytic solution to form a polymer solid electrolyte. Moreover, since the content of the polymer solid electrolyte is large in the vicinity of both surfaces of the fiber cloth and the content of the electrolytic solution is large in the inside thereof, high liquid retention and high ionic conductivity can be obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The separator of the present invention comprises a fiber cloth, a polymer solid electrolyte (SPE), and an electrolyte solution, and the SPE is obtained by swelling a polymer material with the electrolyte solution.
[0019]
<Polymer material>
The polymer used in the separator of the present invention needs to swell with the electrolyte used, and the degree of swelling is preferably 2 or more. The degree of swelling (swelling degree) is the weight ratio before and after the polymer material is impregnated with the electrolyte and swollen. That is, the degree of swelling of 2 indicates that the weight of the polymer has doubled due to the impregnation with the electrolytic solution, and the weight ratio of the electrolytic solution / polymer material after swelling is 1/1. In addition, the degree of swelling is preferably about 4 or less, although there is a balance between strength and liquid retention.
[0020]
As a material that highly swells in various electrolytes used in electrochemical devices such as batteries and capacitors, a material containing fluorine, preferably a vinylidene fluoride (abbreviation VDF) unit, is preferable. For example, VDF-HFP (hexafluoro) Propylene) binary copolymers, VDF-HFP-TFE (tetrafluoroethylene) ternary copolymers, VDF-CTFE (chlorotrifluoroethylene) binary copolymers, and the like are known.
[0021]
In the VDF-HFP binary copolymer, a copolymer having an HFP content of 45 wt% or less, particularly 3 to 30 wt% is particularly preferable. In the VDF-HFP-TFE terpolymer, the VDF content is 55 mol% or more, the HFP content is 10 to 45 mol%, and the TFE content is 0 to 35 mol% (excluding 0). Certain copolymers are particularly preferred. In the VDF-CTFE binary copolymer, a copolymer having a CTFE content in the range of 5 to 50 mol% is particularly preferable. These copolymers usually use random copolymers, but may be block copolymers.
[0022]
From the viewpoint of the strength of the material, the molecular weight should have a weight average molecular weight Mw of about 20,000 or more, preferably about 30,000 or more, more preferably about 50,000 or more. The upper limit of Mw is usually about 5,000,000.
[0023]
These polymer materials are dissolved in a solution and applied or impregnated on a fiber cloth.
[0024]
These polymer materials are, for example, VDF-CTFE copolymer, a product name manufactured by Central Glass Co., Ltd., “Sephral Soft (G150, G180)”, a product name from Nippon Solvay Co., Ltd., “Solef 31508”, etc. It is sold as. VDF-HFP copolymer is a product name manufactured by Elf Atchem, such as “KynarFlex2750 (VDF: HFP = 85: 15 wt%)”, “KynarFlex2801 (VDF: HFP = 90: 10 wt%)”, etc., Nippon Solvay Co., Ltd. ) Are sold under the product names “Solef 11008”, “Solef 11010”, “Solef 21508”, “Solef 21510”, and the like.
[0025]
<Electrolyte>
The electrolytic solution generally comprises an electrolyte salt and a solvent. Considering application to a lithium battery, the electrolyte salt must contain lithium. Specifically, LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiSO 3 CF 3 , LiN (CF 3 SO 2 ) An electrolyte salt such as 2 is applicable. Moreover, when using for an electrical double layer capacitor, quaternary ammonium salts, such as tetraethylammonium perchlorate and tetraethylammonium borofluoride, etc. other than the alkali metal salt containing said Li can be used. In addition, according to the electrochemical device to be applied, an electrolyte salt that is compatible with the solvent described later may be appropriately selected. Such an electrolyte salt may be used alone, or a plurality of salts may be mixed and used at a predetermined ratio.
[0026]
The organic solvent for the electrolyte is not particularly limited as long as it has good compatibility with the above polymer material and electrolyte salt, but considering application to electrochemical devices such as lithium batteries and capacitors. Those which do not decompose even when a high voltage is applied are preferable. For example, carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate, and ethyl methyl carbonate Cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran, cyclic ethers such as 1,3-dioxolane and 4-methyldioxolane, lactones such as γ-butyrolactone, sulfolane and the like can be preferably used. In addition, a suitable solvent may be appropriately selected from known solvents according to the device to be applied.
[0027]
The concentration of the electrolyte salt in the electrolytic solution is preferably 0.3 to 5 mol / l, and usually exhibits the highest conductivity around 1 mol / l.
[0028]
<Fiber cloth>
The material of the fiber cloth used for the separator of the present invention is not particularly limited as long as it does not have conductivity, but depending on the properties required of the separator, heat resistance, strength, thickness, bulk specific gravity, etc. May be appropriately selected. The length of these fibers is preferably about 1 to 100 mm, the fiber diameter is preferably about 1 to 100 μm, and the thickness of the fiber cloth is preferably about 10 to 500 μm. The bulk specific gravity is preferably about 0.05 to 0.8. Examples of such fiber cloth include inorganic fibers such as glass, asbestos, and quartz, plant fibers such as cellulose, animal fibers, and synthetic fibers. Non-woven cloth such as felt can also be used.
[0029]
<Manufacturing method>
Next, a specific method for manufacturing the separator will be described. First, a polymer material that can swell the electrolytic solution is dissolved in a predetermined solvent. As a dissolution method, a polymer material is added to a predetermined solvent, and heated at room temperature or if necessary, using a stirrer such as a magnetic stirrer or a homogenizer, or a dispersing machine such as a ball mill, a super sand mill, or a pressure kneader. What is necessary is just to disperse and melt | dissolve. The solvent at this time may be appropriately selected from various solvents in which the polymer can be dissolved. For example, N, N-dimethylformamide (DMF), dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, methyl alcohol, ethyl alcohol, propyl alcohol and other alcohols, acetonitrile, tetrahydrofuran (THF) It is preferable to use toluene or the like. The concentration of the polymer with respect to the solvent may be suitably set depending on both types of materials, the material and structure of the fiber cloth, the composition design of the separator, etc., but is usually about 3 to 20 wt%.
[0030]
The obtained polymer solution is applied to a fiber cloth and the solvent is dried. The means for applying the polymer solution to the fiber cloth is not particularly limited, and may be appropriately determined according to the material and shape of the fiber cloth. In general, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, or the like can be used. The drying method may be reduced pressure, heat drying, or air drying. This operation is performed a plurality of times as necessary. Moreover, it is preferable to apply | coat so that a uniform coating film may be obtained on both the front and back of a fiber cloth. In this way, the desired fiber / polymer composite is obtained.
[0031]
The separator of the present invention can be obtained by impregnating the fiber / polymer composite with an electrolytic solution. The separator manufactured by the method of the present invention preferably has an inclined structure in which a large amount of SPE is present near the surface of the fiber cloth and a large amount of electrolyte is present therein. For this reason, while being excellent in adhesiveness with an electrode etc., the ionic conductivity is close to that of the electrolytic solution and has excellent characteristics. The electrolyte / SPE ratio at the center is preferably 1.5 times or more than the electrolyte / SPE ratio at the surface.
[0032]
By setting the volume occupancy of the fibers in the separator to 25% or less, preferably 20% or less, a separator having excellent characteristics can be obtained. Furthermore, it is preferable that the occupied volume of SPE is 40 to 75%, and the remainder is the liquid component of the electrolytic solution. By doing in this way, it becomes a separator with balance of strength, liquid retention, and ion conductivity σ.
[0033]
<Filler>
When there is a problem with the strength, rigidity, pressure resistance, adhesiveness and the like of the above SPE, these can be improved by adding an inorganic or organic filler (filler) such as silica or alumina to the SPE. There is no particular limitation on the material, particle size, shape, and filling amount of the filler to be added, but the ionic conductivity of SPE decreases with the filling amount. The filling amount is preferably 30 wt% or less.
[0034]
<Electrochemical device>
The separator of the present invention can be used for an electrochemical device such as a battery, a capacitor, an EC display, and a sensor, and can be particularly suitably used for a lithium battery and a capacitor.
[0035]
<Lithium battery>
The structure of the lithium battery using the separator of the present invention is not particularly limited, but it is usually composed of a positive electrode and a negative electrode and the separator of the present invention, and is applied to a laminated battery, a cylindrical battery, or the like.
[0036]
Further, the electrode is preferably used in combination with the above separator, and such an electrode may be appropriately selected from those known as electrodes for lithium batteries. Moreover, it is also possible to use the composition of an electrode active material and said SPE as an electrode.
[0037]
The negative electrode is composed of a negative electrode active material such as carbon, lithium metal, lithium alloy or oxide material, and the positive electrode is composed of an oxide or carbon positive electrode active material capable of intercalating and deintercalating lithium ions. Become.
[0038]
The carbon used as the active material may be appropriately selected from, for example, natural or artificial graphite, resin-fired carbon material, carbon fiber, and the like. These are used as powders. Among these, graphite is preferable, and the average particle diameter is preferably 1 to 30 μm, particularly preferably 5 to 25 μm. When the average particle size is too small, the charge / discharge cycle life is shortened and the capacity variation (individual difference) tends to increase. When the average particle diameter is too large, the variation in capacity becomes remarkably large and the average capacity becomes small. The reason why the variation in capacity occurs when the average particle size is large is thought to be because the contact between graphite and the current collector or the contact between graphites varies.
[0039]
The oxide capable of intercalating and deintercalating lithium ions is preferably a composite oxide containing lithium, and examples thereof include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , and LiV 2 O 4 .
[0040]
<Electric double layer capacitor>
The structure of the electric double layer capacitor in which the separator of the present invention is used is not particularly limited. Usually, a pair of polarizable electrodes are arranged via a separator, and an insulating gasket is provided around the polarizable electrode and the separator. Is arranged. Such an electric double layer capacitor may be any of so-called coin type, roll type, laminated type and the like.
[0041]
For the electrode layer of the polarizable electrode, a porous material such as activated carbon is used as an active material, and various synthetic resins or the above SPE or the like are mixed as a binder with the active material. This electrode layer may be formed on the current collector. Furthermore, a fiber such as activated carbon may be used as the active material, or a highly conductive material may be mixed as necessary.
[0042]
The current collector used for the polarizable electrode may be various general-purpose metal plates, conductive rubbers such as conductive butyl rubber, etc., and may be formed by thermal spraying of metals such as aluminum and nickel. A metal mesh may be provided on one side of the layer.
[0043]
Such a polarizable electrode and the separator are combined in an electric double layer capacitor.
[0044]
An insulating material such as polypropylene or butyl rubber may be used as the insulating gasket.
[0045]
【Example】
The present invention will be specifically described with reference to examples.
[0046]
[Example 1]
A fluorine resin of VDF: HFP = 94: 6 (mol%) was dissolved in MEK (methyl ethyl ketone) to obtain a polymer solution having a concentration of 15 wt%. This polymer solution was uniformly applied to a glass fiber cloth (thickness: about 0.25 mm, bulk specific gravity = 0.2) punched out to a diameter of 19 mm, and air-dried. Next, the polymer / fiber composite was turned over and 0.1 g of the solution was applied in the same manner and air-dried.
[0047]
Next, the obtained polymer / fiber composite was further punched out to a diameter of 15 mm and shaped, and then sufficiently dried under reduced pressure. In a glove box filled with Ar, 1M- (C 2 H 5 ) 4 NBF 4 / PC [propylene carbonate (purity: 99.5% or more, moisture content: 50 ppm or less)] was immersed in an electrolytic solution for 2 hours to impregnate the electrolytic solution. The occupied volume of the fiber at this time was 8%, and the occupied volume of the polymer solid electrolyte was 45%. The swelling degree of the polymer was 2.2. The composite film was pulled up from the electrolytic solution, the electrolytic solution on the surface was wiped off, and the ionic conductivity of this separator was measured by the following method. As a result, an ionic conductivity as high as 4 mS / cm was obtained. The separator showed sufficient strength.
[0048]
<Ion conductivity measurement method>
About the obtained separator, the cell for electrical conductivity measurement using a SUS electrode was used, and the alternating current impedance between electrodes was measured in the glove box. Ionic conductivity was obtained by complex impedance analysis. The measuring device used was a SI1255 impedance analyzer manufactured by Solartron, and the measurement range was 1-1 MHz.
[0049]
[Example 2]
In Example 1, the concentration of the fluororesin solution was 8 wt%, and 0.15 g of the fluororesin solution was alternately applied to the front and back of the glass fiber cloth punched out to a diameter of 19 mm as in Example 1 and allowed to air dry. Except for the above, a separator was prepared in the same manner as in Example 1, and the ionic conductivity was measured. As a result, the ionic conductivity was as high as 3 mS / cm. The occupied volume of the fiber at this time was 8%, and the occupied volume of the polymer solid electrolyte was 72%.
[0050]
[Example 3]
A polymer / fiber composite similar to that obtained in Example 1 was further punched out to a diameter of 15 mm, adjusted in shape, and then sufficiently dried under reduced pressure, and 1M-LiPF 6 / EC + DMC in a glove box filled with Ar. (EC: DMC = 1: 1, purity: 99.5% or more, water content: 50 ppm or less) The sample was immersed in the electrolyte solution for 2 hours to impregnate the electrolyte solution. When the ionic conductivity of this separator was measured, a high ionic conductivity of 2 mS / cm was obtained.
[0051]
[Comparative Example 1]
In Example 1, a separator was obtained in the same manner as in Example 1 except that the amount of the polymer solution applied to the front and back of the glass fiber cloth was 0.25 g.
[0052]
When the weight change of the obtained separator before and after impregnation with the electrolytic solution was measured, it was presumed that there was almost no liquid electrolytic solution in this separator, and many existed as SPE. The fiber occupied volume of this separator was 8%, and the occupied volume of the polymer solid electrolyte was 92%. When the ionic conductivity of this separator was measured, it was 0.2 mS / cm, which was insufficient to produce an electrochemical device.
[0053]
[Comparative Example 2]
In Example 1, a separator was obtained in the same manner as in Example 1 except that pulp fiber cloth (thickness: about 0.2 mm, bulk specific gravity: 0.6) was used instead of glass fiber cloth. The fiber occupied volume of this separator was 50%, and the occupied volume of the polymer solid electrolyte was 50%.
[0054]
When the ionic conductivity of this separator was measured, it was 0.1 mS / cm, which was insufficient to produce an electrochemical device.
[0055]
[Example 4]
A 2032 type coin-type electric double layer capacitor was fabricated using the separator of Example 2. After 5 g of coconut husk activated carbon as an electrode active material and 1.4 g of carbon black were sufficiently dried, mixed with 40 g of the 8 wt% fluororesin solution used in Example 2 and sufficiently dispersed, on a PET substrate. It was applied using an applicator with a 0.8 mm clearance and allowed to air dry. Two electrodes having a diameter of 13 mm were punched out from this electrode sheet, sufficiently dried, and then immersed in a 1M- (C 2 H 5 ) 4 NBF 4 / PC solution for 2 hours in a glove box to be impregnated with an electrolytic solution.
[0056]
Next, the electrode obtained above and the separator of Example 2 were incorporated into a coin-type cell in a glove box to obtain a coin-type electric double layer capacitor. At this time, a titanium plate was used as a current collector, and adhesion was secured with a spring made of SUS. This capacitor was confirmed to be charged / discharged between 1 V and 2 V at a current density of 1 mA / cm 2 and exhibited a capacitance of 25 F / g-AC. Further, the leakage current at 2V full charge was 0.01 mA or less, which was a good characteristic.
[0057]
[Example 5]
In the coin-type electric double layer capacitor of Example 4, after changing the gasket from a general-purpose PP (polypropylene) to a heat-resistant engineering plastic, a coin cell is assembled, and after heat treatment at 200 ° C. for 30 seconds, charging and discharging When the characteristics were measured, no change was found in the values of capacitance and leakage current.
[0058]
[Comparative Example 3]
In the coin-type electric double layer capacitor of Example 5, a separator obtained by impregnating an electrolytic solution with a film obtained by drying the fluororesin solution of Example 1 in the same manner as in Example 1 (thickness 0. 05mm, ion conductivity 1mS / cm) was assembled, and the charge / discharge characteristics before and after heat treatment at 200 ° C for 30 seconds were compared, and they showed good characteristics before heat treatment, but short-circuited after heat treatment. It was impossible to evaluate the characteristics.
[0059]
[Example 6]
A fluororubber molded product of VDF: HFP: TFE = 60: 15: 25 (mol%) was used for the polymer, and a silica filler (CAB-O-SIL manufactured by CABOT, Inc.) of 1/4 of the weight of the rubber was used for the polymer solution. A separator was prepared in the same manner as in Example 1 except that TS-530) was sufficiently dispersed and applied to the glass fiber cloth, and the ionic conductivity was measured. As a result, the ion conductivity was as high as 3 mS / cm. Showed the degree. The occupied volume of the fiber at this time was 8%, and the occupied volume of the polymer solid electrolyte was 45% including the silica filler. The swelling degree of the polymer was 2.1.
[0060]
[Example 7]
A fluororubber molded product of VDF: HFP: TFE = 60: 15: 25 (mol%) was used for the polymer, and a silica filler (CAB-O-SIL manufactured by CABOT, Inc.) of 1/4 of the rubber weight was used for the polymer solution. A separator was prepared in the same manner as in Example 2 except that TS-530) was sufficiently dispersed and applied to a glass fiber cloth, and the ionic conductivity was measured to be as high as 2.5 mS / cm. Ionic conductivity was shown. The occupied volume of the fiber at this time was 8%, and the occupied volume of the polymer solid electrolyte was 72% including the silica filler.
[0061]
[Example 8]
A separator was prepared in the same manner as in Example 3 except that the polymer / fiber composite obtained in Example 6 was impregnated with 1M-LiPF 6 / EC + DMC electrolyte, and the ionic conductivity was measured. The ion conductivity was as high as 5 mS / cm.
[0062]
[Comparative Example 4]
In Example 6, a separator was obtained in the same manner as in Example 6 except that the amount of the polymer solution applied to the front and back of the glass fiber cloth was 0.25 g.
[0063]
When the weight change of the obtained separator before and after impregnation with the electrolytic solution was measured, it was presumed that there was almost no liquid electrolytic solution in this separator, and many existed as SPE. The fiber occupied volume of this separator was 8%, and the occupied volume of the polymer solid electrolyte was 92% including the silica filler. When the ionic conductivity of this separator was measured, it was 0.15 mS / cm, which was insufficient for producing an electrochemical device.
[0064]
[Comparative Example 5]
In Example 6, a separator was obtained in the same manner as in Example 6 except that pulp fiber cloth (thickness: about 0.2 mm, bulk specific gravity: 0.6) was used instead of glass fiber cloth. The fiber occupied volume of this separator was 50%, and the occupied volume of the polymer solid electrolyte was 50% including the silica filler.
[0065]
When the ionic conductivity of this separator was measured, it was 0.1 mS / cm, which was insufficient to produce an electrochemical device.
[0066]
[Example 9]
A 2032 type coin-type electric double layer capacitor was fabricated in the same manner as in Example 4 except that the separator of Example 7 was used. This capacitor was confirmed to be charged / discharged between 1 V and 2 V at a current density of 1 mA / cm 2 and exhibited a capacitance of 25 F / g-AC. Further, the leakage current at 2V full charge was 0.01 mA or less, which was a good characteristic.
[0067]
[Example 10]
A lithium secondary battery was produced using the separator of Example 3.
[0068]
40 g of an 8 wt% fluororesin solution used in Example 2, 43 g of lithium cobaltate (made by Seimi Chemical Co., particle size 2 to 3 μm) as the positive electrode active material, and acetylene black (trade name HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) 3 g was mixed and sufficiently dispersed to obtain a positive electrode coating solution. This coating solution was printed on aluminum foil (length 30 mm, width 30 mm, thickness 30 μm) in a circular shape with a diameter of 15 mm with a metal mask printer, and allowed to stand for 24 hours to evaporate DMF to form a positive electrode. The thickness of this electrode was 0.15 mm.
[0069]
40 g of the 8 wt% fluororesin solution used in Example 2 and 9 g of graphite (trade name SFG25, 90% cumulative particle size 25 μm, manufactured by Lonza) as a negative electrode active material are mixed and sufficiently dispersed to form a negative electrode coating solution. It was. This coating solution was printed on a copper foil (length 30 mm, width 30 mm, thickness 30 μm) in a circular shape with a diameter of 15 mm with a metal mask printer, and allowed to stand for 24 hours to evaporate DMF to form a negative electrode. The thickness of this electrode was 0.15 mm.
[0070]
Both metal foils were cut into a circle having a diameter of 15 mm, the separator of Example 3 was sandwiched between both coating films, and the periphery was sealed with a polyolefin-based hot melt adhesive to obtain a coin-type lithium ion secondary battery.
[0071]
This lithium battery can be charged and discharged between 2-4V at a current density of 0.1 mA / cm 2 , confirming that it is operating normally as a battery, and there is a problem with the adhesion between the separator and both electrodes. I knew it was n’t there.
[0072]
[Example 11]
A lithium secondary battery was produced in the same manner as in Example 10 except that the separator of Example 8 was used. This lithium battery can be charged and discharged between 2-4V at a current density of 0.1 mA / cm 2 , confirming that it is operating normally as a battery, and there is a problem with the adhesion between the separator and both electrodes. I knew it was n’t there.
[0073]
In the above examples and comparative examples, the electric double layer capacitor has been mainly described as an electrochemical device. However, the same applies to the case where the separator of the present invention is applied to a battery such as a lithium battery as shown in Examples 10 and 11. It is clear that the effect of can be obtained. In addition, it can be applied to various electrochemical devices such as other displays and sensors.
[0074]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a separator for an electrochemical device containing a polymer solid electrolyte and excellent in heat resistance, mechanical strength, liquid retention, and ionic conductivity, and a method for producing the same. The safety of the electrochemical device using can be improved, and an electrochemical device with a wide range of use can be provided.

Claims (6)

繊維布であるシート、電解液、およびこの電解液によって高分子が膨潤して得られる高分子固体電解質を有し、前記繊維布の両表面近傍に前記高分子固体電解質の含有率が多く、その内部では前記電解液の含有率が多くなっており、前記繊維布の体積占有率が25%以下であり、前記高分子固体電解質の体積占有率が40%以上75%以下である、セパレータ。Sheet is a fabric, the electrolytic solution, and the polymer by electrolytic solution have a polymeric solid electrolyte obtained by swelling, many content of the solid polymer electrolyte on both surfaces near the fiber cloth, the The separator in which the content rate of the electrolytic solution is increased inside, the volume occupancy of the fiber cloth is 25% or less, and the volume occupancy of the polymer solid electrolyte is 40% or more and 75% or less . 前記高分子の電解液による膨潤度が2以上である請求項1のセパレータ。 The separator according to claim 1, wherein the swelling degree of the polymer electrolyte is 2 or more. 前記高分子がフッ素を含有する請求項1または2のセパレータ。The separator according to claim 1 or 2 , wherein the polymer contains fluorine. 前記高分子がフッ化ビニリデン単位を含有する請求項1〜のいずれかのセパレータ。One of the separator of claims 1 to 3 wherein the polymer contains vinylidene fluoride units. 高分子が溶解状態の溶液を繊維布であるシートの両面に塗布し、かつ溶媒を蒸発させて繊維布/高分子複合体を得、さらに、この繊維布/高分子複合体に電解液を含浸させて請求項1〜のいずれかのセパレータを得るセパレータの製造方法。A solution in which a polymer is dissolved is applied to both sides of a sheet of fiber cloth, and the solvent is evaporated to obtain a fiber cloth / polymer composite. Further, the fiber cloth / polymer composite is impregnated with an electrolytic solution. A method for producing a separator, wherein the separator according to any one of claims 1 to 4 is obtained. 請求項1〜のいずれかのセパレータを用いた電気化学デバイス。The electrochemical device using the separator in any one of Claims 1-4 .
JP25605998A 1997-12-27 1998-08-26 Separator, manufacturing method thereof, and electrochemical device using the same Expired - Fee Related JP4142166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25605998A JP4142166B2 (en) 1997-12-27 1998-08-26 Separator, manufacturing method thereof, and electrochemical device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-368028 1997-12-27
JP36802897 1997-12-27
JP25605998A JP4142166B2 (en) 1997-12-27 1998-08-26 Separator, manufacturing method thereof, and electrochemical device using the same

Publications (2)

Publication Number Publication Date
JPH11242951A JPH11242951A (en) 1999-09-07
JP4142166B2 true JP4142166B2 (en) 2008-08-27

Family

ID=26542544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25605998A Expired - Fee Related JP4142166B2 (en) 1997-12-27 1998-08-26 Separator, manufacturing method thereof, and electrochemical device using the same

Country Status (1)

Country Link
JP (1) JP4142166B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179864A (en) * 1999-12-22 2001-07-03 Fujikura Ltd Ionic conductive sheet
CA2412339A1 (en) * 2000-06-07 2002-12-04 Nisshinbo Industries, Inc. Electrolyte composition and solid polymer electrolyte for electrical double-layer capacitors polar electrode composition and polar electrode, and electrical double-layer capacitor
JP2002151358A (en) * 2000-11-15 2002-05-24 Kuraray Co Ltd Separator for capacitor and manufacturing method thereof
JP4981220B2 (en) * 2001-06-21 2012-07-18 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
JP3539564B2 (en) * 2001-12-18 2004-07-07 日本電池株式会社 Polymer electrolyte and non-aqueous electrolyte secondary battery
FR2841255B1 (en) * 2002-06-21 2005-10-28 Inst Nat Polytech Grenoble REINFORCED IONIC CONDUCTION MATERIAL, ITS USE IN ELECTRODES AND ELECTROLYTES
JP4992207B2 (en) * 2005-07-19 2012-08-08 トヨタ自動車株式会社 Composite porous membrane, method for manufacturing composite porous membrane, solid polymer electrolyte membrane, and fuel cell
JP2007180434A (en) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd Lithium ion capacitor
GB0607957D0 (en) * 2006-04-21 2006-05-31 Imp Innovations Ltd Energy storage device

Also Published As

Publication number Publication date
JPH11242951A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP4005660B2 (en) Method for producing polymer solid electrolyte, polymer solid electrolyte, and electrochemical device using the same
US6280878B1 (en) Electrode and lithium secondary battery using this electrode
JP3571032B2 (en) Gel polymer electrolyte and lithium battery using the same
JP4774941B2 (en) Gel electrolyte and gel electrolyte battery
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
JPH0722023B2 (en) Method for manufacturing solid state electrochemical cell
JP6742651B2 (en) Polymer solid electrolyte and lithium secondary battery containing the same
JP3472133B2 (en) Lithium secondary battery and method of manufacturing electric double layer capacitor
JP5015474B2 (en) Battery separator, lithium ion secondary battery, electric double layer capacitor
JP4142166B2 (en) Separator, manufacturing method thereof, and electrochemical device using the same
JP3724960B2 (en) Solid electrolyte and electrochemical device using the same
JP3842442B2 (en) Polymer solid electrolyte and electrochemical device using the same
KR20020059804A (en) Films for electrochemical components and a method for production thereof
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
US6669860B1 (en) Solid electrolyte, electrochemical device, lithium ion secondary battery, and electric double-layer capacitor
JP4060465B2 (en) Polymer solid electrolyte and electrochemical device using the same
JP4399882B2 (en) Solid electrolyte, lithium secondary battery and electric double layer capacitor
JP3664560B2 (en) Lithium secondary battery
JP4406946B2 (en) Solid electrolyte
JP4112712B2 (en) Solid electrolyte, method for producing the same, and electrochemical device using the solid electrolyte
KR100384384B1 (en) Lithium ion polymer battery having superior temperatrure property and process for preparing the same
JPH10265635A (en) Polymeric solid electrolyte and electrochemical device made by using it
KR20020001416A (en) Method for manufacturing electrode of lithium polymer battery and lithium polymer battery using the electrode made by the method
JP3618022B2 (en) Electric double layer capacitor and EL element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees