JP4131869B2 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
JP4131869B2
JP4131869B2 JP2005022849A JP2005022849A JP4131869B2 JP 4131869 B2 JP4131869 B2 JP 4131869B2 JP 2005022849 A JP2005022849 A JP 2005022849A JP 2005022849 A JP2005022849 A JP 2005022849A JP 4131869 B2 JP4131869 B2 JP 4131869B2
Authority
JP
Japan
Prior art keywords
current
magnetoresistive
magnetic field
layer
extending portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005022849A
Other languages
English (en)
Other versions
JP2006208278A (ja
Inventor
茂 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005022849A priority Critical patent/JP4131869B2/ja
Priority to US11/340,683 priority patent/US7589612B2/en
Publication of JP2006208278A publication Critical patent/JP2006208278A/ja
Application granted granted Critical
Publication of JP4131869B2 publication Critical patent/JP4131869B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本発明は、導体を流れる電流の変化を高感度に検知可能な小型の電流センサに関する。
一般に、制御機器の回路に流れる微小な制御電流を正確に検知するにあたっては、その回路内に抵抗を直列接続し、この抵抗の電圧降下を測定する方法を用いる。しかし、この場合には、制御系とは異なる負荷が加わることとなり制御系に対して何らかの悪影響を与える可能性が生じてしまう。このため、制御電流によって発生する電流磁界の勾配を検出することによって間接的に測定する方法が用いられている。具体的には、例えば、トロイダルコアに被測定線を巻き、制御電流をその測定線に供給することによりトロイダルコアの中心部分に生じる磁束をホール素子によって検出するする方法である。
ところが、上記の方法を実現する電流センサでは、小型化が困難であることや直線性あるいは高周波応答性の面で不十分であるなどの問題点が指摘されるようになった。このため、巨大磁気抵抗効果(Giant Magneto-Resistive effect)を発現する巨大磁気抵抗効果素子(以下、GMR素子)を制御電流による電流磁界中に配置し、その勾配を検出するようにした電流センサが提案されている(例えば、特許文献1参照。)。このようなGMR素子を用いた電流センサであれば、検出感度や応答性が向上するうえ、温度変化に対しても安定した検出特性が得られる。
米国特許第5621377号明細書
ところで、最近では、より微弱な電流の検出が可能であると共によりコンパクトな全体構成を有する電流センサが求められてきている。しかしながら、従来のGMR素子を用いた電流センサにおいては、GMR素子が被測定線に対して面内方向において隣り合うように設けられていることから、微弱電流の検出が難しく、小型化にも不利となっていた。
本発明はかかる問題に鑑みてなされたもので、その目的は、コンパクトでありながら、検出対象電流によって生ずる電流磁界を高感度、かつ、高精度に検出可能な電流センサを提供することにある。
本発明の第1の電流センサは、
10mA以上50mA以下の検出対象電流を検出するための電流センサであって、第1の階層において第1の方向に延在すると共に銅からなる第1の延在部分を有し、検出対象電流が供給される第1の導体と、第1の階層と異なる第2の階層において、第1の延在部分と対応した領域に配設され、第1の延在部分に流れる検出対象電流により生ずる第1の電流磁界に応じて抵抗値が変化するように構成された第1の磁気抵抗効果素子と、第1の延在部分と第1の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり1000Vの瞬間印加電圧に耐え得る第1の絶縁膜とを備え、かつ、以下の条件式(1)および(2)を満足するようにしたものである。ただし、D1は第1の延在部分と第1の磁気抵抗効果素子との距離であり、S1は第1の延在部分における第1の方向と直交する断面の面積である。
0.4μm≦D1≦1.0μm ……(1)
0.4μm2 ≦S1≦3.0μm2 ……(2)
本発明の第2の電流センサは、3mA以上50mA以下の検出対象電流を検出するための電流センサであって、第1の階層において第1の方向に延在すると共に銅からなる第1の延在部分を有し、検出対象電流が供給される第1の導体と、第1の階層と異なる第2の階層において、第1の延在部分と対応した領域に配設され、第1の延在部分に流れる検出対象電流により生ずる第1の電流磁界に応じて抵抗値が変化するように構成された第1の磁気抵抗効果素子と、第1の延在部分と第1の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり、700Vの瞬間印加電圧に耐え得る第1の絶縁膜とを備え、かつ、以下の条件式(3)および(4)を満足するようにしたものである。ただし、D1は第1の延在部分と第1の磁気抵抗効果素子との距離であり、S1は第1の延在部分における第1の方向と直交する断面の面積である。
0.2μm≦D1≦0.4μm ……(3)
0.4μm2 ≦S1≦2.5μm2 ……(4)
本発明の第1および第2の電流センサでは、第1の導体と第1の磁気抵抗効果素子とが互いに異なる階層に配設されるので、同一階層内に設けられる場合と比べて互いに接近し、全体の寸法が縮小する。そのうえ、第1の延在部分を流れる検出対象電流に基づく第1の電流磁界が第1の磁気抵抗効果素子に対して、より強く付与されるようになる。特に、条件式(1)および(2)または条件式(3)および(4)がそれぞれ満たされるので、第1の導体における発熱の影響が第1の磁気抵抗効果素子に及ぶことなく、第1の電流磁界が効率的に第1の磁気抵抗効果素子に付与される。
本発明の第1および第2の電流センサでは、第1の磁気抵抗効果素子が、第1の方向へ延在すると共に第1の方向と直交する第2の方向に互いに隣在し合うように配設された帯状の複数の素子パターンを有し、第1の導体が、第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して第1の方向へ延在する第1の延在部分としての巻線体部分を複数含んで第1の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより第1の磁気抵抗効果素子の各素子パターンに対して第1の電流磁界を付与するように構成された第1の薄膜コイルであることが望ましい。その場合、第1の磁気抵抗効果素子における各素子パターンは、互いに並列接続されていてもよいし、互いに直列接続されていてもよい。
また、本発明の第1の電流センサでは、第2の階層を基準として第1の階層と反対側に位置する第3の階層において、第1の磁気抵抗効果素子と対応して第1の方向に延在すると共に銅からなる第2の延在部分を有し、かつ、検出対象電流が供給されることにより第1の磁気抵抗効果素子に対して第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体と、第2の延在部分と第1の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり1000Vの瞬間印加電圧に耐え得る第2の絶縁膜とをさらに備えるようにすることもできる。その場合、以下の条件式(5)および(6)を満足するようにする。ただし、D2は第2の延在部分と第1の磁気抵抗効果素子との距離であり、S2は第2の延在部分における第1の方向と直交する断面の面積である。
0.4μm≦D2≦1.0μm ……(5)
0.4μm2 ≦S2≦3.0μm2 ……(6)
また、本発明の第2の電流センサでは、第2の階層を基準として第1の階層と反対側に位置する第3の階層において、第1の磁気抵抗効果素子と対応して第1の方向に延在すると共に銅からなる第2の延在部分を有し、かつ、検出対象電流が供給されることにより第1の磁気抵抗効果素子に対して第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体と、第2の延在部分と第1の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり700Vの瞬間印加電圧に耐え得る第2の絶縁膜とをさらに備えるようにすることもできる。その場合、以下の条件式(7)および(8)を満足するようにする。
0.2μm≦D2≦0.4μm ……(7)
0.4μm2 ≦S2≦2.5μm2 ……(8)
ここでは特に、第2の導体が、第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して第1の方向へ延在する第2の延在部分としての巻線体部分を複数含んで第3の階層内において巻回するように構成され、かつ、第1の磁気抵抗効果素子の各素子パターンに対して第2の電流磁界をそれぞれ付与するように構成された第2の薄膜コイルであることが望ましい。
また、本発明の第1および第2電流センサでは、第1の磁気抵抗効果素子および第1の導体に加え、第1の階層における第1の導体が形成された領域以外の領域において第1の方向に延在すると共に銅からなる第3の延在部分を有し、検出対象電流が供給される第3の導体と、第1の磁気抵抗効果素子とコモン接続されるように第2の階層における第3の延在部分と対応した領域に配設され、第1の絶縁膜によって隔てられた第3の延在部分に流れる検出対象電流により生ずる第3の電流磁界に応じて抵抗値が変化するように構成された第2の磁気抵抗効果素子とをさらに備えるようにすることもできる。その場合、第1の電流センサでは以下の条件式(11)および(12)を満足するようにし、第2の電流センサでは、以下の条件式(9)および(10)を満足するようにする。ただし、D3は第3の延在部分と第2の磁気抵抗効果素子との距離であり、S3は第3の延在部分における第1の方向と直交する断面の面積である。
0.4μm≦D3≦1.0μm ……(11)
0.4μm2 ≦S3≦3.0μm2 ……(12)
0.2μm≦D3≦0.4μm ……(9)
0.4μm2 ≦S3≦2.5μm2 ……(10)
ここで、さらに、第2の階層を基準として第1の階層と反対側に位置する第3の階層において、第1の磁気抵抗効果素子と対応して第1の方向に延在すると共に銅からなる第2の延在部分を有し、かつ、検出対象電流が供給されることにより第1の磁気抵抗効果素子に対して第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体と、第3の階層における第2の導体が形成された領域以外の領域において、第2の磁気抵抗効果素子と対応して第1の方向へ延在すると共に銅からなる第4の延在部分を有し、かつ、検出対象電流が供給されることにより第2の磁気抵抗効果素子に対して第3の電流磁界と同じ向きの第4の電流磁界を付与するように構成された第4の導体とをさらに備えるようにすることもできる。その場合、第1の電流センサでは、第2および第4の延在部分と第1および第2の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり1000Vの瞬間印加電圧に耐え得る第2の絶縁膜をさらに備え、かつ、以下の条件式(17)から(20)を満足するようにする。一方、第2の電流センサでは、第2および第4の延在部分と第1および第2の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり700Vの瞬間印加電圧に耐え得る第2の絶縁膜をさらに備え、かつ、以下の条件式(13)から(16)を満足するようにする。ただし、D4は第4の延在部分と第2の磁気抵抗効果素子との距離であり、S4は第4の延在部分における第1の方向と直交する断面の面積である。
0.4μm≦D2≦1.0μm ……(17)
0.4μm≦D4≦1.0μm ……(18)
0.4μm2 ≦S2≦3.0μm2 ……(19)
0.4μm2 ≦S4≦3.0μm2 ……(20)
0.2μm≦D2≦0.4μm ……(13)
0.2μm≦D4≦0.4μm ……(14)
0.4μm2 ≦S2≦2.5μm2 ……(15)
0.4μm2 ≦S4≦2.5μm2 ……(16)
こうした場合には、第2の磁気抵抗効果素子が、第3の電流磁界および第4の電流磁界をそれぞれ付与されることにより、第1の電流磁界および第2の電流磁界によって生ずる第1の磁気抵抗効果素子における抵抗値の変化とは逆方向に抵抗値が変化するように構成されていることが望ましい。
本発明の第1または第2の電流センサによれば、第1の階層において第1の方向に延在する第1の延在部分を有すると共に検出対象電流が供給される第1の導体と、第2の階層において、第1の延在部分と対応した領域に配設され、第1の延在部分に流れる検出対象電流により生ずる第1の電流磁界に応じて抵抗値が変化するように構成された第1の磁気抵抗効果素子とを備え、かつ、条件式(1)および(2)または条件式(3)および(4)を満足するようにしたので、コンパクトな構成でありながら、第1の導体による発熱の影響を受けることなく、かつ、効率的に第1の電流磁界を検出することができる。よって、第1の導体を流れる比較的微弱な10mAから50mAの検出対象電流(第1の電流センサの場合)、または、3mA以上50mA以下の検出対象電流(第2の電流センサの場合)を高精度、かつ、高感度に測定することができる。
ここで、第1の磁気抵抗効果素子を、第1の方向へ延在すると共に第1の方向と直交する第2の方向に互いに隣在し合うように配設された帯状の複数の素子パターンを有するように構成し、かつ、第1の導体を、第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して第1の方向へ延在する第1の延在部分としての巻線体部分を複数含んで第1の階層内を巻回すると共に、第1の磁気抵抗効果素子の各素子パターンに対して第1の電流磁界をそれぞれ付与するように形成された第1の薄膜コイルとして構成した場合において、特に、第1の磁気抵抗効果素子における各素子パターンを互いに並列接続するようにすると、第1の磁気抵抗効果素子の抵抗変化率を下げることなく全体の抵抗値を比較的低く抑えることができ、使用時における第1の磁気抵抗効果素子の発熱量を低減することができる。その上、外部からのノイズ(不要な磁界)による影響を低減し、SN比を向上させることができる。一方、第1の磁気抵抗効果素子における各素子パターンを互いに直列接続するようにすると、第1の方向における寸法を長くすることなく感磁部として機能する素子パターンの総延長を稼ぐことができ、第1の磁気抵抗効果素子における全体の抵抗値(インピーダンス)の絶対値をより大きくすることができる。したがって、微弱な検出対象電流であってもより高精度な測定が可能となる。
本発明の第1の電流センサまたは第2の電流センサによれば、特に、第の階層を基準として第の階層と反対側に位置する第3の階層において、第1の磁気抵抗効果素子と対応して第1の方向に延在する第2の延在部分を有すると共に、検出対象電流が供給されることにより第1の磁気抵抗効果素子に対して第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体をさらに備え、かつ、第1の電流センサの場合には条件式(5)および(6)を、第2の電流センサの場合には条件式(7)および(8)をそれぞれ満足するようにすると、第1の電流磁界と第2の電流磁界との合成磁界が第1の磁気抵抗効果素子に付与されることとなるので、第1の磁気抵抗効果素子における抵抗変化量の絶対値をさらに増大することができ、検出対象電流の測定精度がより向上する。
また、本発明の第1の電流センサまたは第2の電流センサによれば、第1の磁気抵抗効果素子および第1の導体に加え、第1の階層における第1の導体が形成された領域以外の領域において第1の方向に延在する第3の延在部分を有し、検出対象電流が供給される第3の導体と、第1の磁気抵抗効果素子とコモン接続されるように第2の階層における第3の延在部分と対応した領域に配設され、第3の延在部分に流れる検出対象電流により生ずる第3の電流磁界に応じて抵抗値が変化するように構成された第2の磁気抵抗効果素子とをさらに備え、第1の電流センサの場合には条件式(11)および(12)を、第2の電流センサの場合には条件式(9)および(10)をそれぞれ満足するようにすると、第1の磁気抵抗効果素子および第2の磁気抵抗効果素子の双方によって、検出対象電流をより高精度に測定することができる。この場合、第2の磁気抵抗効果素子の抵抗値が、第3の電流磁界に応じて、第1の電流磁界によって生ずる第1の磁気抵抗効果素子における抵抗値の変化とは逆方向に変化するように構成すると、第1の磁気抵抗効果素子および第2の磁気抵抗効果素子に対して互いに等しい定電流を流したときに生ずる電圧降下の差分に基づいて、より高精度な検出対象電流の測定が可能となる。これに加えて、第3の階層において、第1の磁気抵抗効果素子と対応して第1の方向に延在する第2の延在部分を有すると共に、検出対象電流が供給されることにより第1の磁気抵抗効果素子に対して第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体と、第3の階層における第2の導体が形成された領域以外の領域において、第2の磁気抵抗効果素子と対応して第1の方向へ延在する第4の延在部分を有すると共に、検出対象電流が供給されることにより第2の磁気抵抗効果素子に対して第3の電流磁界と同じ向きの第4の電流磁界を付与するように構成された第4の導体とをさらに備え、かつ、第1の電流センサの場合には条件式(17)から(20)を、第2の電流センサの場合には条件式(13)から(16)をそれぞれ満足するように構成し、第1の電流磁界と第2の電流磁界との合成磁界を第1の磁気抵抗効果素子により検出すると共に第3の電流磁界と第4の電流磁界との合成磁界を第2の磁気抵抗効果素子により検出するようにすると、コンパクトな構成を維持しつつ、第1および第2の磁気抵抗効果素子の双方によって、第1から第4の導体を流れる検出対象電流を、よりいっそう高精度に測定することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[第1の実施の形態]
最初に、図1および図2を参照して、本発明の第1の実施の形態としての電流センサの構成について説明する。図1は、本実施の形態の電流センサ1の斜視構成を表す概略図である。図2は、図1の電流センサ1に示したII−II切断線における矢視方向(−X軸方向)の断面構成を表したものである。この電流センサ1は、例えば、通信機器に搭載され、制御信号としての電流を検出対象として正確に測定するために用いられるものである。ここでは特に、10mA以上50mA以下の電流を検出対象とする。なお、後述する第2の実施の形態等における電流センサとの区別を行うため、本実施の形態では電流センサ1Aと呼ぶ。
電流センサ1Aは、第1の階層L1に配設された第1の磁気抵抗効果素子21と、第1の階層L1と異なる第2の階層L2に配設された第1の導体としての第1の薄膜コイル31(以下、単に、薄膜コイル31という。)とを備えている。第1の磁気抵抗効果素子21は、第1の方向(X軸方向)へ延在する2つの素子パターン21A,21Bを有している。第1の薄膜コイル31は、これらの素子パターン21A,21Bのそれぞれと対応してX軸方向へ延在する第1の延在部分としての巻線体部分31A,31Bを含んで巻回するように構成されたものである。すなわち、図2に示したように、電流センサ1Aは、シリコン(Si)などからなる基体2の上に、酸化アルミニウム(Al23)などからなる下地膜3を介して、第1の磁気抵抗効果素子21を含む第1の階層L1と、薄膜コイル31を含む第2の階層L2とが順に積層された構造を有している。なお、図2の断面において、第1の磁気抵抗効果素子21および薄膜コイル31はAl23などからなる絶縁膜Z1,Z2によってそれぞれ覆われており、互いに電気的に絶縁されている。さらに、絶縁膜Z2の上には、図1に示したように複数の電極膜41〜44が設けられている。
薄膜コイル31は、例えば銅(Cu)などの高導電性の金属材料からなる薄膜パターンであり、例えば、制御信号等の、検出対象とする電流(以下、検出対象電流と記す。)Imが供給されるものである。薄膜コイル31は、一方の端部31Sがコンタクト層(図示せず)を介して電極膜41と接続されており、他方の端部31Eがコンタクト層(図示せず)を介して電極膜42と接続されている(図1参照)。電流センサ1Aでは、検出対象電流Imが端部31Sから端部31Eへ流れるように設定される。
素子パターン21A,21Bは検出対象電流Imが生ずる第1の電流磁界Hm1(後出。以下、単に電流磁界Hm1という。)を検出するものであり、薄膜コイル31の巻線体部分31A,31Bと積層方向においてそれぞれ対応する領域に設けられている。素子パターン21A,21Bは、X軸方向に延在すると共にX軸方向と直交するY軸方向(第2の方向)に互いに隣在し合うように配設され、電極パターン4および電極パターン5によって互いに並列接続されている。ここで、電極パターン4はコンタクト層(図示せず)を介して電極膜43と接続されている。一方、電極パターン5はコンタクト層(図示せず)を介して電極膜44と接続されている。素子パターン21A,21Bは、スパッタリング法などを用いて例えば0.8μmの厚みを有するように形成されたものであり、それぞれに読出電流を流したときに、巻線体部分31A,31Bを流れる検出対象電流Imにより生ずる電流磁界Hm1に応じた抵抗値の変化を示すように構成されている。
図3は、図2の要部を拡大して示した断面図である。ここでは、巻線体部分31Aおよび素子パターン21Aを代表して示している。巻線体部分31Aおよび素子パターン21Aは、それぞれのY軸方向における中心位置が互いに一致する(すなわち、いずれの中心位置もX軸方向に延在する仮想の中心線CL上に存在する)ように配置されると共に、Z軸方向において互いに距離D1を隔てるように配置されている。距離D1は0.4μm以上1.0μm以下(条件式1)とする。すなわち、巻線体部分31Aと素子パターン21Aとを隔てる絶縁膜Z1の厚みを0.4μm以上とすれば、1000Vの電圧の瞬間印加に耐えることができ、実用上、好ましいからである。また、コンパクト化の観点から可能な限り小さい方が好ましいので、距離D1は1.0μm以下とする。
また、巻線体部分31Aは、YZ断面(X軸方向と直交する断面)において、Y軸に沿った幅MX1とZ軸に沿った厚みMY1とによって規定される矩形をなしており、断面積S1(=MX1・MY1)を有している。具体的には、幅MX1が3.0μm以下であり、かつ、断面積S1が0.4μm2以上3.0μm2以下(条件式2)となるように構成されている。形成過程における精度上の問題から、厚みMY1の寸法については0.2μm以上とすると共に幅MX1と同等以下とすることが望ましい。
断面積S1が0.4μm2を下回ると、巻線体部分31Aを流れる検出対象電流Im(=10mA〜50mA)により、素子パターン21Aにおいて過度な(例えば2.0℃を超えるような)温度上昇が生じ検出精度が劣化してしまう可能性がある。なお、素子パターン21Aが2.0℃を超えるような温度変化を生じると約0.2%を超える出力変動を生じてしまい、電流センサとしての信頼性が失われてしまうので好ましくない。巻線体部分31Aの単位長さ(1m)当たりの発熱量Pは、検出対象電流Im,銅の比抵抗ρ,断面積S1を用いて以下の式(A)によって表される。
P=Im2・(ρ/S) ……(A)
本実施の形態の電流センサ1Aは、通信機器等の制御信号を検出対象としていることから、検出対象電流Imの大きさは最大で50[mA](=5×10-2[A])である。また、銅の比抵抗ρは1.92×10-8[Ω・m]であるので、これらを式(A)に当てはめると、
P=(25×10-4)・(1.92×10-8)/S
=48.0×10-12/S1 [W/m]……(B)
となる。
このような発熱量Pを発生する巻線体部分31Aから絶縁膜Z1を隔てて配設された素子パターン21Aは、以下の式(C)で表される単位長さ(1m)当たりの伝熱量Qを受け取ることとなる。ただし、ここでは簡略化のため、図4に示したように、巻線体部分31Aの断面を半径r1(=(S1/π)0.5)[m]を有する円形とすると共に、これを中心として半径r2[m]の範囲内に絶縁膜Zを充填するように構成した近似モデルに置き換える。この場合、巻線体部分31Aで発生した発熱量Pが周囲に均等に伝搬して半径r2の絶縁膜Zを通過し、絶縁膜Zの表面から外部へ放熱される。このとき、巻線体部分31Aの近傍に存在する素子パターン21Aが伝熱量Qの一部を受け取ることにより、素子パターン21Aの温度が巻線体部分31Aの表面温度上昇分ΔT[℃]と同等程度上昇する。なお、絶縁膜Z1を構成する酸化アルミニウム(Al23)の熱伝導率をλとする。
Q=λ(2π/ln(r2/r1))・ΔT ……(C)
ここで、熱伝導率λは30[W/m/℃]である。また、温度変化ΔTについては2.0℃以下であることが望ましい。これらを式(C)に当てはめると、
Q≦30×(2π/ln(r2/r1))×2.0
≦120π/ln(r2/r1) ……(D)
となる。ここでQ=Pであるので、式(B)および式(D)から、
48.0×10-12/S1≦120π/ln(r2/r1) ……(E)
となる。断面積「S1」を「π・(r1)2」と置き換えると、
ln(r2/r1)/(r1)2≦120π2/48.0×1012
≦2.5π2×1012 ……(F)
本実施の形態の場合、素子パターン21Aの近傍における絶縁膜Zの平均的な厚みから、半径r2(=5+r1)μmの領域を絶縁膜Zが覆っていると近似することができるので、式(F)から半径r1は約0.36μm以上となる。したがって、断面積Sは0.4μm2以上であることが望ましい。
一方、断面積S1が3.0μm2を上回ると、電流磁界Hm1の強度が低下し、素子パターン21Aによる良好な検出動作が困難となってしまう。図5は、断面積S1と平均の電流磁界Hm1との関係を表したものである。ここでは、距離D1を1.0μmとし、検出対象電流Imを10mAとしている。これによれば、断面積S1の増加に伴って素子パターン21Aに影響が及ぶ電流磁界Hm1の強度が低下してしまうことがわかる。素子パターン21Aが安定した検出動作を行うためには、おおよそ5Oe(=5×103/4π[A/m])以上の強度が必要であることから、断面積S1は3.0μm2以下が望ましい。
このような断面積S1を有する巻線体部分31Aは、例えばX軸方向と直交するYZ断面において、0.8μm以上3.0μm以下の幅MXと0.2μm以上1.4μm以下の厚みMYとを有するように構成される。また、素子パターン21AのY軸方向の幅MWは、2.0μm以下であることが望ましい。Y軸方向の全体に亘って十分に均一な電流磁界Hm1を素子パターン21Aに対して付与するためである。一方、幅MWの下限については、Y軸方向において均一な成膜を行うため0.5μmとすることが望ましい。なお、図3では、巻線体部分31Aおよび素子パターン21Aについてのみ示したが、巻線体部分31Bおよび素子パターン21Bについても全く同様の構成(寸法および配置)である。
次に、図6〜図9を参照して、素子パターン21A,21Bの構成について、より詳しく説明する。図6は、素子パターン21A,21Bの構成を分解して示す分解斜視図である。ただし、寸法の比率は実際とは一致していない。
素子パターン21A,21Bは、図6に示したように、磁性層を含む複数の機能膜が積層されたスピンバルブ構造をなしており、+X方向に固着された磁化方向J11を有する固着層11と、電流磁界Hm1をはじめとする外部磁界Hに応じて磁化方向J13が変化する自由層13と、固着層11と自由層13との間に挟まれ、特定の磁化方向を示さない中間層12とをそれぞれ含むものである。自由層13は、ニッケル鉄合金(NiFe)などの軟磁性材料により構成されている。中間層12は、銅(Cu)により構成され、上面が固着層11と接すると共に下面が自由層13と接している。中間層12は、銅のほか、金(Au)などの導電率の高い非磁性金属により構成することができる。なお、固着層11の上面(中間層12と反対側の面)および自由層13の下面(中間層12と反対側の面)は、それぞれ図示しない保護膜によって保護されている。また、固着層11と自由層13との間には磁化方向J11における交換バイアス磁界Hin(以下、単に「交換バイアス磁界Hin」と記す。)が生じており、中間層12を介して互いに作用し合っている。交換バイアス磁界Hinの強度は、固着層11と自由層13との相互間隔(すなわち中間層12の厚み)に応じて自由層13のスピン方向が回転することにより変化する。さらに、図6では、下から自由層13、中間層12、固着層11の順に積層された場合の構成例を示しているが、これに限定されず、反対の順序で積層するようにしてもよい。
また、素子パターン21A,21Bは、X軸方向の長さML(長手寸法)がY軸方向の幅MW(幅寸法)の10倍以上200倍以下となるように構成されている。具体的には、長さMLの好ましい範囲は、例えば20μm以上100μm以下である。このように、素子パターン21A,21Bは、幅MWに対して大きな寸法の長さMLを有する帯状(ストライプ状)をなすことにより、Y軸方向に沿って形状磁気異方性を示すこととなる。したがって、+Y方向または−Y方向)へ外部磁界Hが印加された場合に、その外部磁界Hの変化に対して抵抗変化率の変化の直線性(リニアリティ)が向上する。ここで、長さML(長手寸法)がY軸方向の幅MW(幅寸法)の10倍未満であると、十分な形状異方性磁界が得られない。一方、100倍を超えるような寸法比としても、形状異方性磁界の向上は望めないうえ、抵抗値の増大によるノイズが生じてしまうので好ましくない。
図7に、固着層11の詳細な構成を示す。固着層11は、中間層12の側から磁化固定膜14と反強磁性膜15とが順に積層された構成となっている。磁化固定膜14は、コバルト(Co)やコバルト鉄合金(CoFe)などの強磁性材料によって構成されている。この磁化固定膜14の示す磁化方向が固着層11全体としての磁化方向J11となる。反強磁性膜15は、白金マンガン合金(PtMn)やイリジウムマンガン合金(IrMn)などの反強磁性材料により構成されている。反強磁性膜15は、+X方向のスピン磁気モーメントと反対方向(−X方向)のスピン磁気モーメントとが完全に打ち消し合った状態にあり、磁化固定膜14の磁化方向J11を固定するように機能するものである。
以上のように構成された素子パターン21A,21Bでは、電流磁界Hm1が印加されることにより自由層13の磁化方向J13が回転し、それによって磁化方向J13と磁化方向J11との相対角度が変化する。その相対角度は、電流磁界Hm1の大きさや向きによって決まるものである。
なお、図6は、電流磁界Hm1が零(Hm=0)であり、かつ、その他の磁界(バイアス磁界など)を印加しない無負荷状態(すなわち、外部磁界Hが零の状態)を示している。自由層13の磁化容易軸方向AE13が固着層11の磁化方向J11と平行となるように形成されていることから、この状態では、磁化容易軸方向AE13と、磁化方向J13と、磁化方向J11とが全て+X方向に沿うように互いに平行となっている。このため、自由層13における各磁区のスピン方向がほぼ同一方向に揃うこととなるので、素子パターン21A,21Bに対し、磁化方向J11と直交する方向(+Y方向または−Y方向)へ外部磁界Hが印加された場合には、図8に示したような特性が得られる。図8は、Y方向への外部磁界Hを正として外部磁界Hと抵抗変化率ΔR/Rとの関係を示したものであるが、両者の関係は、外部磁界H=0において極小(ΔR/R=0)となり、ヒステリシスをほとんど示すことのない1本の曲線C1で表される。この場合、ヒステリシスに起因する1/fノイズが極めて小さくなるので、高感度かつ安定したセンシングが可能となる。
ただし、図8から明らかなように、外部磁界Hが零(H=0)の近傍においては直線的な変化が得られないので、実際に電流磁界Hm1を測定する場合には図示しない永久磁石などによるバイアス磁界を磁化方向J11と直交する方向へ印加することで、図9に示したように、磁化方向J13を回転させ、+Y方向の成分または−Y方向の成分を含むように僅かに傾ける(図9では−Y方向へ傾けた場合を例示する)。こうすることにより、図8に示したバイアスポイントBP1を中心とする線形領域LA1またはバイアスポイントBP2を中心とする線形領域LA2において、電流磁界Hm1の変化を精度良く検出することができる。
上記のような構成の電流センサ1Aを用いてセンシングを行う場合には、まず、電極膜43および電極膜44を介して素子パターン21A,21Bにセンス電流を流しておく。次いで、電極膜41,42を介して検出対象電流Imを薄膜コイル31へ供給するようにし、各巻線体部分31A,31Bが生じる電流磁界Hm1を各素子パターン21A,21Bによって検出するようにする。すなわち、例えば、検出対象電流Imを薄膜コイル31の端部31Sから端部31Eへ向かうように流した場合には、図10に示したように、巻線体部分31A,31Bでは、−X方向に(紙面手前から奥へ向かうように)検出対象電流Imが流れることとなる。その結果、右ねじの法則にしたがって、巻線体部分31A,31Bのそれぞれの周囲を(紙面上では時計回りに)巻回する電流磁界Hm1が生ずる。このため、各素子パターン21A,21Bに対しては、それぞれ−Y方向への電流磁界Hm1が付与されるので、それぞれ抵抗値が変化することとなる。ここで、電極パターン4と電極パターン5との間における電圧降下の変化量(抵抗値の変化量)を検出することにより、検出対象電流Imの大きさの推定をおこなうことができる。
以上のように、本実施の形態の電流センサ1Aによれば、第1の階層L1においてX軸方向へ延在し、これと直交するY軸方向に互いに隣在し合うように配設されると共に互いに並列接続された素子パターン21A,21Bを含んで構成された第1の磁気抵抗効果素子21と、各素子パターン21A,21Bとそれぞれ対応してX軸方向へ延在する巻線体部分31A,31Bを含んで第1の階層L1と異なる第2の階層L2において巻回するように構成され、かつ、検出対象電流Imが供給されることにより各素子パターン21A,21Bに対して電流磁界Hm1をそれぞれ付与するように構成された薄膜コイル31とを備えるようにしたので、同一の階層内に設けられる場合など、面内方向において隣り合うように設けられている場合と比べ第1の磁気抵抗効果素子21と薄膜コイル31とを互いに接近させて配置することができる。
さらに、薄膜コイル31の各巻線体部分31A,31Bにより、これらと対応する第1の磁気抵抗効果素子21の各素子パターン21A,21Bに対して電流磁界Hm1を個別に付与することができるので、コイルによる発熱およびコイル磁界強度の電流効率の観点からの第1の方向と直交する断面での配置位置および断面寸法に関する最適化を容易に図ることができ、一つの導体(巻線体部分)を流れる電流のみによって形成される電流磁界を各素子パターンに対して付与する場合と比べ、電流磁界Hm1を効率よく各素子パターン21A,21Bに付与することができる。その結果、検出対象電流Imを感度良く検出することが可能となる。
特に、各素子パターン21A,21Bを互いに並列接続するようにしたので、抵抗変化率を下げることなく第1の磁気抵抗効果素子21としての全体の抵抗値を比較的低く抑えることができ、使用時における発熱量を低減することができる。その上、外部からのノイズ(不要な磁界)による影響を低減し、S/N比を向上させることができる。以上の理由により、電流センサ1Aであれば、コンパクトな構成でありながら、薄膜コイル31を流れる検出対象電流Imを高精度に測定することができる。
また、特に、巻線体部分31A,31Bと、素子パターン21A,21Bとの厚み方向(Z軸方向)の距離D1を0.4μm以上1.0μm以下とし、巻線体部分31Aの断面積S1を0.4μm2以上3.0μm2以下とするようにしたので、薄膜コイル31による発熱の影響を受けることなく、かつ効率的に電流磁界Hm1を検出することができる。よって、薄膜コイル31を流れる10mA以上50mA以下という比較的微弱な範囲の検出対象電流Imを高精度に測定することができる。
<変形例1>
上記した本実施の形態では、10mA以上50mA以下の検出対象電流Imを測定する場合を例に挙げて説明したが、より微弱な検出対象電流Imをも測定可能な構成とすることが可能である。具体的には、3mA以上50mA以下の検出対象電流Imを測定可能な構成とすることができる。その場合には、図3に示した断面図において、距離D1を0.2μm以上0.4μm以下(条件式3)とする。これは、10mA以下という、より微弱な検出対象電流Imが形成する電流磁界Hm1を検知するために、巻線体部分31Aと素子パターン21Aとをさらに接近させる必要があるからである。一方、0.2μm以上とすれば、700Vの電圧の瞬間印加に耐えることができ、実用上、好ましいものとなる。
また、巻線体部分31Aにおける断面積S1(=MX1・MY1)は、0.4μm2以上2.5μm2以下(条件式4)とする。断面積S1が0.4μm2を下回ると、巻線体部分31Aを流れる検出対象電流Imにより、素子パターン21Aにおいて過度な(例えば2.0℃を超えるような)温度上昇が生じ検出精度が劣化してしまう可能性がある。一方、断面積S1が2.5μm2を上回ると、電流磁界Hm1の強度が低下し、素子パターン21Aによる良好な検出動作が困難となってしまう。
このように、条件式3および条件式4を満足するように構成された変形例としての電流センサ1Aによれば、薄膜コイル31による発熱の影響を受けることなく、かつ効率的に電流磁界Hm1を検出することができる。よって、薄膜コイル31を流れる3mA以上50mA以下の検出対象電流Imを高精度に測定することができる。
[第2の実施の形態]
続いて、図11から図13を参照して、本発明の第2の実施の形態としての電流センサ1Bについて説明する。
図11は、電流センサ1Bの斜視構成を表す概略図である。図12は、図11の電流センサ1Bに示したXII−XII切断線における矢視方向(−X方向)の断面構成を表したものである。電流センサ1Bは、上記実施の形態の電流センサ1Aに、第2の導体としての第2の薄膜コイル32(以下、単に薄膜コイル32という。)を追加するようにしたものである。
具体的には、電流センサ1Bでは、第1の階層L1を基準として第2の階層L2と反対側に位置する第3の階層L3が設けられ、その第3の階層L3において絶縁膜Z3に埋設されるように薄膜コイル32が形成されている。すなわち、図12に示したように、電流センサ1Bは、シリコンなどからなる基体2の上に、Al23などからなる下地膜3を介して、薄膜コイル32を含む第3の階層L3と、第1の磁気抵抗効果素子21を含む第1の階層L1と、薄膜コイル31を含む第2の階層L2とが順に積層された構造を有している。なお、図12の断面において、薄膜コイル32、第1の磁気抵抗効果素子21ならびに薄膜コイル31はAl23などからなる絶縁膜Z3,Z1,Z2によってそれぞれ覆われており、互いに電気的に絶縁されている。
薄膜コイル32は、薄膜コイル31と同様に、例えば銅などの高導電性の金属材料からなる薄膜パターンであり、第3の階層L3において、第1の磁気抵抗効果素子21の各素子パターン21A,21Bと対応してX軸方向へ延在する巻線体部分32A,32Bを含んで巻回するように構成され、かつ、検出対象電流Imが供給されることにより各素子パターン21A,21Bに対して電流磁界Hm1と同じ向きの第2の電流磁界Hm2(後出。以下、単に電流磁界Hm2という。)を付与するように構成されている。薄膜コイル31の端部31Eはコンタクト層(図示せず)を介して薄膜コイル32の一方の端部32Sと接続され、薄膜コイル32の他方の端部32Eはコンタクト層(図示せず)を介して電極膜42と接続されている。したがって、薄膜コイル31,32は回路構成上、1本の導線となっている。
このような構成を備えた電流センサ1Bでは、1つの検出対象電流Imが薄膜コイル31および薄膜コイル32を流れることにより、図13に示したように、第1の磁気抵抗効果素子21に対して2つの電流磁界Hm1,Hm2が作用することとなる。図13は、図12の一部を拡大して示したものであり、各素子パターン21A,21Bに対する電流磁界Hm1,Hm2の作用を説明するための説明図である。ここで、巻線体部分31A,31Bと素子パターン21A,21Bとは、Z軸方向において互いに距離D1を隔てるように配置され、巻線体部分32A,32Bと素子パターン21A,21Bとは、Z軸方向において互いに距離D2を隔てるように配置されている。距離D1および距離D2は0.4μm以上1.0μm以下(条件式1,5)である。また、巻線体部分31A,31Bは、幅MX1と厚みMY1とによって規定される矩形をなしており、断面積S1(=MX1・MY1)を有している。同様に巻線体部分32A,32Bは、YZ断面において、Y軸方向に沿った幅MX2とZ軸方向に沿った厚みMY2とによって規定される矩形をなしており、断面積S2(=MX2・MY2)を有している。具体的には、幅MX1,MX2が3.0μm以下であり、かつ、断面積S1,S2が0.4μm2以上3.0μm2以下(条件式2,6)となるように構成されている。形成過程における精度上の問題から、厚みMY1,MY2の寸法については0.2μm以上とすると共に幅MX1,MX2と同等以下とすることが望ましい。
電流センサ1Bを用いてセンシングを行う場合には、まず、電極膜43および電極膜44を介して素子パターン21A,21Bにセンス電流を流しておく。次いで、電極膜41,42を介して検出対象電流Imを薄膜コイル31,32へ供給するようにし、各巻線体部分31A,31Bが生じる電流磁界Hm1と各巻線体部分32A,32Bが生じる電流磁界Hm2とを各素子パターン21A,21Bによって検出するようにする。例えば、検出対象電流Imを薄膜コイル31の端部31Sから端部31Eへ向かうように流し、続いて薄膜コイル32の端部32Sから端部32Eへ向かうように流した場合には、図13に示したように、巻線体部分31A,31Bでは、−X方向に(紙面手前から奥へ向かうように)検出対象電流Imが流れることとなる。その結果、右ねじの法則にしたがって、巻線体部分31A,31Bのそれぞれの周囲を(紙面上では時計回りに)巻回する電流磁界Hm1が生ずる。一方、巻線体部分32A,32Bでは、+X方向に(紙面奥から手前へ向かうように)検出対象電流Imが流れることとなる。その結果、右ねじの法則にしたがって、巻線体部分32A,32Bのそれぞれの周囲を(紙面上では反時計回りに)巻回する電流磁界Hm2が生ずる。このため、各素子パターン21A,21Bに対しては−Y方向への電流磁界Hm1および電流磁界Hm2の合成磁界がそれぞれ付与されるので、電流磁界Hm1のみを付与した場合と比べ各素子パターン21A,21Bに付与される磁界強度が高まり、抵抗値の変化量がより大きくなる。ここで、第1の実施の形態と同様、電極パターン4と電極パターン5との間における電圧降下の変化量(抵抗値の変化量)を検出することにより、検出対象電流Imの大きさの推定をおこなうことができる。
以上のように、本実施の形態の電流センサ1Bによれば、各素子パターン21A,21Bに対して電流磁界Hm1と同じ向きの電流磁界Hm2を付与するように構成された薄膜コイル32を備えるようにしたので、電流磁界Hm1と電流磁界Hm2との合成磁界を各素子パターン21A,21Bに付与することとなり、第1の磁気抵抗効果素子21における抵抗変化量の絶対値をさらに増大することができ、検出対象電流Imをより高精度に測定することができる。
特に、上記第1の実施の形態と同様、巻線体部分31A,31Bと素子パターン21A,21Bとの距離D1および巻線体部分32A,32Bと素子パターン21A,21Bとの距離D2をいずれも0.4μm以上1.0μm以下とし、巻線体部分31A,31Bの断面積S1および巻線体部分32A,32Bの断面積S2をいずれも0.4μm2以上3.0μm2以下とするようにしたので、薄膜コイル31,32による発熱の影響を受けることなく、かつ、効率的に電流磁界Hm1および電流磁界Hm2の合成磁界を検出することができる。よって、薄膜コイル31,32を流れる比較的微弱な10mA〜50mAの検出対象電流Imを高精度に測定することができる。
<変形例2>
上記した本実施の形態では、10mA以上50mA以下の検出対象電流Imを測定する場合を例に挙げて説明したが、より微弱な検出対象電流Imをも測定可能な構成とすることが可能である。具体的には、3mA以上50mA以下の検出対象電流Imを測定可能な構成とすることができる。その場合には、距離D1,D2を0.2μm以上0.4μm以下(条件式3,7)とすると共に、断面積S1,S2を、0.4μm2以上2.5μm2以下(条件式4,8)とする。
このように、条件式3,4,7,8を満足するように構成された変形例としての電流センサ1Bによれば、薄膜コイル31,32による発熱の影響を受けることなく、かつ効率的に電流磁界Hm1および電流磁界Hm2の合成磁界を検出することができ、薄膜コイル31,32を流れる3mA以上50mA以下の検出対象電流Imを高精度に測定することができる。
[第3の実施の形態]
続いて、図14から図17を参照して、本発明の第3の実施の形態としての電流センサ1Cについて説明する。図14は、電流センサ1Cの斜視構成を表す概略図である。図15は、図14の電流センサ1Cに示したXV−XV切断線における矢視方向(−X方向)の断面構成を表したものである。
電流センサ1Cは、上記第1の実施の形態の電流センサ1Aの構成に、さらに第2の磁気抵抗効果素子22と、第3の導体としての第3の薄膜コイル33(以下、単に薄膜コイル33という。)とを加えるようにしたものである。以下、具体的に説明するが、上記第1の実施の形態と重複する部分については適宜説明を省略する。
図14に示したように、電流センサ1Cでは、素子パターン22A,22Bを有する第2の磁気抵抗効果素子22が、第1の階層L1において第1の磁気抵抗効果素子21と隣り合うようにY軸方向に並んで配置され、かつ第1の磁気抵抗効果素子21とコモン接続されている。素子パターン22A,22Bは、いずれもX軸方向へ延在し、Y軸方向に互いに隣在し合うように配設されると共に互いに並列接続されている。さらに、電流センサ1Cでは、薄膜コイル33が、素子パターン22A,22Bのそれぞれと対応してX軸方向へ延在する巻線体部分33A,33Bを含んで第2の階層L2において巻回するように構成されている。すなわち、図15に示したように、電流センサ1Cは、シリコンなどからなる基体2の上に、Al23などからなる下地膜3を介して、第1および第2の磁気抵抗効果素子21,22を含む第1の階層L1と、薄膜コイル31,33を含む第2の階層L2とが順に積層された構造を有している。なお、図15の断面において、第1および第2の磁気抵抗効果素子21,22および薄膜コイル31,33はAl23などからなる絶縁膜Z1,Z2によってそれぞれ覆われており、互いに電気的に絶縁されている。さらに、絶縁膜Z2の上には、複数の電極膜41〜47(図14に示す)が設けられている。
薄膜コイル33は、例えば銅などの高導電性の金属材料からなる薄膜パターンであり、一方の端部33Sがコンタクト層(図示せず)を介して電極膜45と接続されており、他方の端部33Eがコンタクト層(図示せず)を介して電極膜46と接続されている。ここでは、検出対象電流Imが端部33Sから端部33Eへ流れるように設定される。
素子パターン22A,22Bは検出対象電流Imが生ずる第3の電流磁界Hm3(後出。以下、単に電流磁界Hm3という。)を検出するものであり、図15に示したように薄膜コイル33の巻線体部分33A,33Bと積層方向においてそれぞれ対応する領域に設けられている。素子パターン22A,22Bは、X軸方向に延在すると共にY軸方向に互いに隣在し合うように配設されると共に電極パターン5および電極パターン6によって互いに並列接続されている。ここで、電極パターン5はコンタクト層(図示せず)を介して電極膜44と接続されており、電極パターン6はコンタクト層(図示せず)を介して電極膜47と接続されている。素子パターン22A,22Bは、それぞれに読出電流を流したときに、薄膜コイル33A,33Bを流れる検出対象電流Imにより生ずる電流磁界Hm3に応じた抵抗値の変化を示す。この際、素子パターン22A,22Bは、電流磁界Hm3を付与されることにより、電流磁界Hm1によって生ずる素子パターン21A,21Bの変化とは逆方向に抵抗値が変化するように構成されている。例えば、第1および第2の磁気抵抗効果素子21,22における各素子パターン21A,21B,22A,22Bに対して、予め+Y方向へバイアスポイントBP1(図8参照)に相当する強度のバイアス磁界を印加しておく。そこで図16に示したように+X方向へ検出対象電流Imを流したときには、素子パターン21A,21Bは、+Y方向の電流磁界Hm1が印加されるので、図8から明らかなように抵抗変化率が増加する(抵抗値が増加する)。これに対し、素子パターン22A,22Bは、−Y方向の電流磁界Hm3が印加されるので、図8から明らかなように抵抗変化率が減少する(抵抗値が減少する)のである。
ここで、巻線体部分31A,31Bと素子パターン21A,21BとはZ軸方向において互いに距離D1を隔てるように配置され、一方で、巻線体部分33A,33Bと素子パターン22A,22BとはZ軸方向において互いに距離D3を隔てるように配置されている。距離D1および距離D3は共に0.4μm以上1.0μm以下(条件式1,11)である。また、巻線体部分31A,31Bは、幅MX1と厚みMY1とによって規定される矩形をなし、断面積S1(=MX1・MY1)を有している。同様に巻線体部分32A,32Bは、幅MX3と厚みMY3とによって規定される矩形をなしており、断面積S3(=MX3・MY3)を有している。具体的には、幅MX1,MX3が3.0μm以下であり、かつ、断面積S1,S3がいずれも0.4μm2以上3.0μm2以下(条件式2,12)となるように構成されている。形成過程における精度上の問題から、厚みMY1,MY3の寸法については0.2μm以上とすると共に幅MX1,MX3と同等以下とすることが望ましい。このように、YZ断面における薄膜コイル31および薄膜コイル33の寸法は互いに等しくなるように形成されているうえ、各薄膜コイル31,33と第1および第2の磁気抵抗効果素子21,22との積層方向(Z軸方向)の距離D1,D3も互いに等しくなるように形成されているので、素子パターン21A,21Bに付与される電流磁界Hm1と素子パターン22A,22Bに付与される電流磁界Hm3との絶対値は互いに等しい。なお、図16は、図15の一部を拡大して示したものであり、各素子パターン21A,21B,22A,22Bに対する電流磁界Hm1,Hm3の作用を説明するための説明図である。
図17は、図14および図15に示した電流センサ1Cを含む電流計の回路構成を表す概略図である。図17では、破線で囲んだ部分が電流センサ1Cに対応する。図17に示したように、第1の磁気抵抗効果素子21と薄膜コイル31とが互いに近接配置されており、第2の磁気抵抗効果素子22と薄膜コイル33とが互いに近接配置されている。ここでは第1および第2の磁気抵抗効果素子21,22を、複数の素子パターンが並列接続されてなる抵抗体として表している。第1の磁気抵抗効果素子21と第2の磁気抵抗効果素子22とは、第1の接続点P1(電極パターン5)において互いに連結され、電極膜44を介して最終的に接地されている。第1および第2の磁気抵抗効果素子21,22の、第1の接続点P1とは反対側には、第2の接続点P2において互いに連結された定電流源51,52が設けられている。具体的には、第1の磁気抵抗効果素子21における第1の接続点P1とは反対側の端部が、第3の接続点P3としての電極膜43を介して定電流源51と接続されており、一方の第2の磁気抵抗効果素子22における第1の接続点P1とは反対側の端部が、第4の接続点P4としての電極膜47を介して定電流源52と接続されている。これら定電流源51および定電流源52は、互いに等しい値の定電流I0を第1および第2の磁気抵抗効果素子21,22の各素子パターンへ供給するものである。また、薄膜コイル31,33は、電極膜42と電極膜45とをつなぐ導線により互いに接続されており、1本の導線として機能するように構成されている。
このような構成の電流センサ1Cでは、第1の接続点P1と第2の接続点P2との間に電圧が印加されたときに、第3および第4の接続点P3,P4における電位の差分V0(第1および第2の磁気抵抗効果素子21,22のそれぞれに生ずる電圧降下の差分)に基づいて電流磁界Hm1,Hm3の大きさを求めることができ、その大きさの電流磁界Hm1,Hm3を発生する検出対象電流Imの大きさを推定することができる。
図17において、第1の接続点P1と第2の接続点P2との間に所定の電圧を印加した際の定電流源51,52からの定電流をI0とし、第1および第2の磁気抵抗効果素子21,22全体の抵抗値をそれぞれR1,R2とする。電流磁界Hm1,Hm3が印加されていない場合、第3の接続点P3(電極膜43)における電位V1は、
V1=I0・R1
であり、第4の接続点P4(電極膜47)における電位V2は、
V2=I0・R2
となる。よって、第3の接続点P3と第4の接続点P4との間の電位差は、
V0=V1−V2
=I0・R1−I0・R2
=I0・(R1−R2) ……(a)
となる。
この回路では、電流磁界Hm1,Hm3が印加されたときに、電位差V0を測定することにより第1および第2の磁気抵抗効果素子21,22における抵抗変化量が得られる。例えば電流磁界Hm1,Hm3が印加されたときに、抵抗値R1,R2がそれぞれ変化量ΔR1,ΔR2だけ増加したとすると、式(a)は、
V0=V1−V2
=I0・(R1−R2)
=I0・{(R1+ΔR1)−(R2+ΔR2)} ……(b)
となる。
すでに述べたように、第1の磁気抵抗効果素子21(素子パターン21A,21B)と第2の磁気抵抗効果素子22(素子パターン22A,22B)とは電流磁界Hm1,Hm3によって各々の抵抗値R1,R2が互いに逆方向の変化を示すように配置されていることから、変化量ΔR1と変化量ΔR2とは互いの正負が逆の符号となる。したがって、式(b)において、電流磁界Hm1,Hm3が印加される前の抵抗値R1および抵抗値R2は互いに打ち消し合う一方で、変化量ΔR1および変化量ΔR2はそのまま維持される。
仮に、第1の磁気抵抗効果素子21と第2の磁気抵抗効果素子22とが全く同一の特性を有するとした場合、すなわち、
R1=R2=R
かつ
ΔR1=−ΔR2=ΔR
であると仮定した場合、式(b)は、
V0=I0・(R1+ΔR1−R2−ΔR2)
=I0・(R+ΔR−R+ΔR)
=I0・(2ΔR) ……(c)
となる。したがって、予め外部磁界と抵抗変化量との関係を把握した第1および第2の磁気抵抗効果素子21,22を用いるようにすれば、電流磁界Hm1,Hm3の大きさを求めることができ、その大きさの電流磁界Hm1,Hm3を発生する検出対象電流Imの大きさを推定することができる。この場合、2つの第1および第2の磁気抵抗効果素子21,22を用いてセンシングを行っているので、第1の磁気抵抗効果素子21または第2の磁気抵抗効果素子22を単独で用いてセンシングを行う場合と比べて2倍の抵抗変化量を取り出すことができ、測定値の高精度化に有利となる。
以上のように、本実施の形態の電流センサ1Cによれば、特に、互いに並列接続された素子パターン22A,22Bを含んで第1の階層L1に形成された第2の磁気抵抗効果素子22と、各素子パターン22A,22Bと対応した巻線体部分32A,32Bを含んで第2の階層L2において巻回するように形成され、かつ、各素子パターン22A,22Bに対して電流磁界Hm3を付与するように構成された薄膜コイル33とをさらに備えるようにしたので、上記第1の実施の形態における効果に加え、第1の磁気抵抗効果素子21および第2の磁気抵抗効果素子22の双方によって、検出対象電流をより高精度に測定することができる。ここで、各素子パターン22A,22Bが、電流磁界Hm3を付与されることにより、電流磁界Hm1によって生ずる各素子パターン21A,21Bの抵抗値R1の変化とは逆方向に抵抗値R2が変化するように構成したので、第1および第2の磁気抵抗効果素子21,22に対して互いに等しい定電流I0を流したときに生ずる電圧降下の差分V0に基づいて、より高精度な検出対象電流Imの測定が可能となる。
また、本実施の形態の電流センサ1Cによれば、距離D1,D3を0.4μm以上1.0μm以下とし、断面積S1,S3を0.4μm2以上3.0μm2以下とするようにしたので、薄膜コイル31,33による発熱の影響を受けることなく、かつ、効率的に電流磁界Hm1,Hm3をそれぞれ検出することができる。よって、薄膜コイル31,33を流れる比較的微弱な10mA以上50mA以下の検出対象電流Imを高精度に測定することができる。
<変形例3>
上記した本実施の形態では、10mA以上50mA以下の検出対象電流Imを測定する場合を例に挙げて説明したが、より微弱な検出対象電流Imをも測定可能な構成とすることが可能である。具体的には、3mA以上50mA以下の検出対象電流Imを測定可能な構成とすることができる。その場合には、距離D1,D3を0.2μm以上0.4μm以下(条件式3,9)とすると共に、断面積S1,S3を、0.4μm2以上2.5μm2以下(条件式4,10)とする。
このように、条件式3,4,9,10を満足するように構成された変形例としての電流センサ1Cによれば、薄膜コイル31,33による発熱の影響を受けることなく、薄膜コイル31,33を流れる3mA以上50mA以下の検出対象電流Imを高精度に測定することができる。
[第4の実施の形態]
続いて、図18および図19を参照して、本発明の第4の実施の形態としての電流センサ1Dについて説明する。
電流センサ1Dは、上記第3の実施の形態における電流センサ1Bの構成に、さらに第2の導体としての第2の薄膜コイル32および第4の導体としての第4の薄膜コイル34(以下、単に薄膜コイル34という。)を加えるようにしたものである。薄膜コイル32は、上記第2の実施の形態において説明したものと同様の構成である。以下、本実施の形態の電流センサ1Dについて具体的に説明するが、上記第1〜第3の実施の形態と重複する部分については適宜説明を省略する。
図18は、本実施の形態の電流センサ1Dの斜視構成を表す概略図である。図19は、図18の電流センサ1Dに示したXIX−XIX切断線における矢視方向(−X方向)の断面構成を表したものである。
電流センサ1Dでは、第2の磁気抵抗効果素子22が、第1の階層L1において第1の磁気抵抗効果素子21が形成された領域以外の領域に形成されている。第2の磁気抵抗効果素子22は、X軸方向へ延在し、Y軸方向に互いに隣在し合うように配設されると共に互いに並列接続された素子パターン22A,22Bを含み、かつ、第1の磁気抵抗効果素子21とコモン接続されるように形成されている。第2の磁気抵抗効果素子22を挟んで薄膜コイル33の反対側には、薄膜コイル34が、第3の階層L3における薄膜コイル32が形成された領域以外の領域において巻回するように構成されている。すなわち、図19に示したように、電流センサ1Cは、シリコンなどからなる基体2の上に、Al23などからなる下地膜3を介して、薄膜コイル32,34を含む第3の階層L3と、第1および第2の磁気抵抗効果素子21,22を含む第1の階層L1と、薄膜コイル31,33を含む第2の階層L2とが順に積層された構造を有している。なお、図19の断面において、薄膜コイル32,34、第1および第2の磁気抵抗効果素子21,22ならびに薄膜コイル31,33はAl23などからなる絶縁膜Z3,Z1,Z2によってそれぞれ覆われており、互いに電気的に絶縁されている。さらに、絶縁膜Z2の上には、複数の電極膜41〜47(図18に示す)が設けられている。
薄膜コイル33は、検出対象電流Imが供給されることにより各素子パターン22A,22Bに対して電流磁界Hm3を付与するように構成されており、一方の端部33Sがコンタクト層(図示せず)を介して電極膜45と接続され、他方の端部33Eがコンタクト層(図示せず)を介して薄膜コイル34の端部34Sと接続されている(図18参照)。薄膜コイル34は、素子パターン22A,22Bのそれぞれと対応するようにX軸方向へ延在する巻線体部分34A,34Bを含んでおり、検出対象電流Imが供給されることにより各素子パターン22A,22Bに対して電流磁界Hm3と同じ向きの第4の電流磁界Hm4(以下、単に第4の電流磁界Hm4という。)を付与するように構成されており、一方の端部34Sがコンタクト層(図示せず)を介して端部33Eと接続され、他方の端部34Eがコンタクト層(図示せず)を介して電極膜46と接続されている(図18参照)。したがって、薄膜コイル33,34は回路構成上、1本の導線となっている。さらに、電極膜42と電極膜45とを外部の導線(図示せず)により互いに接続し、薄膜コイル31〜34が実質的に1本の導線として機能するように構成してもよい。その場合には、薄膜コイル31、薄膜コイル32、薄膜コイル33、薄膜コイル34の順に、あるいはその逆の順に検出対象電流Imを流すことができる。なお、薄膜コイル34は、薄膜コイル31〜33と同様に、例えば銅などの高導電性の金属材料からなる薄膜パターンである。
このような構成を備えた電流センサ1Dでは、図20に示したように、検出対象電流Imが薄膜コイル31および薄膜コイル32を流れることにより、素子パターン21A,21Bに対して2つの電流磁界Hm1,Hm2がそれぞれ作用することとなる。同時に、検出対象電流Imが薄膜コイル33および薄膜コイル34を流れることにより、素子パターン22A,22Bに対して2つの電流磁界Hm3,Hm4がそれぞれ作用することとなる。図20は、図19の一部を拡大して示したものであり、素子パターン21A,21Bに対する電流磁界Hm1,Hm2の作用および素子パターン22A,22Bに対する電流磁界Hm3,Hm4の作用を説明するための説明図である。ここで、巻線体部分32A,32Bと素子パターン21A,21BとはZ軸方向において互いに距離D2を隔てるように配置され、巻線体部分34A,34Bと素子パターン22A,22BとはZ軸方向において互いに距離D4を隔てるように配置されている。距離D2,D4は共に0.4μm以上1.0μm以下(条件式17,18)である。したがって、距離D1〜D4は全て互いに等しい。また、巻線体部分32A,32Bは幅MX2と厚みMY2とによって規定される矩形をなし、断面積S2(=MX2・MY2)を有し、巻線体部分34A,34Bは、幅MX4と厚みMY4とによって規定される矩形をなし、断面積S4(=MX4・MY4)を有している。具体的には、断面積S1,S3と同様に、幅MX2,MX4が3.0μm以下であり、かつ、断面積S2,S4がいずれも0.4μm2以上3.0μm2以下(条件式19,20)となるように構成されている。形成過程における精度上の問題から、厚みMY2,MY4の寸法については0.2μm以上とすると共に幅MX2,MX4と同等以下とすることが望ましい。
電流センサ1Dを用いてセンシングを行う場合には、まず、電極膜43および電極膜44を介して第1の磁気抵抗効果素子21(素子パターン21A,21B)にセンス電流を流すと共に第2の磁気抵抗効果素子22(素子パターン22A,22B)にセンス電流を流しておく。次いで、検出対象電流Imを、電極膜41,42を介して薄膜コイル31,32へ供給するようにし、各巻線体部分31A,31Bが生じる電流磁界Hm1と各巻線体部分32A,32Bが生じる電流磁界Hm2とを各素子パターン21A,21Bによって検出するようにする。これと同様に、検出対象電流Imを、電極膜45,46を介して薄膜コイル33,34へ供給するようにし、各巻線体部分33A,33Bが生じる電流磁界Hm3と各巻線体部分34A,34Bが生じる電流磁界Hm4とを各素子パターン22A,22Bによって検出するようにする。
例えば、電極膜42と電極膜45とを外部の導線により互いに接続し、薄膜コイル31および薄膜コイル32を順に経由した検出対象電流Imを薄膜コイル33の端部33Sから端部33Eへ向かうように流し、続いて薄膜コイル34の端部34Sから端部34Eへ向かうように流した場合を考える。その場合には、図20に示したように、巻線体部分33A,33Bでは、−X方向に(紙面手前から奥へ向かうように)検出対象電流Imが流れることとなる。その結果、右ねじの法則にしたがって、巻線体部分33A,33Bのそれぞれの周囲を(紙面上では時計回りに)巻回する電流磁界Hm3が生ずる。一方、巻線体部分34A,34Bでは、+X方向に(紙面奥から手前へ向かうように)検出対象電流Imが流れることとなる。その結果、右ねじの法則にしたがって、巻線体部分34A,34Bのそれぞれの周囲を(紙面上では反時計回りに)巻回する電流磁界Hm4が生ずる。このため、各素子パターン22A,22Bに対しては−Y方向への電流磁界Hm3および電流磁界Hm4の合成磁界がそれぞれ付与される。したがって、上記第3の実施の形態のように、第2の磁気抵抗効果素子22に対して電流磁界Hm3のみを付与した場合と比べ各素子パターン22A,22Bに付与される磁界強度が高まり、抵抗値の変化量がより大きくなる。ここで、電極パターン4と電極パターン5との間における電圧降下の変化量(抵抗値の変化量)と、電極パターン6と電極パターン5との間における電圧降下の変化量(抵抗値の変化量)との差分を検出することにより、検出対象電流Imの大きさの推定をよりいっそう精度良くおこなうことができる。
以上のように、本実施の形態の電流センサ1Dによれば、検出対象電流Imによって生ずる電流磁界Hm1,Hm2を第1の磁気抵抗効果素子21により検出すると共に検出対象電流Imによって生ずる電流磁界Hm3,Hm4を第2の磁気抵抗効果素子22により検出するようにしたので、コンパクトな構成を維持しつつ、第1および第2の磁気抵抗効果素子21,22の双方によって、薄膜コイル31〜34を流れる検出対象電流Imを、より高精度に測定することができる。特に、電流磁界Hm3,Hm4が付与されることにより、電流磁界Hm1,Hm2によって生ずる第1の磁気抵抗効果素子21の各素子パターン21A,21Bの変化とは逆方向に抵抗値が変化するように各素子パターン22A,22Bを構成すると共に、第1および第2の磁気抵抗効果素子21,22に対して互いに等しい定電流I0を流すようにしたので、その際に生ずる電圧降下の差分に基づいて、より高精度な検出対象電流Imの測定が可能となる。
また、本実施の形態の電流センサ1Dによれば、距離D1〜D4を0.4μm以上1.0μm以下とし、断面積S1〜S4を0.4μm2以上3.0μm2以下とするようにしたので、薄膜コイル31〜34による発熱の影響を受けることなく、かつ、効率的に電流磁界Hm1〜Hm4を検出することができる。よって、薄膜コイル31〜34を流れる比較的微弱な10mA以上50mA以下の検出対象電流Imを高精度に測定することができる。
<変形例4>
上記した本実施の形態では、10mA以上50mA以下の検出対象電流Imを測定する場合を例に挙げて説明したが、より微弱な検出対象電流Imをも測定可能な構成とすることができる。具体的には、3mA以上50mA以下の検出対象電流Imを測定可能な構成とすることができる。その場合には、距離D1〜D4を0.2μm以上0.4μm以下(条件式3,7,13,14)とすると共に、断面積S1〜S4を、0.4μm2以上2.5μm2以下(条件式4,8,15,16)とする。
このように、条件式3,4,7,8,13〜16を満足するように構成された変形例としての電流センサ1Dによれば、薄膜コイル31〜34による発熱の影響を受けることなく、かつ効率的に電流磁界Hm1〜電流磁界Hm4を検出することができ、薄膜コイル31〜34を流れる3mA以上50mA以下の検出対象電流Imを高精度に測定することができる。
次に、本発明の電流センサについての数値実施例を説明する。本実施例は、上記第1の実施の形態およびその変形例に対応する構成の電流センサに関し、素子パターン21Aに及ぶ電流磁界Hm1(平均)の強度と素子パターン21Aの変位温度ΔTとについてシュミレーションをおこなったものである。表1にその結果を示す。
Figure 0004131869
表1において、実施例1−1〜実施例1−4が上記第1の実施の形態における変形例の構成に対応するものであり、実施例2−1〜実施例2−5が上記第1の実施の形態の構成に対応するものである。比較例1−1.1−2,2−1,2−2は本発明に該当しない。各サンプルにつき、左側の列から順に、検出対象電流Im[mA],距離D1[μm],断面積S1[μm2],電流磁界Hm1[×103/4π A/m]および変位温度ΔT[℃]を示している。
本実施例の電流センサにおいて安定した検出動作を行うためには、素子パターンにおよぶ電流磁界Hm1の強度が5Oe(=5×103 /4π[A/m])以上であることが必要なので、最も微弱な3[mA]の検出対象電流Imを測定する場合には、距離D1を0.4[μm]として、断面積S1を2.5[μm2]以下としなければならない(実施例1−1)。断面積S1を3.0[μm2 ]とした場合には電流磁界Hm1の強度が不足し、4×103 /4π[A/m]となった(比較例1−1)。一方、検出対象電流Imを50mAとすると、最も距離D1を近づけた場合(D1=0.2[μm])であっても断面積S1を0.4[μm2 ]以上とすれば変位温度ΔTが1.7℃に留まることがわかった(実施例1−4)。ここで、断面積S1を0.32[μm2 ]としてしまうと、変位温度ΔTが2.2℃となり、電流センサとしての信頼性を劣化させてしまうことがわかった(比較例1−2)。
また、10[mA]の検出対象電流Imを測定する際に、距離D1を1.0[μm]とすると、断面積S1を3.0[μm2]以下とすれば5Oe(=5×103/4π[A/m])以上の電流磁界Hm1が得られることがわかった(実施例2−1)。同じ条件で、断面積S1を4.0[μm2]としてしまうと電流磁界Hm1の強度が不足してしまう(比較例2−1)。一方、検出対象電流Imを最大の50mAとすると、最も距離D1を近づけた場合(D1=0.4[μm])であっても断面積S1を0.4[μm2]以上とすれば変位温度ΔTが1.7℃に留まることがわかった(実施例2−5)。ここで、断面積S1を0.32[μm2]としてしまうと、変位温度ΔTが2.2℃となり、電流センサとしての信頼性を劣化させてしまうことがわかった(比較例2−2)。
このように、10mA以上50mA以下の検出対象電流Imを測定する場合には、条件式1,2を満足するように構成し、3mA以上50mA以下の検出対象電流Imを測定する場合には、条件式3,4を満足するように構成すれば、良好な測定が可能であることが確認できた。
以上、いくつかの実施の形態を挙げて本発明を説明したが、本発明は実施の形態に限定されず、種々の変形が可能である。例えば本実施の形態では、固着層の磁化方向と自由層の磁化容易軸方向とが互いに一致したスピンバルブ構造を有する磁気抵抗効果素子を採用するようにしたが、これに限定されるものではない。例えば、固着層の磁化方向と自由層の磁化容易軸方向とが互いに直交するスピンバルブ構造を有する磁気抵抗効果素子を用いるようにしてもよい。
また、本実施の形態では、2つの素子パターンにより第1および第2の磁気抵抗効果素子をそれぞれ構成するようにしたが、これに限定されず、3つ以上の素子パターンにより第1および第2の磁気抵抗効果素子をそれぞれ構成するようにしてもよい。あるいは、第1の方向へ延在する1本の素子パターンにより第1および第2の磁気抵抗効果素子をそれぞれ構成すると共に、第1の方向に延在する第1〜第4の延在部分を有するように第1〜第4の導体をそれぞれ構成するようにしてもよい。その場合にも、第1〜第4の延在部分と第1〜第4の磁気抵抗効果素子との距離D1〜D4と、第1〜第4の延在部分における断面積S1〜S4とをそれぞれ所定の数値範囲とすることにより、上記した効果が得られる。さらに、本実施の形態では、第1および第2の磁気抵抗効果素子における各素子パターンを、互いに並列接続するようにしたが、例えば図21に示した電流センサ1Eのように、互いに直列接続するようにしてもよい。このようにした場合には、第1の方向における寸法を長くすることなく感磁部として機能する素子パターンの総延長を稼ぐことができ、第1および第2の磁気抵抗効果素子における全体の抵抗値(インピーダンス)の絶対値をより大きくすることができる。したがって、より微弱な検出対象電流であっても高精度な測定が可能となる。
本発明の電流センサは、上記実施の形態において説明したように、電流値そのものを図ることを目的とする場合に用いられるほか、プリント配線の欠陥などの検査を行う渦電流探傷技術に応用可能である。例えば、磁気抵抗効果素子を直線上に多数個配置した電流センサとし、渦電流の変化を磁束の変化として捉えるような応用例が考えられる。
本発明の第1の実施の形態に係る電流センサの構成を示す斜視図である。 図1に示した電流センサにおけるII-II切断線に対応する断面図である。 図2の要部を拡大して示した断面図である。 図1に示した電流センサにおける巻線体部分から素子パターンへの伝熱量を説明するための概略図である。 図4に示した巻線体部分の断面積と発生する電流磁界との関係を表す特性図である。 図1に示した電流センサの要部である磁気抵抗効果素子の構成を示す分解斜視図である。 図6に示した磁気抵抗効果素子における一部の構成を示す斜視図である。 図6に示した磁気抵抗効果素子における抵抗変化率の磁界依存性を示す特性図である。 図1に示した電流センサの要部である磁気抵抗効果素子の構成を示す他の分解斜視図である。 図2の要部を拡大して示す他の断面図である。 本発明の第2の実施の形態に係る電流センサの構成を示す斜視図である。 図11に示した電流センサにおけるXII-XII切断線に対応する断面図である。 図12の要部を拡大して示す断面図である。 本発明の第3の実施の形態に係る電流センサの構成を示す斜視図である。 図14に示した電流センサにおけるXV-XV切断線に対応する断面図である。 図15の要部を拡大して示す断面図である。 図14に示した電流センサに対応する回路図である。 本発明の第4の実施の形態に係る電流センサの構成を示す斜視図である。 図18に示した電流センサにおけるXIX-XIX切断線に対応する断面図である。 図19の要部を拡大して示す断面図である。 図18に示した電流センサの変形例としての電流センサの構成を示す斜視図である。
符号の説明
1…電流センサ、2…基体、4〜6…電極パターン、11…固着層、12…中間層、13…自由層、14…磁化固定膜、21,22…第1,第2の磁気抵抗効果素子、31〜34…第1〜第4の薄膜コイル、41〜47…電極膜、D1〜D4…距離、L1〜L3…第1〜第3の階層、P1〜P4…第1〜第4の接続点、S1〜S4…断面積。

Claims (25)

  1. 10mA以上50mA以下の検出対象電流を検出するための電流センサであって、
    第1の階層において第1の方向に延在すると共に銅からなる第1の延在部分を有し、前記検出対象電流が供給される第1の導体と、
    前記第1の階層と異なる第2の階層において、前記第1の延在部分と対応した領域に配設され、前記第1の延在部分に流れる検出対象電流により生ずる第1の電流磁界に応じて抵抗値が変化するように構成された第1の磁気抵抗効果素子と、
    前記第1の延在部分と前記第1の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり、1000Vの瞬間印加電圧に耐え得る第1の絶縁膜と
    を備え、かつ、以下の条件式(1)および(2)を満足することを特徴とする電流センサ。
    0.4μm≦D1≦1.0μm ……(1)
    0.4μm2 ≦S1≦3.0μm2 ……(2)
    ただし、
    D1;第1の延在部分と、第1の磁気抵抗効果素子との距離
    S1;第1の延在部分における第1の方向と直交する断面の面積
  2. 3mA以上50mA以下の検出対象電流を検出するための電流センサであって、第1の階層において第1の方向に延在すると共に銅からなる第1の延在部分を有し、前記検出対象電流が供給される第1の導体と、
    前記第1の階層と異なる第2の階層において、前記第1の延在部分と対応した領域に配設され、前記第1の延在部分に流れる検出対象電流により生ずる第1の電流磁界に応じて抵抗値が変化するように構成された第1の磁気抵抗効果素子と、
    前記第1の延在部分と前記第1の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり、700Vの瞬間印加電圧に耐え得る第1の絶縁膜と
    を備え、かつ、以下の条件式(3)および(4)を満足することを特徴とする電流センサ。
    0.2μm≦D1≦0.4μm ……(3)
    0.4μm2 ≦S1≦2.5μm2 ……(4)
    ただし、
    D1;第1の延在部分と、第1の磁気抵抗効果素子との距離
    S1;第1の延在部分における第1の方向と直交する断面の面積
  3. 前記第2の階層を基準として前記第1の階層と反対側に位置する第3の階層において、前記第1の磁気抵抗効果素子と対応して前記第1の方向に延在すると共に銅からなる第2の延在部分を有し、かつ、前記検出対象電流が供給されることにより前記第1の磁気抵抗効果素子に対して前記第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体と、
    前記第2の延在部分と前記第1の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり、1000Vの瞬間印加電圧に耐え得る第2の絶縁膜と
    をさらに備え、かつ、以下の条件式(5)および(6)を満足する
    ことを特徴とする請求項1に記載の電流センサ。
    0.4μm≦D2≦1.0μm ……(5)
    0.4μm2 ≦S2≦3.0μm2 ……(6)
    ただし、
    D2;第2の延在部分と第1の磁気抵抗効果素子との距離
    S2;第2の延在部分における第1の方向と直交する断面の面積
  4. 前記第2の階層を基準として前記第1の階層と反対側に位置する第3の階層において、前記第1の磁気抵抗効果素子と対応して前記第1の方向に延在すると共に銅からなる第2の延在部分を有し、かつ、前記検出対象電流が供給されることにより前記第1の磁気抵抗効果素子に対して前記第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体と、
    前記第2の延在部分と前記第1の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり、700Vの瞬間印加電圧に耐え得る第2の絶縁膜と
    をさらに備え、かつ、以下の条件式(7)および(8)を満足する
    ことを特徴とする請求項2に記載の電流センサ。
    0.2μm≦D2≦0.4μm ……(7)
    0.4μm2 ≦S2≦2.5μm2 ……(8)
    ただし、
    D2;第2の延在部分と第1の磁気抵抗効果素子との距離
    S2;第2の延在部分における第1の方向と直交する断面の面積
  5. 前記第1の磁気抵抗効果素子は、前記第1の方向へ延在すると共に前記第1の方向と直交する第2の方向に互いに隣在し合うように配設された帯状の複数の素子パターンを有し、
    前記第1の導体は、前記第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第1の延在部分としての巻線体部分を複数含んで前記第1の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第1の磁気抵抗効果素子の各素子パターンに対して前記第1の電流磁界をそれぞれ付与するように構成された第1の薄膜コイルであり、
    前記第2の導体は、前記第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第2の延在部分としての巻線体部分を複数含んで前記第3の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第1の磁気抵抗効果素子の各素子パターンに対して前記第2の電流磁界をそれぞれ付与するように構成された第2の薄膜コイルである
    ことを特徴とする請求項3または請求項4に記載の電流センサ。
  6. 前記第1の磁気抵抗効果素子は、前記第1の方向へ延在すると共に前記第1の方向と直交する第2の方向に互いに隣在し合うように配設された帯状の複数の素子パターンを有し、
    前記第1の導体は、前記第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第1の延在部分としての巻線体部分を複数含んで前記第1の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第1の磁気抵抗効果素子の各素子パターンに対して前記第1の電流磁界をそれぞれ付与するように構成された第1の薄膜コイルである
    ことを特徴とする請求項1または請求項2に記載の電流センサ。
  7. 前記第1の磁気抵抗効果素子における各素子パターンは、前記第1の方向と直交する幅が0.5μm以上2.0μm以下である
    ことを特徴とする請求項5または請求項6に記載の電流センサ。
  8. 前記第1の磁気抵抗効果素子における各素子パターンは、互いに並列接続されている
    ことを特徴とする請求項5から請求項7のいずれか1項に記載の電流センサ。
  9. 前記第1の磁気抵抗効果素子における各素子パターンは、互いに直列接続されている
    ことを特徴とする請求項5から請求項7のいずれか1項に記載の電流センサ。
  10. 前記第1の階層における前記第1の導体が形成された領域以外の領域において前記第1の方向に延在すると共に銅からなる第3の延在部分を有し、前記検出対象電流が供給される第3の導体と、
    前記第1の磁気抵抗効果素子とコモン接続されるように前記第2の階層における前記第3の延在部分と対応した領域に配設され、前記第1の絶縁膜によって隔てられた前記第3の延在部分に流れる検出対象電流により生ずる第3の電流磁界に応じて抵抗値が変化するように構成された第2の磁気抵抗効果素子と
    をさらに備え、かつ、以下の条件式(9)および(10)を満足する
    ことを特徴とする請求項2に記載の電流センサ。
    0.2μm≦D3≦0.4μm ……(9)
    0.4μm2 ≦S3≦2.5μm2 ……(10)
    ただし、
    D3;第3の延在部分と第2の磁気抵抗効果素子との距離
    S3;第3の延在部分における第1の方向と直交する断面の面積
  11. 前記第1の階層における前記第1の導体が形成された領域以外の領域において前記第1の方向に延在すると共に銅からなる第3の延在部分を有し、前記検出対象電流が供給される第3の導体と、
    前記第1の磁気抵抗効果素子とコモン接続されるように前記第2の階層における前記第3の延在部分と対応した領域に配設され、前記第1の絶縁膜によって隔てられた前記第3の延在部分に流れる検出対象電流により生ずる第3の電流磁界に応じて抵抗値が変化するように構成された第2の磁気抵抗効果素子と
    をさらに備え、かつ、以下の条件式(11)および(12)を満足する
    ことを特徴とする請求項1に記載の電流センサ。
    0.4μm≦D3≦1.0μm ……(11)
    0.4μm2 ≦S3≦3.0μm2 ……(12)
    ただし、
    D3;第3の延在部分と第2の磁気抵抗効果素子との距離
    S3;第3の延在部分における第1の方向と直交する断面の面積
  12. 前記第2の磁気抵抗効果素子は、前記第3の電流磁界を付与されることにより、前記第1の電流磁界によって生ずる前記第1の磁気抵抗効果素子における抵抗値の変化とは逆方向に抵抗値が変化するように構成されている
    ことを特徴とする請求項10または請求項11に記載の電流センサ。
  13. 前記第1の磁気抵抗効果素子および第2の磁気抵抗効果素子は、前記第1の方向へ延在すると共に前記第2の方向に互いに隣在し合うように配設された帯状の複数の素子パターンをそれぞれ有している
    ことを特徴とする請求項10から請求項12に記載の電流センサ。
  14. 前記第1の磁気抵抗効果素子および第2の磁気抵抗効果素子における各素子パターンは、前記第1の方向と直交する幅が0.5μm以上2.0μm以下である
    ことを特徴とする請求項13に記載の電流センサ。
  15. 前記第1の磁気抵抗効果素子および第2の磁気抵抗効果素子における各素子パターンは、互いに並列接続されている
    ことを特徴とする請求項13または請求項14に記載の電流センサ。
  16. 前記第1の磁気抵抗効果素子および第2の磁気抵抗効果素子における各素子パターンは、互いに直列接続されている
    ことを特徴とする請求項13または請求項14に記載の電流センサ。
  17. 前記第1の導体は、前記第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第1の延在部分としての巻線体部分を複数含んで前記第1の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第1の磁気抵抗効果素子の各素子パターンに対して前記第1の電流磁界をそれぞれ付与するように構成された第1の薄膜コイルであり、
    前記第3の導体は、前記第2の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第3の延在部分としての巻線体部分を複数含んで前記第1の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第2の磁気抵抗効果素子の各素子パターンに対して前記第3の電流磁界をそれぞれ付与するように構成された第3の薄膜コイルである
    ことを特徴とする請求項13から請求項16のいずれか1項に記載の電流センサ。
  18. 前記第2の階層を基準として前記第1の階層と反対側に位置する第3の階層において、前記第1の磁気抵抗効果素子と対応して前記第1の方向に延在すると共に銅からなる第2の延在部分を有し、かつ、前記検出対象電流が供給されることにより前記第1の磁気抵抗効果素子に対して前記第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体と、
    前記第3の階層における前記第2の導体が形成された領域以外の領域において、前記第2の磁気抵抗効果素子と対応して前記第1の方向へ延在すると共に銅からなる第4の延在部分を有し、かつ、前記検出対象電流が供給されることにより前記第2の磁気抵抗効果素子に対して前記第3の電流磁界と同じ向きの第4の電流磁界を付与するように構成された第4の導体と、
    前記第2および第4の延在部分と前記第1および第2の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり、700Vの瞬間印加電圧に耐え得る第2の絶縁膜と
    をさらに備え、かつ、以下の条件式(13)から(16)を満足する
    ことを特徴とする請求項10に記載の電流センサ。
    0.2μm≦D2≦0.4μm ……(13)
    0.2μm≦D4≦0.4μm ……(14)
    0.4μm2 ≦S2≦2.5μm2 ……(15)
    0.4μm2 ≦S4≦2.5μm2 ……(16)
    ただし、
    D2;第2の延在部分と第1の磁気抵抗効果素子との距離
    S2;第2の延在部分における第1の方向と直交する断面の面積
    D4;第4の延在部分と第2の磁気抵抗効果素子との距離
    S4;第4の延在部分における第1の方向と直交する断面の面積
  19. 前記第2の階層を基準として前記第1の階層と反対側に位置する第3の階層において、前記第1の磁気抵抗効果素子と対応して前記第1の方向に延在すると共に銅からなる第2の延在部分を有し、かつ、前記検出対象電流が供給されることにより前記第1の磁気抵抗効果素子に対して前記第1の電流磁界と同じ向きの第2の電流磁界を付与するように構成された第2の導体と、
    前記第3の階層における前記第2の導体が形成された領域以外の領域において、前記第2の磁気抵抗効果素子と対応して前記第1の方向へ延在すると共に銅からなる第4の延在部分を有し、かつ、前記検出対象電流が供給されることにより前記第2の磁気抵抗効果素子に対して前記第3の電流磁界と同じ向きの第4の電流磁界を付与するように構成された第4の導体と、
    前記第2および第4の延在部分と前記第1および第2の磁気抵抗効果素子とを隔てるように位置すると共に酸化アルミニウムからなり、1000Vの瞬間印加電圧に耐え得る第2の絶縁膜と
    をさらに備え、かつ、以下の条件式(17)から(20)を満足する
    ことを特徴とする請求項11に記載の電流センサ。
    0.4μm≦D2≦1.0μm ……(17)
    0.4μm≦D4≦1.0μm ……(18)
    0.4μm2 ≦S2≦3.0μm2 ……(19)
    0.4μm2 ≦S4≦3.0μm2 ……(20)
    ただし、
    D2;第2の延在部分と第1の磁気抵抗効果素子との距離
    S2;第2の延在部分における第1の方向と直交する断面の面積
    D4;第4の延在部分と第2の磁気抵抗効果素子との距離
    S4;第4の延在部分における第1の方向と直交する断面の面積
  20. 前記第2の磁気抵抗効果素子は、前記第3の電流磁界および第4の電流磁界をそれぞれ付与されることにより、前記第1の電流磁界および第2の電流磁界によって生ずる前記第1の磁気抵抗効果素子における抵抗値の変化とは逆方向に抵抗値が変化するように構成されている
    ことを特徴とする請求項18または請求項19に記載の電流センサ。
  21. 前記第1の磁気抵抗効果素子および第2の磁気抵抗効果素子は、前記第1の方向へ延在すると共に前記第2の方向に互いに隣在し合うように配設された帯状の複数の素子パターンをそれぞれ有している
    ことを特徴とする請求項18から請求項20のいずれか1項に記載の電流センサ。
  22. 前記第1の磁気抵抗効果素子および第2の磁気抵抗効果素子における各素子パターンは、前記第1の方向と直交する幅が0.5μm以上2.0μm以下である
    ことを特徴とする請求項21に記載の電流センサ。
  23. 前記第1の磁気抵抗効果素子および第2の磁気抵抗効果素子における各素子パターンは、互いに並列接続されている
    ことを特徴とする請求項21または請求項22に記載の電流センサ。
  24. 前記第1の磁気抵抗効果素子および第2の磁気抵抗効果素子における各素子パターンは、互いに直列接続されている
    ことを特徴とする請求項21または請求項22に記載の電流センサ。
  25. 前記第1の導体は、前記第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第1の延在部分としての巻線体部分を複数含んで前記第1の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第1の磁気抵抗効果素子の各素子パターンに対して前記第1の電流磁界をそれぞれ付与するように構成された第1の薄膜コイルであり、
    前記第2の導体は、前記第1の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第2の延在部分としての巻線体部分を複数含んで前記第3の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第1の磁気抵抗効果素子の各素子パターンに対して前記第2の電流磁界をそれぞれ付与するように構成された第2の薄膜コイルであり、
    前記第3の導体は、前記第2の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第3の延在部分としての巻線体部分を複数含んで前記第1の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第2の磁気抵抗効果素子の各素子パターンに対して前記第3の電流磁界をそれぞれ付与するように構成された第3の薄膜コイルであり、
    前記第4の導体は、前記第2の磁気抵抗効果素子の各素子パターンとそれぞれ対応して前記第1の方向へ延在する前記第4の延在部分としての巻線体部分を複数含んで前記第3の階層内において巻回するように構成され、かつ、検出対象電流が供給されることにより前記第2の磁気抵抗効果素子の各素子パターンに対して前記第4の電流磁界をそれぞれ付与するように構成された第4の薄膜コイルである
    ことを特徴とする請求項21から請求項24のいずれか1項に記載の電流センサ。
JP2005022849A 2005-01-31 2005-01-31 電流センサ Active JP4131869B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005022849A JP4131869B2 (ja) 2005-01-31 2005-01-31 電流センサ
US11/340,683 US7589612B2 (en) 2005-01-31 2006-01-27 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022849A JP4131869B2 (ja) 2005-01-31 2005-01-31 電流センサ

Publications (2)

Publication Number Publication Date
JP2006208278A JP2006208278A (ja) 2006-08-10
JP4131869B2 true JP4131869B2 (ja) 2008-08-13

Family

ID=36755923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022849A Active JP4131869B2 (ja) 2005-01-31 2005-01-31 電流センサ

Country Status (2)

Country Link
US (1) US7589612B2 (ja)
JP (1) JP4131869B2 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
US20060219436A1 (en) * 2003-08-26 2006-10-05 Taylor William P Current sensor
US7476816B2 (en) * 2003-08-26 2009-01-13 Allegro Microsystems, Inc. Current sensor
US7709754B2 (en) * 2003-08-26 2010-05-04 Allegro Microsystems, Inc. Current sensor
US7777607B2 (en) * 2004-10-12 2010-08-17 Allegro Microsystems, Inc. Resistor having a predetermined temperature coefficient
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
US20070279053A1 (en) * 2006-05-12 2007-12-06 Taylor William P Integrated current sensor
US7483295B2 (en) * 2007-04-23 2009-01-27 Mag Ic Technologies, Inc. MTJ sensor including domain stable free layer
US8476864B2 (en) * 2007-06-13 2013-07-02 Lear Corporation Battery monitoring system
US7394248B1 (en) 2007-08-02 2008-07-01 Magic Technologies, Inc. Method and structure to reset multi-element MTJ
US7663376B2 (en) * 2007-08-06 2010-02-16 Lear Corporation Printed circuit board for sensing voltage drop
US7795862B2 (en) 2007-10-22 2010-09-14 Allegro Microsystems, Inc. Matching of GMR sensors in a bridge
CN106324079A (zh) * 2008-01-17 2017-01-11 加利福尼亚大学董事会 集成的磁场产生和检测平台
US8269491B2 (en) 2008-02-27 2012-09-18 Allegro Microsystems, Inc. DC offset removal for a magnetic field sensor
US7816905B2 (en) 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
US8058871B2 (en) * 2008-07-08 2011-11-15 Magic Technologies, Inc. MTJ based magnetic field sensor with ESD shunt trace
US8305034B2 (en) * 2008-07-23 2012-11-06 Lear Corporation Battery monitoring system
US8093670B2 (en) 2008-07-24 2012-01-10 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having on chip capacitor with eddy current reductions
US7973527B2 (en) 2008-07-31 2011-07-05 Allegro Microsystems, Inc. Electronic circuit configured to reset a magnetoresistance element
US8063634B2 (en) * 2008-07-31 2011-11-22 Allegro Microsystems, Inc. Electronic circuit and method for resetting a magnetoresistance element
US8203337B2 (en) * 2009-06-15 2012-06-19 Headway Technologies, Inc. Elimination of errors due to aging in magneto-resistive devices
US8248063B2 (en) * 2009-08-17 2012-08-21 Headway Technologies, Inc. Open loop magneto-resistive magnetic field sensor
US20110133732A1 (en) * 2009-12-03 2011-06-09 Allegro Microsystems, Inc. Methods and apparatus for enhanced frequency response of magnetic sensors
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9190606B2 (en) 2013-03-15 2015-11-17 Allegro Micosystems, LLC Packaging for an electronic device
US10345343B2 (en) 2013-03-15 2019-07-09 Allegro Microsystems, Llc Current sensor isolation
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9354284B2 (en) 2014-05-07 2016-05-31 Allegro Microsystems, Llc Magnetic field sensor configured to measure a magnetic field in a closed loop manner
US9322887B1 (en) 2014-12-01 2016-04-26 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source
RU2601281C1 (ru) * 2015-07-13 2016-10-27 Акционерное общество "Научно-производственное объединение измерительной техники" Магниторезистивный датчик тока
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11187764B2 (en) 2020-03-20 2021-11-30 Allegro Microsystems, Llc Layout of magnetoresistance element
US11800813B2 (en) 2020-05-29 2023-10-24 Allegro Microsystems, Llc High isolation current sensor
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
US11768230B1 (en) 2022-03-30 2023-09-26 Allegro Microsystems, Llc Current sensor integrated circuit with a dual gauge lead frame

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300605C2 (de) * 1993-01-13 1994-12-15 Lust Electronic Systeme Gmbh Sensorchip
EP1157388B1 (de) * 1999-02-26 2002-07-31 Infineon Technologies AG Speicherzellenanordnung und verfahren zu deren herstellung
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor

Also Published As

Publication number Publication date
US20060170529A1 (en) 2006-08-03
US7589612B2 (en) 2009-09-15
JP2006208278A (ja) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4131869B2 (ja) 電流センサ
JP4105145B2 (ja) 電流センサ
JP4105147B2 (ja) 電流センサ
JP4105142B2 (ja) 電流センサ
US8487612B2 (en) Current sensor
JP5012939B2 (ja) 電流センサ
JP5250108B2 (ja) 磁気平衡式電流センサ
JP5572208B2 (ja) 磁気センサ及びそれを用いた磁気平衡式電流センサ
JP2007218700A (ja) 磁気センサおよび電流センサ
JP5888402B2 (ja) 磁気センサ素子
WO2012090631A1 (ja) 磁気比例式電流センサ
WO2011111536A1 (ja) 磁気平衡式電流センサ
JP2018112481A (ja) 磁気センサ
JPWO2012096211A1 (ja) 電流センサ
WO2011111537A1 (ja) 電流センサ
JP2012255796A (ja) 磁気センサおよびその製造方法
JP2011027633A (ja) 磁気センサおよびその製造方法
JP5509531B2 (ja) 磁気カプラ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4131869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6