JP2005022971A - Member for plasma processing device - Google Patents

Member for plasma processing device Download PDF

Info

Publication number
JP2005022971A
JP2005022971A JP2004303171A JP2004303171A JP2005022971A JP 2005022971 A JP2005022971 A JP 2005022971A JP 2004303171 A JP2004303171 A JP 2004303171A JP 2004303171 A JP2004303171 A JP 2004303171A JP 2005022971 A JP2005022971 A JP 2005022971A
Authority
JP
Japan
Prior art keywords
plasma
sintered body
grain boundary
corrosion
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004303171A
Other languages
Japanese (ja)
Other versions
JP4126461B2 (en
Inventor
Yumiko Ito
裕見子 伊東
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004303171A priority Critical patent/JP4126461B2/en
Publication of JP2005022971A publication Critical patent/JP2005022971A/en
Application granted granted Critical
Publication of JP4126461B2 publication Critical patent/JP4126461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a sintered body of alumina and AlN is applicable to all shaped products as a corrosion resistant member but corrosion is gradually progressed when the body is brought to contact with plasma at a high temperature and degraining of crystal particles of the alumina and the AlN from the surface of the sintered body is caused finally and it becomes the cause of particle generation. <P>SOLUTION: A part to be exposed to the plasma of a halogen-containing corrosive gas is constituted of a ceramic sintered body provided with a main crystal phase consisting of a compound containing group 3b element in the periodic table and a grain boundary phase consisting of an oxide consisting essentially of at least one kind of groups 2a, 3a elements in the periodic table, Cr, Co and Ni and different from the main phase and having corrosion resistance equal to or higher than the main crystal phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ハロゲン系腐食性ガスのプラズマに対して高い耐食性を有する、プラズマ処理装置や半導体・液晶製造用プラズマ装置内の内壁材や治具等として使用されるプラズマプロセス装置用部材に関するものである。 The present invention relates to a member for a plasma processing apparatus used as an inner wall material or jig in a plasma processing apparatus or a plasma apparatus for manufacturing semiconductors and liquid crystals, which has high corrosion resistance against plasma of a halogen-based corrosive gas. is there.

半導体製造におけるドライプロセスやプラズマコーティングなど、プラズマの利用は近年急速に進んでいる。半導体の製造時におけるプラズマプロセスでは、特にデポジション、エッチング、クリーニング用として、反応性の高いフッ素系、塩素系等のハロゲン系腐食ガスが多用されている。 In recent years, the use of plasma, such as dry processes and plasma coating in semiconductor manufacturing, has been progressing rapidly. In the plasma process during the manufacture of semiconductors, halogen-based corrosive gases such as fluorine and chlorine having high reactivity are frequently used particularly for deposition, etching and cleaning.

これら腐食性ガス及びプラズマに接触する部材には、高い耐食性が要求される。従来より、被処理物以外でこれらの腐食性ガス及びプラズマに接触する部材は、一般にガラスや石英などのSiOを主成分とする材料やステンレス、モネル等の耐食性金属が利用されている。 High corrosion resistance is required for members that come into contact with these corrosive gases and plasmas. Conventionally, members that are in contact with these corrosive gases and plasma other than the object to be processed generally use a material mainly composed of SiO 2 such as glass and quartz, and a corrosion-resistant metal such as stainless steel and monel.

また、半導体製造時において、半導体を支持固定するサセプタ材としてアルミナ焼結体、サファイア、AlN焼結体又は、これらをCVD法等により表面被覆したものが耐食性に優れるとして使用されている。また、グラファイトや窒化硼素を被覆したヒータ等も使用されている。   Further, during semiconductor manufacturing, alumina sintered bodies, sapphire, AlN sintered bodies, or those obtained by surface coating these by CVD or the like are used as susceptor materials for supporting and fixing semiconductors because they have excellent corrosion resistance. In addition, a heater coated with graphite or boron nitride is also used.

しかしながら、従来から用いられているガラスや石英ではプラズマ中の耐食性が不充分で消耗が激しく、特にフッ素や塩素プラズマに接すると接触面がエッチングされ、表面性状が変化したり、光透過性が必要とされる部材では、表面が次第に白く曇って透光性が低下する等の問題が生じていた。   However, conventionally used glass and quartz have insufficient corrosion resistance in the plasma and are very exhausted, especially when they come into contact with fluorine or chlorine plasma, the contact surface is etched, the surface properties change, and light transmittance is required. In the member, the surface gradually becomes white and cloudy, resulting in a problem that the translucency is lowered.

また、ステンレスなどの金属を使用した部材でも耐食性が不充分なため、腐食によってパーティクルが発生し、特に半導体製造においては不良品発生の原因となる。さらに、窒化硼素はハロゲン系ガスと反応してガス化し、コンタミネーションの原因となっていた。   Further, even a member using a metal such as stainless steel has insufficient corrosion resistance, so that particles are generated due to corrosion, and in particular, in semiconductor manufacturing, it may cause defective products. Further, boron nitride reacts with the halogen-based gas and gasifies, causing contamination.

特に、アルミナ、AlNの焼結体は、あらゆる形状品に適用できることからその有用性が高い。アルミナ、AlN自体は、SiO系材料や金属に比較してハロゲン系ガスに対して耐食性に優れるものの、高温でプラズマと接すると腐食が徐々に進行して、しまいには焼結体の表面からアルミナやAlNの結晶粒子の脱粒が生じ、パーティクル発生の原因になるという問題が生じている。 In particular, the sintered body of alumina and AlN is highly useful because it can be applied to any shape product. Alumina and AlN itself are superior in corrosion resistance to halogen-based gases compared to SiO 2 -based materials and metals, but corrosion gradually proceeds when in contact with plasma at high temperatures, and eventually from the surface of the sintered body There is a problem in that the crystal grains of alumina and AlN are shattered, which causes generation of particles.

また、MgOやYAl12等の周期律表第2a、3a族含有酸化物を主結晶相とする焼結体は、単味では優れた耐食性を有するが、焼結体においては、プラズマによってその粒界が選択的にエッチングされてしまい、焼結体表面が荒れやすくなるという問題があった。 In addition, a sintered body having a main crystal phase of the 2a, 3a group-containing oxides of the periodic table such as MgO and Y 3 Al 5 O 12 has excellent corrosion resistance by itself, but in the sintered body, The grain boundary is selectively etched by the plasma, and there is a problem that the surface of the sintered body is easily roughened.

本発明者らは、ハロゲン系腐食ガスのプラズマに対する耐食性を具備するセラミック焼結体の具体的な構成について検討を重ねた結果、特に焼結体材料の場合には、主結晶粒子に比較して粒界相が腐食され易いことから、主結晶粒子自体の耐食性が良好であっても、粒界相腐食の進行によって焼結体表面の主結晶粒子の脱粒が生じ、パーティクルの発生、さらには材料自体の耐食性低下を引き起こすことがわかった。   As a result of repeated studies on the specific structure of the ceramic sintered body having corrosion resistance to the plasma of the halogen-based corrosive gas, the present inventors have compared with the main crystal particles, particularly in the case of the sintered body material. Since the grain boundary phase is easily corroded, even if the main crystal particles themselves have good corrosion resistance, the main crystal particles on the surface of the sintered body are shattered due to the progress of the grain boundary phase corrosion, the generation of particles, and further the material It has been found that it causes a decrease in its corrosion resistance.

そこで、本発明者らは、粒界相の耐食性を高めるための方法について検討を重ねた結果、
主結晶相を周期律表第3b族元素を含む化合物から、粒界相を周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種を主体とし、前記主結晶相と同等以上の耐食性を有し、前記主結晶と異なる酸化物により構成することによって、粒界相の腐食の進行を抑制し、粒界相の腐食による結晶子の脱粒、それに起因するパーティクルの発生の防止、及び材料自体の耐食性を向上することが可能となることを知見し、本発明に至った。
Therefore, the present inventors have repeatedly investigated a method for increasing the corrosion resistance of the grain boundary phase,
The main crystal phase is composed of a compound containing a group 3b element in the periodic table, and the grain boundary phase is mainly composed of at least one of the groups 2a, 3a, Cr, Co and Ni in the periodic table, and is equivalent to the main crystal phase. By having the above corrosion resistance and comprising an oxide different from the main crystal, the progress of the corrosion of the grain boundary phase is suppressed, and the crystal grain detachment due to the corrosion of the grain boundary phase is prevented, and the generation of particles due to it is prevented. And that the corrosion resistance of the material itself can be improved, and the present invention has been achieved.

即ち、本発明のプラズマプロセス装置用部材は、ハロゲン系腐食ガスのプラズマに曝される部位を、周期律表第3b族元素を含む化合物からなる主結晶相と、周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種を主体とし、前記主結晶相と異なる酸化物からなるとともに、前記主結晶相と同等以上の耐食性を有する粒界相とを具備するセラミック焼結体により構成したことを特徴とするもので、特に前記主結晶が、周期律表第3b族元素を含む酸化物からなることを特徴とするものである。   That is, in the member for a plasma processing apparatus of the present invention, the portion exposed to the plasma of the halogen-based corrosive gas has a main crystal phase composed of a compound containing a group 3b element of the periodic table and groups 2a and 3a of the periodic table. Ceramic sintered body comprising at least one of Cr, Co, and Ni as a main component, and comprising a grain boundary phase made of an oxide different from the main crystal phase and having corrosion resistance equal to or higher than that of the main crystal phase In particular, the main crystal is made of an oxide containing a group 3b element of the periodic table.

本発明のプラズマプロセス装置用部材は、上記の知見に基づき完成されたものであり、ハロゲン系腐食ガスのプラズマに曝されるべき、焼結体材料からなるプラズマプロセス装置用部材において、粒界相を、母材よりも若干耐食性に優れる周期律表2a族、3a族元素及びCr、Co、Niのうち少なくともいずれか1種類で、前記主結晶相と同等以上の耐食性を有し、前記主結晶と異なる酸化物により形成することを特徴とし、それにより焼結体材料の粒界腐食の進行、パーティクルの発生を抑制し、焼結体材料自体の耐食性向上を図る事が出来る。   A member for a plasma processing apparatus of the present invention has been completed based on the above-mentioned knowledge, and in a member for a plasma processing apparatus made of a sintered body material to be exposed to plasma of a halogen-based corrosive gas, a grain boundary phase And at least any one of the elements of Group 2a and 3a of the periodic table and Cr, Co, and Ni, which have slightly better corrosion resistance than the base material, and have the same or higher corrosion resistance as the main crystal phase, It is characterized in that it is formed of an oxide different from the above, whereby the progress of intergranular corrosion and generation of particles of the sintered body material can be suppressed, and the corrosion resistance of the sintered body material itself can be improved.

以上詳述したとおり、本発明のプラズマプロセス装置用部材は、ハロゲン系の腐食性ガスのプラズマに曝される焼結体部材として高い耐食性を有し、且つ粒界相を、前記主結晶相と同等以上の耐食性を有し、主結晶相と異なる高耐食性酸化物により構成することにより、粒界の腐食を抑制し、脱粒やそれに起因するパーティクルの発生を防止することが可能となる。具体的には、プラズマ処理装置や液晶製造用部材、ウェハ固定用クランプリングやエッチング装置の上部電極周りのシールドリング等の半導体製造装置用部材に使用することによって部材の長寿命化、特に半導体製造用部材として使用する場合には、半導体の歩留り向上を図ることが出来る。 As described in detail above, the plasma processing apparatus member of the present invention has high corrosion resistance as a sintered member exposed to the plasma of a halogen-based corrosive gas, and the grain boundary phase is the main crystal phase. Corrosion resistance at the grain boundaries can be suppressed, and degranulation and the generation of particles resulting therefrom can be prevented by being composed of a highly corrosion-resistant oxide that has equivalent or better corrosion resistance and is different from the main crystal phase. Specifically, it can be used for semiconductor manufacturing equipment members such as plasma processing equipment, liquid crystal manufacturing equipment, wafer fixing clamp rings and shield rings around the upper electrode of etching equipment, especially for semiconductor manufacturing. When used as a member, the yield of semiconductors can be improved.

本発明のプラズマプロセス装置用部材は、ハロゲン系の腐食ガスのプラズマに曝される部材であり、ハロゲン系腐食ガスとしては、SF、CF、CHF、ClF、NF、HF等のフッ素系ガス、Cl、HCl、BCl等の塩素系ガス、Br、HBr、BBr等の臭素系ガス、HI等のヨウ素系ガス等であり、これらのガスが導入された雰囲気にマイクロ波や高周波を導入したり、あるいはガスの解離電圧以上の電位差を加えることによりこれらのガスがプラズマ化される。 The member for a plasma processing apparatus of the present invention is a member that is exposed to plasma of a halogen-based corrosive gas, and examples of the halogen-based corrosive gas include SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , and HF. Fluorine gas, chlorine gas such as Cl 2 , HCl, BCl 3 , bromine gas such as Br 2 , HBr, BBr 3 , iodine gas such as HI, etc. These gases are turned into plasma by introducing waves or high frequencies, or by applying a potential difference equal to or greater than the gas dissociation voltage.

本発明によれば、この様なハロゲン系腐食ガスのプラズマに曝されるプラズマプロセス装置用部材として、周期律表第3b族元素を含む化合物を主結晶相とするセラミック焼結体により構成する。   According to the present invention, the member for a plasma processing apparatus exposed to the plasma of such a halogen-based corrosive gas is constituted by a ceramic sintered body having a main crystal phase of a compound containing a group 3b element of the periodic table.

具体的な化合物としては、Al焼結体、NiAl等のスピネル焼結体、AlN焼結体などが挙げられる。 Specific examples of the compound include an Al 2 O 3 sintered body, a spinel sintered body such as NiAl 2 O 4 , and an AlN sintered body.

また、前記主結晶が、周期律表第3b族元素を含む酸化物からなることがより好ましい。なお、前記主結晶は、周期律表第2a、3a族元素は除く化合物からなるものである。   More preferably, the main crystal is made of an oxide containing a group 3b element in the periodic table. The main crystal is composed of a compound excluding elements 2a and 3a of the periodic table.

本発明によれば、上記のセラミック焼結体において、上記主結晶粒子の粒界相を、周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種を主体とし、上記主結晶と異なる酸化物により形成する。セラミック焼結体の粒界は、一般に粒子と比較して高蒸気圧、易腐食性であり、この性質により粒界の化学的エッチングやサ―マルエッチングが可能となる。その為、腐食雰囲気等に曝された場合、主結晶粒子よりも粒界の腐食進行が早く、脱粒やパーティクル発生の原因となる。そこで、粒界相を耐食性が主結晶粒子と同等、好ましくは主結晶粒子よりも優れた物質で形成して強化することにより、粒界相の腐食の進行を抑制し、粒界相の腐食による結晶子の脱粒・パーティクルの発生を防止する事が可能となる。   According to the present invention, in the ceramic sintered body, the grain boundary phase of the main crystal grain is mainly composed of at least one of the 2a, 3a group, Cr, Co and Ni of the periodic table, It is formed of an oxide different from the crystal. The grain boundary of a ceramic sintered body is generally higher in vapor pressure and easily corrosive than the grain, and this property enables chemical etching and thermal etching of the grain boundary. For this reason, when exposed to a corrosive atmosphere or the like, the progress of corrosion at the grain boundary is faster than that of the main crystal particles, which causes degranulation and particle generation. Therefore, by forming and strengthening the grain boundary phase with a material having corrosion resistance equivalent to that of the main crystal particles, preferably better than that of the main crystal particles, the progress of the corrosion of the grain boundary phase is suppressed, and the corrosion of the grain boundary phase is caused. It is possible to prevent crystal grain detachment and particle generation.

このセラミック焼結体の粒界を構成する周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種を主体とする酸化物は、結晶質、ガラス質のいずれでもよいが、耐食性の点からは結晶相を含むことが望ましい。   The oxide mainly composed of at least one of Periodic Tables 2a, 3a, Cr, Co and Ni constituting the grain boundary of the ceramic sintered body may be crystalline or glassy, From the point of corrosion resistance, it is desirable to include a crystal phase.

この様な耐食性焼結体を作製するには、主結晶粒子を構成する周期律表第3b族元素を含む化合物組成に加え、いわゆる添加物として周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種を主体とする酸化物を添加するか、または主結晶粒子を構成する化合物と反応して粒界に周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種を主体とする酸化物が生成されるような添加物を選択する。この添加物は、望ましくは焼結体を作製する上で焼結助剤として作用する組み合わせが望ましい。例えば、Al系に対しては、MgO等を添加すると粒界はMgAlが生成される。具体的な組み合わせについては後述する実施例にて記載される通りである。 In order to produce such a corrosion-resistant sintered body, in addition to the compound composition containing the Group 3b element of the periodic table constituting the main crystal particles, as a so-called additive, the Periodic Table 2a, Group 3a, Cr, Co and An oxide mainly composed of at least one of Ni is added, or reacts with a compound constituting the main crystal grain to cause a grain boundary to contain 2a, 3a group, Cr, Co and Ni in the periodic table. An additive is selected so that an oxide mainly composed of at least one kind is formed. This additive is desirably a combination that acts as a sintering aid in producing a sintered body. For example, for Al 2 O 3 system, when MgO or the like is added, MgAl 2 O 4 is generated at the grain boundary. Specific combinations are as described in Examples described later.

焼結体は、上記各種の組み合わせにより組成物からなる粉末を成形し、焼成した焼結体、反応焼結体、或いは周知のゾルゲル法で液相を塗布し焼成した膜であっても良い。   The sintered body may be a sintered body obtained by molding a powder composed of the composition by the above-described various combinations, fired, a reaction sintered body, or a film obtained by applying a liquid phase by a known sol-gel method and firing.

より具体的には、出発原料として、周期律表第3b族元素の金属粉末、あるいは酸化物、炭化物、窒化物、炭酸塩、酢酸塩などの化合物粉末からなる主成分に対して、周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種を主体とする酸化物、窒化物、炭化物、炭酸塩、酢酸塩などを用いて、上記のように組み合わせて調合された混合粉末、または前記出発原料を所定比率で混合したのちに仮焼処理し粉砕して作製した複合化合物粉末、反応焼結によって焼結体を形成し得る金属粉末と前記化合物或いは複合化合物との混合粉末、加熱処理によってセラミックスに分解する有機系、無機系のセラミックス前駆体等がある。また、必要に応じて上記以外に焼結を促進するための助剤を添加することもできる。   More specifically, as a starting material, a periodic table is used for a main component composed of a metal powder of a group 3b element of the periodic table or a compound powder such as an oxide, carbide, nitride, carbonate, acetate. Mixed powder prepared by combining as described above using an oxide, nitride, carbide, carbonate, acetate, etc. mainly composed of at least one of Group 2a, Group 3a, Cr, Co and Ni Or a composite compound powder prepared by calcining and pulverizing after mixing the starting materials at a predetermined ratio, a mixed powder of a metal powder capable of forming a sintered body by reaction sintering and the compound or the composite compound, There are organic and inorganic ceramic precursors that decompose into ceramics by heat treatment. In addition to the above, an auxiliary agent for promoting the sintering can be added as necessary.

なお、粒界を構成する周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種の化合物は、酸化物換算で1〜30重量%の割合で添加するのが適当である。   In addition, it is appropriate to add at least one compound out of Periodic Tables 2a, 3a, Cr, Co and Ni constituting the grain boundary at a ratio of 1 to 30% by weight in terms of oxide. .

この様な原料組成物を、所望の形状に成形、或いは所定基体に塗布して焼成する。成形方法としては、通常の乾式プレス、静水圧プレス、鋳込み成形、押し出し成形、シート状成形等、目的形状を得るのに適した成形方法を利用出来る。   Such a raw material composition is molded into a desired shape, or applied to a predetermined substrate and fired. As a molding method, a molding method suitable for obtaining a target shape, such as a normal dry press, hydrostatic press, cast molding, extrusion molding, or sheet molding, can be used.

成形体は、材料に応じて緻密化に適した雰囲気、圧力、温度で焼成すればよい。必要であれば1000〜2000気圧の不活性ガス中で熱処理する熱間静水圧法によって焼結すると、焼結体中の気孔を1体積%以下にまで消失することができ、これにより耐食性を高めることができる。   The formed body may be fired in an atmosphere, pressure, and temperature suitable for densification depending on the material. If necessary, when sintered by a hot isostatic pressure method in which heat treatment is performed in an inert gas at 1000 to 2000 atmospheres, pores in the sintered body can be lost to 1% by volume or less, thereby improving corrosion resistance. be able to.

また、焼成後の焼結体表面に荒れ等が発生する場合には、焼結体の少なくともプラズマに接触する表面を周知の研磨処理によって表面粗さ1μm以下まで鏡面研磨処理することで耐食性を高めることができる。   Further, in the case where roughness or the like occurs on the surface of the sintered body after firing, the corrosion resistance is improved by mirror-polishing the surface roughness of the sintered body to a surface roughness of 1 μm or less by a known polishing process. be able to.

実施例1
表1に示すような種々の酸化物からなる焼結体試料を作成した。これらの試料は、母相となる酸化物の高純度粉末(99.9%以上)に焼結助剤として2a族、3a族元素及びCr、Co、Niのうちいずれかの酸化物を加えて混合し、プレス成形した後、1300〜1800℃で焼成した相対密度98%以上の焼結体である。また、比較例として、SiOを加えた試料、助剤を添加せず高純度粉末を焼成した試料を準備した。また、試料のプラズマ照射面はあらかじめ鏡面処理を施し表面粗さ1μm以下とした。
Example 1
The sintered compact sample which consists of various oxides as shown in Table 1 was created. In these samples, a high purity powder (99.9% or more) of an oxide serving as a mother phase is added with a 2a group, 3a group element and any oxide of Cr, Co, Ni as a sintering aid. It is a sintered body having a relative density of 98% or more which is mixed and press-molded and then fired at 1300 to 1800 ° C. In addition, as a comparative example, a sample to which SiO 2 was added and a sample obtained by firing high-purity powder without adding an auxiliary agent were prepared. Further, the plasma irradiation surface of the sample was mirror-treated in advance so that the surface roughness was 1 μm or less.

この試料をリアクティブイオンエッチング装置内に設置して、この装置内にSFガスを導入して装置内圧力を10Paに保持した。そして、13.56MHz、1kWの高周波を導入してプラズマを発生させ、試料をプラズマに接触させた。なお、試料温度は室温(25℃)に設定した。上記の条件下で、3時間エッチング処理を行った後の表面状態を目視及び光学顕微鏡で観察し、その結果を表1に示した。なお粒界相の成分についてはX線マイクロアナライザーによって同定した。

Figure 2005022971
This sample was placed in a reactive ion etching apparatus, and SF 6 gas was introduced into the apparatus to maintain the pressure in the apparatus at 10 Pa. Then, plasma was generated by introducing high frequency of 13.56 MHz and 1 kW, and the sample was brought into contact with the plasma. The sample temperature was set to room temperature (25 ° C.). The surface condition after performing the etching treatment for 3 hours under the above conditions was observed visually and with an optical microscope, and the results are shown in Table 1. The grain boundary phase components were identified by an X-ray microanalyzer.
Figure 2005022971

粒界相として何も添加しない場合、または特定した以外の助剤を加えて粒界を形成した場合は、粒界が局所的にエッチングされ、脱粒が起きているのに対し、周期律表第2a、3a族元素、或いはCr、Co、Niいずれかの酸化物を加えて粒界を形成した場合はプラズマ照射後も鏡面状態は変化しないか、若干曇りを生じる程度であり、耐食性の劣るSi酸化物の複合材料により母相を形成した試料は、粒子そのものまでエッチングされて窪みを生じていた。   When nothing is added as a grain boundary phase, or when an auxiliary agent other than the specified one is added to form a grain boundary, the grain boundary is locally etched and degranulation occurs. When a grain boundary is formed by adding an oxide of 2a, 3a elements, or any of Cr, Co, and Ni, the mirror surface state does not change even after plasma irradiation or is slightly cloudy, and Si having poor corrosion resistance. The sample in which the matrix phase was formed of the oxide composite material was etched down to the particles themselves to form depressions.

実施例2
実施例1と同様にして作製した表2の各試料に対して、RIEプラズマエッチング装置内にHClガスを導入し、高周波にてプラズマを発生させ、室温で塩素プラズマ照射テストをおこなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。評価法は実施例1と同様である。テスト結果を表2に示す。

Figure 2005022971
Example 2
For each sample of Table 2 produced in the same manner as in Example 1, HCl gas was introduced into the RIE plasma etching apparatus, plasma was generated at a high frequency, and a chlorine plasma irradiation test was performed at room temperature. The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used. The evaluation method is the same as in Example 1. The test results are shown in Table 2.
Figure 2005022971

塩素プラズマを照射すると、粒界相として何も添加しない場合や特定した以外の助剤を加えて粒界を形成した場合の粒界腐食が、フッ素プラズマの場合よりも顕著で、脱粒・パーティクル発生が起きていた。しかし周期律表第2a族、3a族元素或いはCr、Co、Niいずれかの酸化物を添加して粒界相を形成すると、その傾向が抑制され、脱粒は見られなかった。   When irradiating chlorine plasma, grain boundary corrosion occurs when nothing is added as a grain boundary phase or when a grain boundary is formed by adding an auxiliary agent other than specified, and grain breakage / particle generation occurs more significantly than with fluorine plasma. Was happening. However, when the grain boundary phase was formed by adding Group 2a, Group 3a elements or oxides of Cr, Co, or Ni in the periodic table, the tendency was suppressed and no degranulation was observed.

実施例3
実施例1と同様にして作製した表3の各試料に対して、RIEプラズマエッチング装置内にHBrガスを導入し、高周波にてプラズマを発生させ、室温で臭素プラズマ照射テストをおこなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。評価法は実施例1と同様である。テスト結果を表3に示す。

Figure 2005022971
Example 3
HBr gas was introduced into the RIE plasma etching apparatus, plasma was generated at a high frequency, and a bromine plasma irradiation test was performed at room temperature for each sample of Table 3 produced in the same manner as in Example 1. The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used. The evaluation method is the same as in Example 1. Table 3 shows the test results.
Figure 2005022971

臭素プラズマを照射すると、フッ素、塩素の場合と同様に粒界相として何も添加しない場合や特定した以外の助剤を加えて粒界を形成した場合は粒界の腐食が局所的に進行し、脱粒・パーティクル発生が起きていた。しかし周期律表第2a族、3a族元素或いはCr、Co、Niのいずれかの酸化物を添加して粒界相を形成すると、上記の粒界の腐食が抑制され、若干の曇りは生じても脱粒は見られなかった。   When bromine plasma is irradiated, corrosion of the grain boundary proceeds locally when nothing is added as the grain boundary phase as in the case of fluorine and chlorine, or when a grain boundary is formed by adding an auxiliary agent other than the specified one. , Degranulation and particle generation occurred. However, when the grain boundary phase is formed by adding any of Group 2a, Group 3a elements or Cr, Co, and Ni oxides in the periodic table, the above-mentioned corrosion of the grain boundaries is suppressed, and some cloudiness occurs. No shedding was observed.

実施例4
実施例1と同様にして作製した表4の各試料に対して、RIEプラズマエッチング装置内にHIガスを導入し、高周波にてプラズマを発生させ、室温でヨウ素プラズマ照射テストをおこなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。評価法は実施例1と同様である。テスト結果を表4に示す。

Figure 2005022971
Example 4
For each sample shown in Table 4 produced in the same manner as in Example 1, HI gas was introduced into the RIE plasma etching apparatus, plasma was generated at a high frequency, and an iodine plasma irradiation test was performed at room temperature. The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used. The evaluation method is the same as in Example 1. Table 4 shows the test results.
Figure 2005022971

ヨウ素プラズマを照射すると、他のハロゲンプラズマの場合と同様に粒界相として何も添加しない場合や特定した以外の助剤を加えて粒界を形成した場合は、局所的に粒界の腐食が進行し、脱粒・パーティクル発生が起きていた。しかし、周期律表第2a族、3a族元素或いはCr、Co、Niいずれかの酸化物を添加して粒界相を形成すると、その傾向が抑制され、若干の曇りは生じても脱粒は見られなかった。ただし、Yはヨウ素に対する耐性に乏しく、ヨウ素プラズマに対しては材料の耐食性向上への寄与は認められなかった。   Irradiation with iodine plasma will cause local corrosion of the grain boundary when nothing is added as a grain boundary phase as in the case of other halogen plasmas or when a grain boundary is formed by adding an auxiliary agent other than those specified. It progressed and degranulation and particle generation occurred. However, when a grain boundary phase is formed by adding Group 2a, 3a group elements or Cr, Co, or Ni oxides in the periodic table, the tendency is suppressed, and even if some clouding occurs, degranulation is not observed. I couldn't. However, Y has poor resistance to iodine, and no contribution to improving the corrosion resistance of the material was observed for iodine plasma.

Claims (2)

ハロゲン系腐食ガスのプラズマに曝される部位を、周期律表第3b族元素を含む化合物からなる主結晶相と、周期律表第2a、3a族、Cr、CoおよびNiのうちの少なくとも1種を主体とし、前記主結晶相と異なる酸化物からなるとともに、前記主結晶相と同等以上の耐食性を有する粒界相とを具備するセラミック焼結体により構成したことを特徴とする耐食性セラミック部材。 The part exposed to the plasma of the halogen-based corrosive gas has at least one of a main crystal phase composed of a compound containing a group 3b element of the periodic table and groups 2a, 3a, Cr, Co and Ni of the periodic table. A corrosion-resistant ceramic member characterized by comprising a ceramic sintered body comprising a grain boundary phase composed of an oxide different from the main crystal phase and having a corrosion resistance equal to or higher than that of the main crystal phase. 前記主結晶が、周期律表第3b族元素を含む酸化物からなることを特徴とする請求項1記載の耐食性セラミック部材。 2. The corrosion-resistant ceramic member according to claim 1, wherein the main crystal is made of an oxide containing a group 3b element in the periodic table.
JP2004303171A 2004-10-18 2004-10-18 Components for plasma process equipment Expired - Fee Related JP4126461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303171A JP4126461B2 (en) 2004-10-18 2004-10-18 Components for plasma process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303171A JP4126461B2 (en) 2004-10-18 2004-10-18 Components for plasma process equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22704196A Division JP3623054B2 (en) 1996-08-28 1996-08-28 Components for plasma process equipment

Publications (2)

Publication Number Publication Date
JP2005022971A true JP2005022971A (en) 2005-01-27
JP4126461B2 JP4126461B2 (en) 2008-07-30

Family

ID=34191918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303171A Expired - Fee Related JP4126461B2 (en) 2004-10-18 2004-10-18 Components for plasma process equipment

Country Status (1)

Country Link
JP (1) JP4126461B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209249A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body
JP2013209248A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body
JP2016102427A (en) * 2014-11-27 2016-06-02 三井造船株式会社 Scrubber and method of manufacturing scrubber
JPWO2018116688A1 (en) * 2016-12-20 2019-10-24 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and method for producing the same
CN110944962A (en) * 2017-07-28 2020-03-31 京瓷株式会社 Member for plasma processing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632452B2 (en) 2006-07-07 2011-02-16 キヤノン株式会社 Image correction processing apparatus, image correction processing method, program, and storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209249A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body
JP2013209248A (en) * 2012-03-30 2013-10-10 Kyocera Corp Magnesium aluminate-based sintered body
JP2016102427A (en) * 2014-11-27 2016-06-02 三井造船株式会社 Scrubber and method of manufacturing scrubber
JPWO2018116688A1 (en) * 2016-12-20 2019-10-24 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and method for producing the same
JP6993986B2 (en) 2016-12-20 2022-01-14 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and its manufacturing method
CN110944962A (en) * 2017-07-28 2020-03-31 京瓷株式会社 Member for plasma processing apparatus

Also Published As

Publication number Publication date
JP4126461B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP3619330B2 (en) Components for plasma process equipment
KR101441865B1 (en) Apparatus and method which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
KR100953707B1 (en) Semiconductor processing components and semiconductor processing utilizing same
JPH1045467A (en) Corrosion resistant member
JP3623054B2 (en) Components for plasma process equipment
JP2006089338A (en) Corrosion resistant member, manufacturing method therefor, and member for semiconductor/liquid crystal manufacturing apparatus using the member
JPH11214365A (en) Member for semiconductor element manufacturing device
JP3488373B2 (en) Corrosion resistant materials
JP2007119334A (en) Alumina-based sintered compact, member for treating device using the same, treating device, and method for treating sample
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP4126461B2 (en) Components for plasma process equipment
JP2002226274A (en) Corrosion resistant ceramic material, method for manufacturing the same and product for manufacturing semiconductor
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP4641609B2 (en) Corrosion resistant material
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JPH11279761A (en) Corrosion resistant member
JP3784180B2 (en) Corrosion resistant material
JP3732966B2 (en) Corrosion resistant material
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP3540955B2 (en) Member for plasma processing apparatus and method for manufacturing the same
JP4012714B2 (en) Corrosion resistant material
JP4336055B2 (en) Aluminum nitride sintered body and method for producing the same
JP4119268B2 (en) Semiconductor manufacturing apparatus member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees