JP4136407B2 - Anode active material for non-aqueous electrolyte secondary battery - Google Patents

Anode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4136407B2
JP4136407B2 JP2002076476A JP2002076476A JP4136407B2 JP 4136407 B2 JP4136407 B2 JP 4136407B2 JP 2002076476 A JP2002076476 A JP 2002076476A JP 2002076476 A JP2002076476 A JP 2002076476A JP 4136407 B2 JP4136407 B2 JP 4136407B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
active material
electrolyte secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002076476A
Other languages
Japanese (ja)
Other versions
JP2003272614A (en
Inventor
享男 江坂
裕樹 坂口
清隆 安田
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002076476A priority Critical patent/JP4136407B2/en
Publication of JP2003272614A publication Critical patent/JP2003272614A/en
Application granted granted Critical
Publication of JP4136407B2 publication Critical patent/JP4136407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム等のアルカリ金属を多量に吸蔵・排出することができる非水電解液二次電池用負極活物質に関し、詳しくは特定の金属間化合物を用いることによって、高容量で、充放電特性及びサイクル寿命特性に優れた非水電解液二次電池を製造することができる非水電解液二次電池用負極活物質及び該負極活物質を用いた非水電解液二次電池に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
携帯用の小型電気・電子機器の普及に伴い、小型で高容量の非水電解液(電解質)二次電池の開発が盛んに行われている。この非水電解液二次電池は、炭素質材料、リチウム金属、リチウム合金、リチウム化合物を負極活物質として用いるものである。
【0003】
従来、このような非水電解液二次電池としては、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム等を正極活物質とし、負極活物質としてリチウムを可逆的に吸蔵、排出する炭素質材料を用いたリチウムイオン二次電池が用いられている。
【0004】
一方、リチウム金属を負極活物質として用いた場合には、炭素質材料を用いた場合に比べて高容量となることが期待される。しかし、リチウム金属を用いると、非水電解液とリチウム金属との反応によるリチウムの劣化や充放電の繰り返しにより負極からリチウム金属がデンドライト状に成長し、絶縁体であるセパレーターを貫通して正極と短絡が生じたり、サイクル寿命特性が短いという問題があった。このことが負極活物質としてのリチウム金属の実用化を阻んでいた。
【0005】
このような問題を解決するために、金属間化合物の形成を利用してLiを可逆的に吸蔵・放出できる、Siや他の金属間化合物の格子空間にLiを吸蔵・放出させる提案が種々なされているが(特開平7−240201号公報、特開平9−63651号公報)、サイクル寿命特性については十分ではなかった。Siからなる負極材料は、9800mAh/ccと高い理論容量を持つが、その化合物は多くの場合、金属化合物と固溶体の共晶組織となるため、充放電時にLi吸蔵相は体積膨張し、未反応相は変化しないため、相粒界間で大きな応力歪みを生じ微粉化が起こり好適でない。
【0006】
また、特開2001−297757号には、Li吸蔵能力のあるSiにLiの吸蔵能力のない元素を同時に合金化させ、割れや微粉化を抑制してサイクル寿命特性を向上させる提案がなされている。これはSi相に接してLiの吸蔵能力のない第2相を配置し、Liの吸蔵放出の際の体積変化を拘束して、割れや微粉化を抑制してサイクル寿命を向上させるものであるが、実施例では、充放電効率については言及していない。また、Li吸蔵能力のない第2相の存在は、単位体積あるいは単位重量当たりの容積が損なわれるため好適でない。
【0007】
このように、従来においては、初回に充電した電気量が放電時にでてこないという不可逆容量の問題があり、さらにはサイクル毎の充放電効率が低いため、高容量で、優れた充放電特性及びサイクル寿命特性を有する非水電解液二次電池を得ることのできる非水電解液二次電池用負極活物質は未だ得られていない。
【0008】
従って、本発明の目的は、高容量で、充放電特性及びサイクル寿命特性を有する非水電解液二次電池を得ることができる非水電解液二次電池用負極活物質及び該負極活物質を用いた非水電解液二次電池を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、スズの持つ5700mAh/ccという高い容量と金属元素であるという点に着目し、その不可逆容量の低減とサイクル寿命特性の向上を図るべく検討を重ねた結果、スズと希土類元素あるいはアルカリ土類金属元素の合金組織にリチウムを予め固溶させると、リチウムは合金中に存在する微量の酸素にトラップされず、不可逆容量を殆どなくすことができ、またそれに併せて、原子半径の大きな希土類元素やアルカリ土類金属元素が充放電時の体積膨張収縮を抑制するために、サイクル寿命特性が向上することを見出した。さらに、本発明の組織は、単相であっても多相であってもよいが各相それぞれがリチウム吸蔵放出に寄与することにより、単位体積あるいは単位質量当たりの容量が従来の材料よりも大きいことを知見した。
【0010】
本発明は、これらの知見に基づきなされたもので、組成比がLiabSn(但し、XはCe、La及びMmのいずれか一種、0.2≦a≦3.5、0.1≦b≦0.5)で示される金属間化合物又は組成比がLiaCabSn(但し、0.2≦a≦3.5、0.1≦b≦0.5)で示される金属間化合物からなる非水電解液二次電池用負極活物質を提供するものである。
【0011】
また、本発明は、上記負極活物質を用いた非水電解液二次電池を提供するものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳述する。
【0013】
本発明では、非水電解液二次電池用負極活物質として、組成比がLiabSnで示される金属間化合物を用いる。ここでXは、Mm(ミッシュメタル:希土類混合金属)、ランタン及びセリウムのいずれか一種が用いられる。また、aは0.2〜3.5、bは0.1〜0.5をそれぞれ示す。aが0.2未満あるいは3.5を超えるとサイクル寿命特性が損なわれ、bが0.1未満ではサイクル寿命特性の向上効果がなく、0.5を超えると容量が損なわれるため好ましくない。
【0014】
また、本発明では、非水電解液二次電池用負極活物質として、組成比がLiabSnで示される金属間化合物を用いる。ここでYは、カルシウムである。また、aは0.2〜3.5、bは0.1〜0.5をそれぞれ示す。aが0.2未満あるいは3.5を超えるとサイクル寿命特性が損なわれ、bが0.1未満ではサイクル寿命特性の向上効果がなく、0.5を超えると容量が損なわれるため好ましくない。
【0015】
このような金属間化合物の製造方法の一例を、具体的な組成式Li1.25Ce0.33Snを挙げて説明する。先ず、組成比がCe0.33Snとなるように秤量したセリウムチップとスズ粉末をメカニカルアロイングすることとによって、Ce0.33Snを調製する。次いで、調製されたCe0.33Snとリチウムチップを所定組成となるように秤量し、メカニカルアロイングすることによって組成比がLi1.25Ce0.33Snを調製する。また、メカニカルアロイングに代えて、ロール急冷やアトマイズ等の鋳造によって調製してもよい。
【0016】
次に、本発明の非水電解液二次電池について説明する。本発明の非水電解液二次電池は、基本構造として、負極、正極、セパレータ、非水系電解液を含んでおり、負極は上記のように本発明の負極活物質を使用するが、他の正極、セパレータ、非水電解液については特に制限されず、従来よりリチウム二次電池等の非水電解液二次電池に公知のものが使用される。
【0017】
負極は、本発明の負極活物質、必要により導電剤及び結着剤を適当な溶媒に懸濁し、負極合剤を作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、さらに裁断、打ち抜きすることにより得られる。
【0018】
この材料の場合は、導電剤は必ずしも必要としないがカーボンブラック等を用いてもよい。
【0019】
集電体は、銅、ステンレス鋼、ニッケル、チタン等や銅、ステンレス鋼の表面にニッケル、カーボン、チタン等を被覆したもの等が挙げられる。また、集電体の形態は、任意であり、箔、網状、フィルム又はシート状等が例示される。
【0020】
正極は、正極活物質、必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、さらに裁断、打ち抜きすることにより得られる。
【0021】
正極活物質としては、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物等の従来公知の正極活物質が用いられる。
【0022】
また、正極に用いられる導電剤としては、カーボンブラック、アセチレンブラック、グラファイト等が用いられる。結着剤としては、スチレンブタジエンゴム、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素系ポリマー、カルボキシメチルセルロース、ポリビニルアルコール等が用いられる。また、溶媒としてはN−メチルピロリドン、ジメチルホルムアミド等が使用される。また、集電体としてはアルミニウム又はアルミニウム合金が好ましく用いられる。
【0023】
セパレーターとしては、合成樹脂製不織布、ポリエチレン又はポリプロピレン多孔質フイルム等が好ましく用いられる。
【0024】
非水電解液は、リチウム二次電池の場合、一般的な非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。リチウム塩としては、例えば、LiC1O4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiSCN、LiC1、LiBr、LiI、LiCF3SO3、LiC49SO3等が例示され、特にLiPF6を含む電解質が好ましい。
【0025】
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート等の環状カーボネート類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸エチル、プロピオン酸メチル等の脂肪族カルボン酸エステル類;γ−ブチロラクトン等のγ−ラクトン類;1,2−ジメトキシエタン等の鎖状エーテル類;テトラヒドロフラン等の環状エーテル類;その他ジメチルスルホキシド、ジオキソラン類、アミド類、ニトリル類、スルホラン類等の各種の非プロトン性溶媒を使用することが好ましい。特に、環状カーボネートと鎖状カーボネートとの混合系、及びこれにさらに脂肪族カルボン酸エステルを混合した系が好ましく用いられ、とりわけエチレンカーボネートとエチルメチルカーボネートとの混合溶媒が好ましい。
【0026】
非水電解液二次電池の形状は特に制限されず、円筒型、角形、コイン型、ボタン型等のいずれでもよい。本発明の非水電解液二次電池は、例えば携帯情報端末、携帯電子機器、自動車の用途に好適に用いることができる。
【0027】
【実施例】
以下、実施例等に基づき本発明を具体的に説明する。
【0028】
〔比較例1〕
組成比がCe0.33Snとなるように秤量、混合したセリウムチップ(約1mm)とスズ粉末(約50μm)とを、アルゴン雰囲気下で20時間メカニカルアロイングをすることにより組成比がCe0.33Snからなる金属間化合物を調製した。メカニカルアロイング条件は、試料とボールの重量比1:15、回転数300rpm、室温である。得られた試料の結晶相の同定はX線回折を用いて行った。
【0029】
〔比較例2〕
メカニカルアロイングの時間を80時間とした以外は、比較例1と同様にして組成比がCe0.33Snからなる金属間化合物を調製した。得られた試料の結晶相の同定はX線回折を用いて行った。
【0030】
〔比較例3及び4〕
セリウムチップに代えて、ランタンチップ、カルシウムチップを用いた以外は、比較例1と同様にして組成比がそれぞれLa0.33Sn、Ca0.33Snからなる金属間化合物を調製した。得られた試料の結晶相の同定はX線回折を用いて行った。
【0031】
〔実施例1〜5〕
組成比が表1となるように、組成比がCe0.33Sn、Ce0.5Snからなる金属間化合物とリチウムチップ(約1mm)とを、アルゴン雰囲気下で20時間メカニカルアロイングをすることにより、表1に示す組成比からなる金属間化合物を調製した。メカニカルアロイング条件は、比較例1と同様である。得られた試料の結晶相の同定はX線回折を用いて行った。
【0032】
〔実施例6〜17〕
セリウムチップに代えて、ミッシュメタルチップ、ランタンチップ、カルシウムチップを用いた以外は、実施例1〜5と同様にして表1に示す組成比からなる金属間化合物を調製した。得られた試料の結晶相の同定はX線回折を用いて行った。
【0033】
〔実験例1〕
負極(試験極)1は、実施例1〜17及び比較例1〜4で得られた試料粉末(金属間化合物)を銅網(0.25m2)に塗布し、それを加圧することにより作成した。充放電試験は、上記試験極1、対極2及び参照極3にリチウム板、非水電解液4に1モルLiClO4/PC(ポリカーボネート)を用いた図1に示される三極式セルを使用した。測定温度は30℃、測定電流密度は0.4mAcm-2、リチウム参照電極電位は0.0〜2.0Vとした。なお、上記試料粉末の調製から充放電試験までの一連の操作はすべてアルゴン雰囲気で行った。
【0034】
表1に、実施例1〜17及び比較例1〜4の試料粉末を電極に用いた三極式セルにおける初回(1サイクル目)充電効率及び放電容量を示す。表1に示されるように、実施例1〜17の試料粉末を電極に用いた場合には、比較例1〜4の試料粉末を電極に用いた場合に比べて初回充電効率が高い。
【0035】
また、図2に、実施例2及び比較例1〜2の試料粉末を電極に用いた三極式セルにおける1サイクル目の充放電曲線を示す。図2に示されるように、実施例2及び比較例1〜2の試料粉末を電極に用いた場合には、電極性能の違いは殆どなかった。しかし、体積当たりの放電容量はいずれも約2000mAhcm-3であり、炭素電極(約800mAhcm-3)の値を大きく凌いでいた。
【0036】
表1に、実施例1〜17及び比較例1〜4の試料粉末を電極に用いた三極式セルにおける100サイクル目の容量維持率を示す。表1から明らかなように、実施例1〜15の試料粉末を電極に用いた場合には、比較例1〜4の試料粉末を電極に用いた場合に比べて100サイクル目の容量維持率が大幅に優れている。
【0037】
また、図3に、実施例2及び比較例1〜2の試料粉末を電極に用いた三極式セルにおけるサイクル寿命特性を示す。図3に示されるように、比較例1〜2の試料粉末を電極に用いた場合には、サイクル寿命特性は極めて劣るものであった。これはリチウム挿入−脱離に伴う激しい体積変化とサイクル毎の不可逆容量が存在するためである。
【0038】
これに対し、実施例2の試料粉末を電極に用いた場合には、サイクル寿命特性は著しく向上した。これは、合金中に存在する希土類元素が、合金中あるいは合金表面に存在する僅かな酸素が充電されたリチウムと反応してLi2Oを生じることを抑制して充放電の効率を事実上100%にできたこと、それに併せて、原子半径の大きな希土類元素の存在が充放電時の体積膨張収縮を抑制したことによる。この電極は、サイクル寿命特性のみならず、1サイクル目の容量可逆性の上でも優れた性能を示した。これは、リチウムが既にCeSn3.0中に挿入されていることで、さらなるリチウム化による体積膨張が緩和されたためと考えられる。
【0039】
【表1】

Figure 0004136407
【0040】
【発明の効果】
本発明の非水電解液二次電池用負極活物質によって、高容量で、優れた充放電特性及びサイクル寿命特性を有する非水電解液二次電池を得ることができる。
【図面の簡単な説明】
【図1】図1は、実験例1で用いられた三極式セルの概略図である。
【図2】図2は、実施例2及び比較例1〜2の試料粉末を電極に用いた三極式セルにおける1サイクル目の充放電曲線を示すグラフである。
【図3】図3は、実施例2及び比較例1〜2の試料粉末を電極に用いた三極式セルにおけるサイクル寿命特性を示すグラフである。
【符号の説明】
1:試験極
2:対極
3:参照極
4:非水電解液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery that can occlude and discharge a large amount of an alkali metal such as lithium, and more specifically, by using a specific intermetallic compound, charge and discharge at a high capacity. The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery capable of producing a non-aqueous electrolyte secondary battery having excellent characteristics and cycle life characteristics, and a non-aqueous electrolyte secondary battery using the negative electrode active material.
[0002]
[Prior art and problems to be solved by the invention]
With the spread of portable small-sized electric / electronic devices, development of small non-aqueous electrolyte (electrolyte) secondary batteries with high capacity has been actively conducted. This non-aqueous electrolyte secondary battery uses a carbonaceous material, lithium metal, lithium alloy, or lithium compound as a negative electrode active material.
[0003]
Conventionally, as such a non-aqueous electrolyte secondary battery, a carbonaceous material that reversibly occludes and discharges lithium is used as a negative electrode active material, and lithium manganate, lithium cobaltate, lithium nickelate, etc. as a positive electrode active material. The lithium ion secondary battery used is used.
[0004]
On the other hand, when lithium metal is used as the negative electrode active material, it is expected to have a higher capacity than when a carbonaceous material is used. However, when lithium metal is used, lithium metal grows in a dendritic form from the negative electrode due to the deterioration of lithium due to the reaction between the non-aqueous electrolyte and the lithium metal and repeated charge and discharge, and penetrates the separator, which is an insulator, to the positive electrode. There was a problem that a short circuit occurred or cycle life characteristics were short. This hindered the practical use of lithium metal as a negative electrode active material.
[0005]
In order to solve such problems, various proposals have been made to occlude / release Li in the lattice space of Si and other intermetallic compounds, which can reversibly occlude / release Li using the formation of intermetallic compounds. However, the cycle life characteristics have not been sufficient (JP-A-7-240201, JP-A-9-63651). The negative electrode material made of Si has a high theoretical capacity of 9800 mAh / cc. However, in many cases, the compound is a eutectic structure of a metal compound and a solid solution. Since the phase does not change, a large stress strain is generated between the phase grain boundaries and pulverization occurs, which is not preferable.
[0006]
Japanese Patent Application Laid-Open No. 2001-297757 proposes to improve the cycle life characteristics by simultaneously alloying an element having no Li storage capacity with Si having an Li storage capacity to suppress cracking and pulverization. . This is in contact with the Si phase to place a second phase that does not have the ability to occlude Li, constrains the volume change during the occlusion and release of Li, suppresses cracking and pulverization, and improves the cycle life. However, the examples do not mention charge / discharge efficiency. In addition, the presence of the second phase having no Li storage capacity is not preferable because the volume per unit volume or unit weight is impaired.
[0007]
Thus, in the prior art, there is a problem of irreversible capacity that the amount of electricity charged for the first time does not appear at the time of discharge, and furthermore, the charge / discharge efficiency for each cycle is low, so it has high capacity, excellent charge / discharge characteristics and A negative electrode active material for a non-aqueous electrolyte secondary battery capable of obtaining a non-aqueous electrolyte secondary battery having cycle life characteristics has not been obtained yet.
[0008]
Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery negative electrode active material capable of obtaining a high-capacity non-aqueous electrolyte secondary battery having charge / discharge characteristics and cycle life characteristics, and the negative electrode active material. An object of the present invention is to provide a used non-aqueous electrolyte secondary battery.
[0009]
[Means for Solving the Problems]
The present inventors pay attention to the fact that tin has a high capacity of 5700 mAh / cc and a metal element, and as a result of repeated studies to reduce its irreversible capacity and improve cycle life characteristics, tin and rare earth elements Alternatively, when lithium is dissolved in advance in an alloy structure of an alkaline earth metal element, the lithium is not trapped by a small amount of oxygen present in the alloy, and the irreversible capacity can be almost eliminated. It was found that cycle life characteristics are improved because large rare earth elements and alkaline earth metal elements suppress volume expansion and contraction during charge and discharge. Furthermore, the structure of the present invention may be single-phase or multi-phase, but each phase contributes to the storage and release of lithium, so that the capacity per unit volume or unit mass is larger than that of conventional materials. I found out.
[0010]
The present invention has been made based on these findings, and the composition ratio is Li a X b Sn (where X is any one of Ce, La and Mm , 0.2 ≦ a ≦ 3.5, 0.1 ≦ b ≦ 0.5) or an intermetallic compound whose composition ratio is Li a Ca b Sn (provided that 0.2 ≦ a ≦ 3.5, 0.1 ≦ b ≦ 0.5) The present invention provides a negative electrode active material for a non-aqueous electrolyte secondary battery comprising a compound.
[0011]
The present invention also provides a non-aqueous electrolyte secondary battery using the negative electrode active material.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
In the present invention, an intermetallic compound having a composition ratio of Li a X b Sn is used as the negative electrode active material for a non-aqueous electrolyte secondary battery. Here, X is any one of Mm (Misch metal: rare earth mixed metal), lanthanum and cerium . Moreover, a shows 0.2-3.5 and b shows 0.1-0.5, respectively. If a is less than 0.2 or exceeds 3.5, the cycle life characteristics are impaired. If b is less than 0.1, the cycle life characteristics are not improved, and if it exceeds 0.5, the capacity is impaired.
[0014]
In the present invention, an intermetallic compound having a composition ratio of Li a Y b Sn is used as the negative electrode active material for a non-aqueous electrolyte secondary battery. Here, Y is calcium . Moreover, a shows 0.2-3.5 and b shows 0.1-0.5, respectively. If a is less than 0.2 or exceeds 3.5, the cycle life characteristics are impaired. If b is less than 0.1, the cycle life characteristics are not improved, and if it exceeds 0.5, the capacity is impaired.
[0015]
An example of a method for producing such an intermetallic compound will be described with reference to a specific composition formula Li 1.25 Ce 0.33 Sn. First, Ce 0.33 Sn is prepared by mechanically alloying a cerium chip and a tin powder weighed so that the composition ratio is Ce 0.33 Sn. Next, the prepared Ce 0.33 Sn and the lithium chip are weighed so as to have a predetermined composition, and mechanically alloyed to prepare a composition ratio of Li 1.25 Ce 0.33 Sn. Moreover, instead of mechanical alloying, it may be prepared by casting such as roll quenching or atomization.
[0016]
Next, the nonaqueous electrolyte secondary battery of the present invention will be described. The non-aqueous electrolyte secondary battery of the present invention includes a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte as a basic structure, and the negative electrode uses the negative electrode active material of the present invention as described above. The positive electrode, separator, and non-aqueous electrolyte are not particularly limited, and those conventionally known for non-aqueous electrolyte secondary batteries such as lithium secondary batteries are used.
[0017]
The negative electrode is prepared by suspending the negative electrode active material of the present invention, and if necessary, a conductive agent and a binder in a suitable solvent to prepare a negative electrode mixture, applying this to a current collector, drying it, and then rolling and pressing. It can be obtained by further cutting and punching.
[0018]
In the case of this material, a conductive agent is not necessarily required, but carbon black or the like may be used.
[0019]
Examples of the current collector include copper, stainless steel, nickel, titanium and the like, and copper, stainless steel having a surface coated with nickel, carbon, titanium, and the like. The form of the current collector is arbitrary, and examples thereof include a foil, a net, a film, or a sheet.
[0020]
The positive electrode is prepared by suspending a positive electrode active material, and if necessary, a conductive agent and a binder in an appropriate solvent to produce a positive electrode mixture, applying it to a current collector, drying it, then rolling and pressing, and further cutting. It is obtained by punching.
[0021]
As the positive electrode active material, conventionally known positive electrode active materials such as lithium nickel composite oxide, lithium manganese composite oxide, and lithium cobalt composite oxide are used.
[0022]
Moreover, carbon black, acetylene black, graphite etc. are used as a electrically conductive agent used for a positive electrode. As the binder, styrene butadiene rubber, polytetrafluoroethylene, polyvinylidene fluoride, fluorine-based polymer, carboxymethyl cellulose, polyvinyl alcohol, or the like is used. Moreover, N-methylpyrrolidone, dimethylformamide, etc. are used as a solvent. As the current collector, aluminum or an aluminum alloy is preferably used.
[0023]
As the separator, a synthetic resin nonwoven fabric, polyethylene, polypropylene porous film, or the like is preferably used.
[0024]
In the case of a lithium secondary battery, the non-aqueous electrolyte is a general non-aqueous electrolyte consisting of a solution obtained by dissolving a lithium salt as a supporting electrolyte in an organic solvent. The lithium salt, for example, LiC1O 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiSCN, LiC1, LiBr, LiI, LiCF 3 SO 3, LiC 4 F 9 SO 3 and the like are exemplified, especially LiPF 6 The electrolyte containing is preferred.
[0025]
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; aliphatic carboxylic acids such as methyl formate, ethyl acetate, and methyl propionate. Esters; γ-lactones such as γ-butyrolactone; chain ethers such as 1,2-dimethoxyethane; cyclic ethers such as tetrahydrofuran; other dimethyl sulfoxide, dioxolanes, amides, nitriles, sulfolanes, etc. It is preferable to use various aprotic solvents. In particular, a mixed system of a cyclic carbonate and a chain carbonate and a system in which an aliphatic carboxylic acid ester is further mixed with this are preferably used, and a mixed solvent of ethylene carbonate and ethyl methyl carbonate is particularly preferable.
[0026]
The shape of the nonaqueous electrolyte secondary battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a coin shape, a button shape, and the like. The nonaqueous electrolyte secondary battery of the present invention can be suitably used for, for example, portable information terminals, portable electronic devices, and automobiles.
[0027]
【Example】
Hereinafter, the present invention will be specifically described based on examples and the like.
[0028]
[Comparative Example 1]
Weighed so as mole fraction of Ce 0.33 Sn, and a mixed cerium chips (approximately 1mm) and tin powder (about 50 [mu] m), the composition ratio by a 20-hour mechanical alloying under an argon atmosphere from Ce 0.33 Sn An intermetallic compound was prepared. The mechanical alloying conditions are a sample to ball weight ratio of 1:15, a rotation speed of 300 rpm, and a room temperature. The crystal phase of the obtained sample was identified using X-ray diffraction.
[0029]
[Comparative Example 2]
An intermetallic compound having a composition ratio of Ce 0.33 Sn was prepared in the same manner as in Comparative Example 1 except that the mechanical alloying time was 80 hours. The crystal phase of the obtained sample was identified using X-ray diffraction.
[0030]
[Comparative Examples 3 and 4]
An intermetallic compound having a composition ratio of La 0.33 Sn and Ca 0.33 Sn was prepared in the same manner as in Comparative Example 1 except that lanthanum chips and calcium chips were used instead of the cerium chips. The crystal phase of the obtained sample was identified using X-ray diffraction.
[0031]
[Examples 1 to 5]
By carrying out mechanical alloying for 20 hours in an argon atmosphere between an intermetallic compound having a composition ratio of Ce 0.33 Sn and Ce 0.5 Sn and a lithium chip (about 1 mm) so that the composition ratio is as shown in Table 1. An intermetallic compound having a composition ratio of 1 was prepared. The mechanical alloying conditions are the same as in Comparative Example 1. The crystal phase of the obtained sample was identified using X-ray diffraction.
[0032]
[Examples 6 to 17]
An intermetallic compound having a composition ratio shown in Table 1 was prepared in the same manner as in Examples 1 to 5, except that a misch metal chip, a lanthanum chip, and a calcium chip were used instead of the cerium chip. The crystal phase of the obtained sample was identified using X-ray diffraction.
[0033]
[Experimental Example 1]
The negative electrode (test electrode) 1 was prepared by applying the sample powder (intermetallic compound) obtained in Examples 1 to 17 and Comparative Examples 1 to 4 to a copper mesh (0.25 m 2 ) and pressurizing it. did. In the charge / discharge test, the triode cell shown in FIG. 1 using a lithium plate for the test electrode 1, the counter electrode 2 and the reference electrode 3 and 1 mol LiClO 4 / PC (polycarbonate) for the non-aqueous electrolyte 4 was used. . The measurement temperature was 30 ° C., the measurement current density was 0.4 mAcm −2 , and the lithium reference electrode potential was 0.0 to 2.0 V. The series of operations from the preparation of the sample powder to the charge / discharge test were all performed in an argon atmosphere.
[0034]
Table 1 shows the initial (first cycle) charge efficiency and discharge capacity in a tripolar cell using the sample powders of Examples 1 to 17 and Comparative Examples 1 to 4 as electrodes. As shown in Table 1, when the sample powders of Examples 1 to 17 were used for the electrodes, the initial charge efficiency was higher than when the sample powders of Comparative Examples 1 to 4 were used for the electrodes.
[0035]
Moreover, in FIG. 2, the charge / discharge curve of the 1st cycle in the tripolar cell which used the sample powder of Example 2 and Comparative Examples 1-2 for the electrode is shown. As FIG. 2 shows, when the sample powder of Example 2 and Comparative Examples 1-2 was used for the electrode, there was almost no difference in electrode performance. However, the discharge capacity per volume was about 2000 mAhcm -3 , which far exceeded the value of the carbon electrode (about 800 mAhcm -3 ).
[0036]
Table 1 shows the capacity retention rate at the 100th cycle in a tripolar cell using the sample powders of Examples 1 to 17 and Comparative Examples 1 to 4 as electrodes. As is clear from Table 1, when the sample powders of Examples 1 to 15 were used for the electrodes, the capacity retention rate at the 100th cycle was higher than when the sample powders of Comparative Examples 1 to 4 were used for the electrodes. Significantly better.
[0037]
Moreover, in FIG. 3, the cycle life characteristic in the tripolar cell which used the sample powder of Example 2 and Comparative Examples 1-2 for the electrode is shown. As shown in FIG. 3, when the sample powders of Comparative Examples 1 and 2 were used for the electrodes, the cycle life characteristics were extremely inferior. This is because there is a violent volume change associated with lithium insertion / extraction and an irreversible capacity for each cycle.
[0038]
On the other hand, when the sample powder of Example 2 was used for the electrode, the cycle life characteristics were remarkably improved. This suppresses the fact that rare earth elements present in the alloy react with lithium charged with a small amount of oxygen present in the alloy or on the surface of the alloy to produce Li 2 O, thereby effectively increasing the charge / discharge efficiency. In addition, the presence of rare earth elements having a large atomic radius suppressed volume expansion and contraction during charge and discharge. This electrode showed excellent performance not only in cycle life characteristics but also in capacity reversibility in the first cycle. This is presumably because the volume expansion due to further lithiation was alleviated because lithium was already inserted into CeSn 3.0 .
[0039]
[Table 1]
Figure 0004136407
[0040]
【The invention's effect】
With the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte secondary battery having a high capacity and excellent charge / discharge characteristics and cycle life characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of a triode cell used in Experimental Example 1. FIG.
FIG. 2 is a graph showing a charge / discharge curve at the first cycle in a tripolar cell using the sample powders of Example 2 and Comparative Examples 1 and 2 as electrodes.
FIG. 3 is a graph showing cycle life characteristics in a triode cell using the sample powders of Example 2 and Comparative Examples 1 and 2 as electrodes.
[Explanation of symbols]
1: Test electrode 2: Counter electrode 3: Reference electrode 4: Non-aqueous electrolyte

Claims (3)

組成比がLiabSn(但し、XはCe、La及びMmのいずれか一種、0.2≦a≦3.5、0.1≦b≦0.5)で示される金属間化合物からなる非水電解液二次電池用負極活物質。From an intermetallic compound having a composition ratio of Li a X b Sn (where X is any one of Ce, La and Mm , 0.2 ≦ a ≦ 3.5, 0.1 ≦ b ≦ 0.5) A negative electrode active material for a non-aqueous electrolyte secondary battery. 組成比がLiaCabSn(但し、0.2≦a≦3.5、0.1≦b≦0.5)で示される金属間化合物からなる非水電解液二次電池用負極活物質。Negative electrode active material for non-aqueous electrolyte secondary battery comprising an intermetallic compound having a composition ratio of Li a Ca b Sn (where 0.2 ≦ a ≦ 3.5, 0.1 ≦ b ≦ 0.5) . 請求項1又は2記載の負極活物質を用いた非水電解液二次電池。  A non-aqueous electrolyte secondary battery using the negative electrode active material according to claim 1.
JP2002076476A 2002-03-19 2002-03-19 Anode active material for non-aqueous electrolyte secondary battery Expired - Lifetime JP4136407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076476A JP4136407B2 (en) 2002-03-19 2002-03-19 Anode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076476A JP4136407B2 (en) 2002-03-19 2002-03-19 Anode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003272614A JP2003272614A (en) 2003-09-26
JP4136407B2 true JP4136407B2 (en) 2008-08-20

Family

ID=29205235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076476A Expired - Lifetime JP4136407B2 (en) 2002-03-19 2002-03-19 Anode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4136407B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015627A1 (en) 2005-04-06 2006-10-12 Carl Zeiss Smt Ag Optical imaging device
JP4867212B2 (en) * 2005-06-20 2012-02-01 トヨタ自動車株式会社 Method for manufacturing lithium secondary battery
US8623553B2 (en) * 2009-03-18 2014-01-07 Eaglepicher Technologies, Llc Non-aqueous electrochemical cell having a mixture of at least three cathode materials therein
EP4343878A1 (en) * 2022-08-31 2024-03-27 LG Energy Solution, Ltd. Negative electrode including lithium-alkaline earth metal alloy and lithium ion secondary battery including the same

Also Published As

Publication number Publication date
JP2003272614A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
EP4220754A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
EP1936731A1 (en) Rechargeable lithium battery
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
KR19980086348A (en) Lithium secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JP3640227B2 (en) Non-aqueous secondary battery
JPH08236155A (en) Lithium secondary battery
JP2005011650A (en) Negative electrode material and battery using the same
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP2012174535A (en) Electrode active material, and metal secondary battery comprising negative electrode containing the electrode active material
WO2006082722A1 (en) Negative electrode and nonaqueous electrolyte secondary battery using same
JP3691987B2 (en) Lithium secondary battery
KR101621384B1 (en) Anode, lithium battery comprising the anode, and method for preparing the anode
JPH10208741A (en) Lithium secondary battery
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JP4136407B2 (en) Anode active material for non-aqueous electrolyte secondary battery
JP2004327078A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2004362934A (en) Positive electrode material and battery
JP5217083B2 (en) Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2002100344A (en) Positive electrode and battery
US20020197531A1 (en) Negative electrode active material and nonaqueous electrolyte battery
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2003157896A (en) Nonaqueous electrolyte secondary battery
JP2001357838A (en) Nonaqueous electrolyte secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4136407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term