JP4122448B2 - Magnesium oxide for annealing separator - Google Patents

Magnesium oxide for annealing separator Download PDF

Info

Publication number
JP4122448B2
JP4122448B2 JP2002345190A JP2002345190A JP4122448B2 JP 4122448 B2 JP4122448 B2 JP 4122448B2 JP 2002345190 A JP2002345190 A JP 2002345190A JP 2002345190 A JP2002345190 A JP 2002345190A JP 4122448 B2 JP4122448 B2 JP 4122448B2
Authority
JP
Japan
Prior art keywords
magnesium oxide
mgo
boron
ratio
tricoordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002345190A
Other languages
Japanese (ja)
Other versions
JP2004176144A (en
Inventor
淳生 東塚
豊 平津
明 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32706429&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4122448(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Priority to JP2002345190A priority Critical patent/JP4122448B2/en
Publication of JP2004176144A publication Critical patent/JP2004176144A/en
Application granted granted Critical
Publication of JP4122448B2 publication Critical patent/JP4122448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フォルステライト被膜形成能に優れた焼鈍分離剤用酸化マグネシウムに関し、特に酸化マグネシウム中に含有されるホウ素の形態とその量を制御した酸化マグネシウムに関する。
【0002】
【特許文献1】
特許第2650817号明細書
【特許文献2】
特開平11−269555号公報
【特許文献3】
特許第2665451号明細書
【特許文献4】
特許第1740962号明細書
【特許文献5】
特許第2690841号明細書
【特許文献6】
特許第3043975号明細書
【特許文献7】
特開平10−88244号公報
【0003】
【従来の技術】
変圧器や発電機に使用される方向性電磁鋼板は、一般に、約3%のケイ素を含有するケイ素鋼を熱間圧延し、次いで最終板厚に冷間圧延し、その後脱炭焼鈍(一次再結晶焼鈍)、仕上げ焼鈍を経て製造している。このとき、電磁鋼板に絶縁性を付与する目的で、脱炭焼鈍後、鋼板表面に酸化マグネシウムを含むスラリー(焼鈍分離剤)を塗布し、乾燥させ、コイル状に巻取り、次いで最終の仕上げ焼鈍を行っている。脱炭焼鈍では、鋼板中のケイ素と酸素が反応して、鋼板表面に酸化ケイ素(SiO2)被膜を形成する。次いで、仕上げ焼鈍では、このSiO2被膜とスラリー中の酸化マグネシウム(MgO)とが反応して、絶縁性に優れたフォルステライト(Mg2SiO4)被膜を鋼板表面に形成する(2MgO+SiO2→Mg2SiO4)。このフォルステライト被膜を、通常グラス被膜ともいう。このフォルステライト被膜形成においては、酸化マグネシウムの性状、特性が影響すると考えられている。フォルステライト被膜は、鋼板に絶縁性を付与することに加えて、鋼板との熱膨張率の差異により鋼板表面に張力を付与することにより、方向性電磁鋼板の鉄損を低減し磁気特性を向上させると考えられている。
【0004】
したがって、方向性電磁鋼板の製造においては、フォルステライト被膜は極めて重要な役割を果たしており、この被膜を形成する酸化マグネシウムの特性が、方向性電磁鋼板の磁気特性に、直接影響を及ぼすと考えられている。
【0005】
焼鈍分離剤としての酸化マグネシウムの特性を判断する一つの評価値として、酸化マグネシウム粒子とクエン酸との反応活性度(Citric Acid Activity、以下、CAAと略す)が着目されており、CAA分布を制御することで、焼鈍分離剤性能を向上させる研究がされている。
【0006】
例えば、CAA分布の広いアルカリ土類金属を得るために、焼成条件を変化させてCAAの平均値が異なる焼成品を得たのち、これらを配合する製造方法、又は焼成温度を段階的に上昇させてCAAの平均値が異なる焼成品を得る製造方法がある(特許文献1〜3参照)。しかし、いずれもフォルステライトの生成量及び被膜の均一度は低く、焼鈍分離剤としての性能は不充分である。
【0007】
一方、酸化マグネシウム中に微量に含まれる不純物量を制御することで、酸化マグネシウムの焼鈍分離剤性能を向上させる提案がされている。特に、ホウ素(B)のフォルステライト被膜形成促進効果が期待されている。
【0008】
酸化カルシウム(CaO)量とB量を特定した焼鈍分離剤用酸化マグネシウムが知られている(特許文献4参照)。また、塩素(Cl)量とB量を特定した焼鈍分離剤用酸化マグネシウムが知られている(特許文献5参照)。また、CaO、SO3、ハロゲン、B量を特定し、加えて、その他の諸物性を特定した焼鈍分離剤用酸化マグネシウムが知られている(特許文献6参照)。更に、Bを含む多くの物性値を制御した焼鈍分離剤用酸化マグネシウムが知られている(特許文献7参照)。この様に、Bの含有量を含めた複数の物性値を制御し、Bのフォルステライト形成促進効果を安定させる試みがなされているが、いずれもフォルステライトの生成量及び被膜性能の点から充分な結果は未だ得られていない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、フォルステライト(グラス被膜)形成に非常に優れた焼鈍分離剤用酸化マグネシウムを、安定的にかつ確実に提供することである。さらに、本発明の焼鈍分離剤用酸化マグネシウムを使用して、優れた磁気特性を有する方向性電磁鋼板を提供することである。
【0010】
【課題を解決するための手段】
本発明の発明者らは、上記の課題を解決するため、鋭意検討した結果、酸化マグネシウム中に含有されるホウ素の形態に着目し、この形態及びその量を制御することで、安定したグラス被膜形成が可能な焼鈍分離剤用酸化マグネシウム及びその利用を見出したものである。
【0011】
すなわち本発明の酸化マグネシウムは、ホウ素を含有する焼鈍分離剤用酸化マグネシウムであって、該酸化マグネシウム中に含有されるホウ素中の三配位ホウ素の比率が、55〜70%であることを特徴とする焼鈍分離剤用酸化マグネシウムである。
【0012】
【発明の実施の形態】
【0013】
本発明において、三配位ホウ素(以下「三配位B」という)とは、中心原子となって配位化合物を構成するホウ素であり、かつ配位子を3個有するホウ素をいう。
【0014】
ここで、三配位Bの存在量は、Bの形態を核磁気共鳴(B−NMR)スペクトルのフーリエ変換分析法で決定し、算出することができる。
【0015】
11B−NMR分析は、Chemagnetics社製CMX−300を用い、室温で、測定対象の核種11Bを、観測周波数96.326403MHzにてDD−MAS(Dipole Decoupling-Magic Angle Spinning)法で行った。パルス強度の設定は固体の無水ホウ酸を測定して行い、調整は、11Bのm=−1/2⇔m=1/2の遷移によるピークが、パルス幅4.5μs以下ではベースラインに対してy軸の正方向に観察されるように位相を設定し、その後パルス幅を長くして、9μsでベースラインに対するピーク強度の平均が0となるように設定した。次に測定は、パルス幅1.5μs、観測幅200kHz、観測ポイント4096点、観測繰り返し時間5.0秒、試料回転数5.0kHz、化学シフト基準は、飽和ホウ酸水溶液を用い、外部基準を19.49ppmで行った。
【0016】
図1には、このようにして得られた本発明の酸化マグネシウムについてのB−NMRスペクトルを示す。なお、本図のB−NMRスペクトルは、ゼーマン***により遷移したもののうち、m=1/2⇔m=−1/2遷移の情報であり、横軸は化学シフトδ〔ppm〕、縦軸は強度で示している。
【0017】
図1におけるB−NMRスペクトルには、3個のピークが重なって現れている。中央ピークは、B原子核の周辺に4つの原子核が配位した四配位Bであり、その両側に現れた2個のショルダーピークは、B原子核周辺に3つの原子核が配位した三配位Bである。三配位Bは、B原子核近傍に電場勾配を有するため、四極***して、四配位Bピークの両側に観察されている。このような配位の異なる2種のBの存在を、本発明では、以下の方法で簡易的に評価した。
【0018】
B−NMRスペクトルにおいて、中央ピーク6〜−4ppm範囲を四配位Bと、ショルダーピーク22〜6ppm及び−4〜−20ppmの範囲を三配位Bと定義し、積分法で算出した面積を積分値とする。次に、これらの積分値を用いて、次式を用いて三配位ホウ素の比率を算出した。
三配位Bの比率〔%〕
=三配位Bの積分値/(三配位Bの積分値+四配位Bの積分値)×100
【0019】
次に、ホウ素(B)中の三配位Bの比率の好ましい範囲は、以下のようにして求めた。ここでB含有量は、試料を酸に溶解し、ICP発光分光分析により求めた数値である。
【0020】
まず、製造条件、焼成条件を変えて製造した複数個の酸化マグネシウム(以下「MgO」という)について、B含有量及び上記の方法により算出した三配位Bの比率を表1に示す。これらの焼成品を、表2に示す配合で混合し、表3に示す特性を有する試料酸化MgOを得た。表1、表3には、後述する測定方法で測定したCAA値も併せて示す。これらの試料MgOにおける三配位Bの比率とフォルステライト生成率の関係を図2に示す。
【0021】
【表1】

Figure 0004122448
【0022】
【表2】
Figure 0004122448
【0023】
【表3】
Figure 0004122448
【0024】
図2において、三配位Bの比率とフォルステライト生成率の関係は、大きく3つのグループに分類できる。第1は、三配位Bの比率が55〜70%でフォルステライトの生成量が90%以上を示すグループ、第2は、三配位Bの比率が55〜70%であるにもかかわらずフォルステライトの生成量が70〜87%のグループ、そして第3は、三配位Bの比率が55%未満でフォルステライトの生成量が90%未満を示すグループである。ここで、第1と第2のグループの相違は、表3によると、後者のB含有量が、0.034質量%、0.185質量%、0.195質量%であるのに対し、前者が概略0.04〜0.15質量%である点にある。
【0025】
したがって、フォルステライトの生成率90%以上を満たすためには、三配位Bの比率は55%〜70%であることが必要であり、好ましくは57〜65%である。三配位Bの比率がこの範囲にあり、かつB含有量が、0.04〜0.15質量%の範囲、より好ましくは0.05〜0.12質量%の範囲、特に好ましくは0.06〜0.10質量%の範囲にあると、90%以上のフォルステライト生成率が安定して得られることがわかる。なお、フォルステライトの生成量が90%を基準値としたが、これは、この基準値を満たすことができれば、MgO粒子とシリカを主成分とする鋼板表面上の皮膜との固相反応性が優れ、密着性の良好なフォルステライト皮膜が形成し得るからである。
【0026】
次に、このような好ましい範囲の三配位B量を有するMgOは、以下の方法で製造することができる。
【0027】
MgO自体は、公知の一般的な方法を用いて製造することができる。すなわち、原料として塩化マグネシウムを用い、塩化マグネシウム含有水溶液に、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム等のアルカリ性水溶液(スラリー)を添加し反応させて水酸化マグネシウムを生成し、これを焼成して得ることができる。また、塩化マグネシウム含有水溶液からアマン法又はマグネサイト焼成によって得たMgO、またはマグネサイトを焼成して得たMgOを再水和した水酸化マグネシウムを焼成して得ることもできる。
【0028】
水酸化マグネシウムの焼成は、ろ過、水洗、乾燥したのち、例えば直接式連続型加熱炉で焼成してMgOを生成し、次いでMgOを粉砕し、粒径を制御して、焼鈍分離剤用酸化マグネシウムを製造する。ここで、直接式連続型加熱炉とは、被加熱体を直接、バーナー等で連続的に加熱する加熱炉をいい、例えば、ロータリーキルン等が挙げられる。なお、水酸化マグネシウムを焼成する条件は、1073〜1473Kで600〜7200秒の条件で行うことが好ましい。
【0029】
またMgOに含有させるB量の調整は、例えば塩化マグネシウム水溶液にホウ酸、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸カルシウム、ホウ酸リチウム、ホウ酸アンモニウム、酸化ホウ素等のB化合物を添加する方法、MgOを水和する際にこれらのB化合物を添加する方法、水酸化マグネシウムとB化合物を予め混合して焼成する方法、などにより制御することができる。一方、B量が過剰な場合には、洗浄等により除去することができる。
【0030】
次に、表1を参照すると、高温で焼成するほど、また焼成時間を長時間化するほど、MgO中の三配位Bの比率が増大する。したがって、焼成温度と焼成時間を適正化することで、単一の製造(焼成)条件で製造したMgOのみを用いて、三配位Bの比率55%以上を満たすことができる(表3、試料3参照)。しかしながら、高温で焼成した酸化マグネシウムは、CAA活性度が低下する傾向にあるので、上記した好ましい焼成条件の範囲内で、異なる条件で焼成して三配位B量が異なるMgOを予め製造しておき、三配位Bの比率が上記の範囲内になるようにこれらを混合することが好ましい。
【0031】
このようにして三配位B量、及び好ましくはB含有量が本発明の範囲にあるMgOは、CAA40%が100〜200秒にあり、かつCAA70%が200〜2000秒の範囲にあり、反応活性度が適切な範囲のMgOを得ることができる。
【0032】
なおCAAの測定は、以下の様にして行った。
(1)300mlビーカーに、0.4Nのクエン酸溶液を100ml取り、次いで1%フェノールフタレイン指示薬を2ml添加し、マグネチックスターラーを備えた恒温槽で295.15±0.3Kに保つ。
(2)反応率40%の場合はMgO2.00×10-3kgを、反応率70%の場合はMgO1.14×10-3kgを投入し、投入と同時に時間測定を開始する。。
(3)投入から5秒後に、撹拌を開始する(回転数:400rpm)。
(4)終点は、液の色が桃色となる点とし、投入から終点までの所要時間を、CAAとした。
【0033】
なお、焼鈍分離剤用MgOには、例えば、特許第2690841号明細書に記載のMg、Ca、Cu、Fe、Zn、Mn、Zr、Co、Ni、Al、Sn、V等の塩素化合物など、フォルステライト被膜形成のための、公知の反応補助剤、インヒビター補助剤、張力付与型絶縁被膜添加剤を添加することもできる。
【0034】
方向性電磁鋼板用焼鈍分離剤及び方向性電磁鋼板は下記の方法で製造することができる。方向性電磁鋼板はSi2.5〜4.5%を含有するケイ素鋼スラブを熱間圧延し、酸洗後に冷間圧延又は中間焼鈍をはさむ2回冷間圧延を行って、所定の板厚とする。次に、冷間圧延したコイルを923〜1173Kの湿潤水素雰囲気中で脱炭を兼ねた再結晶焼鈍を行い、このとき鋼板表面にシリカ(SiO2)を主成分とする酸化被膜が形成する。この鋼板上に、上記方法で製造した本発明のMgOを水に均一に分散させた水スラリーを、ロールコーティング又はスプレーを用いて連続的に塗布し、約573Kで乾燥させる。こうして処理された鋼板コイルを、例えば、1473Kで20時間の最終仕上げ焼鈍を行って、鋼板表面にフォルステライト(Mg2SiO4)を形成し、これが絶縁被膜とともに、鋼板表面に張力を付与して、方向性電磁鋼板の鉄損値を向上させることができる。
【0035】
【実施例】
下記の実施例により本発明を詳細に説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。
【0036】
実施例1
濃度2.0mol・kg-1の塩化マグネシウム溶液に対し、ホウ酸をBに換算して0.0184質量%、水酸化カルシウムスラリーを、得られるMgOの濃度が1.2mol・kg-1となるように添加した。この混合溶液を、343Kで2時間反応させ、ろ過、水洗、乾燥して、水酸化マグネシウムを製造した。この水酸化マグネシウムを、ロータリーキルンを用いて、1303Kで、20分間焼成し、次いで、粉砕して、MgOを得た。得られたMgOの三配位B比率、B量、CAA40%及びCAA70%を測定し、結果を、表4に示した。
【0037】
実施例2
ロータリーキルンを用いて、マグネサイトを1373Kで1時間焼成し、MgOを製造した。このMgOを、スラリー中のMgOの濃度が2mol・kg-1となるように、水に投入し、MgOに対して、2.8質量%のホウ酸ナトリウムを添加し、363Kで2時間反応させ、水酸化マグネシウムを製造した。更に、ロータリーキルンを用いて、1173Kで30分間、及び、1373Kで30分間、それぞれ焼成したのち、粉砕し、焼成度の異なるMgOを製造した。それぞれの三配位比率は、49.8%、68.5%であった。またB量は、0.076質量%、0.077質量%であった。その後、三配位B比率、B量が、本発明の範囲に入るように、2種類のMgOを、混合比率55:45で混合して、実施例2のMgO粒子を得た。得られたMgOの三配位B比率、B量、CAA40%及びCAA70%を測定し、結果を、表4に示した。
【0038】
実施例3
アマン法により得られたMgOを、スラリー中のMgOの濃度が3mol・kg-1となるように、水に投入し、MgOに対して、3.8質量%のホウ酸を添加し、353Kで2時間反応させて、水酸化マグネシウムを製造した。次いで、ロータリーキルンを用いて、1073Kで1時間、1323Kで20分間、1473Kで30分間、それぞれ焼成したのち、粉砕し、焼成度の異なるMgOを製造した。それぞれの三配位比率は、47.0質量%、60.5質量%、75.8質量%であった。またB量は、0.09、0.092、0.093であった。その後、三配位B比率、B量が、本発明の範囲にはいるように、3種類のMgOを、混合比率40:25:35で混合して、実施例3のMgOを得た。得られたMgOの三配位B比率、B量、CAA40%及びCAA70%を測定し、結果を、表4に示した。
【0039】
比較例1
実施例1と同一条件で製造した水酸化マグネシウムを、ロータリーキルンを用いて、1223Kで1時間焼成し、粉砕して比較例1のMgOを得た。得られたMgOの三配位B比率、B量、CAA40%及びCAA70%を測定し、結果を、表4に示した。
【0040】
比較例2
実施例2と同一条件で製造した水酸化マグネシウムを、ロータリーキルンを用いて、1073Kで1時間、1173Kで2時間、1273Kで2時間、それぞれ焼成したのち、粉砕し、焼成度の異なるMgOを製造した。それぞれの三配位比率は、46.6質量%、50.1質量%、54.3質量%であった。またB量は、0.062、0.064、0.066であった。その後、3種類のMgOを、混合比率30:30:40で混合して、比較例2のMgOを得た。得られたMgOの三配位B比率、B量、CAA40%及びCAA70%を測定し、結果を、表4に示した。
【0041】
【表4】
Figure 0004122448
【0042】
表4から明らかなように、実施例1〜3は、三配位B比率が55%以上を満たした。比較例1及び2は、三配位B比率が、下限を下回った。
【0043】
次に、これらのMgOについて、フォルステライト被膜の形成挙動を調査した。フォルステライトの形成は、2MgO+SiO2→Mg2SiO4の固相反応に従って起こると考えられることから、実施例、比較例のMgO粉末とSiO2を、モル比で2:1になるように調合した混合物を用いて、圧力50MPaで、直径15×10-3m、高さ15×10-3mに成形し、これを窒素雰囲気中で、1473Kで4時間焼成した。この焼成温度は、方向性電磁鋼板上でSiO2とMgOを含むスラリーとが反応する仕上げ焼鈍温度に相当している。こうして得られた焼結体中のMg2SiO4生成量を、X線回折により定量分析した。結果を表5に示す。
【0044】
【表5】
Figure 0004122448
【0045】
表5から明らかなように、実施例1〜3は、フォルステライトの生成量が90%を超えている。一方、比較例1及び2は、フォルステライト形成が90%を下回り、充分ではない。
【0046】
次に、ケイ素鋼板上にMgOを塗布して、フォルステライトの被膜特性を調査した。供試鋼は、質量%で、C:0.058%、Si:2.8%、Mn:0.06%、Al:0.026%、S:0.024%、N:0.0050%、残部は不可避的な不純物とFeよりなる方向性電磁鋼板用のケイ素鋼スラブを、公知の方法で熱間圧延、酸洗、冷間圧延を行って、最終板厚0.23×10-3mとし、更に、窒素25%+水素75%の湿潤雰囲気中で脱炭焼鈍した鋼板である。
【0047】
この鋼板に対し、本発明のMgO又は比較例のMgOをスラリー状にして、乾燥後の重量で12×10-3kg・m-2になるように鋼板に塗布し、乾燥後1473K、20時間の最終仕上げ焼鈍を行った。鋼板上のフォルステライト被膜の形成状況を表6に示す。
【0048】
【表6】
Figure 0004122448
【0049】
表6から明らかなように、実施例1〜3のMgOから形成したフォルステライト被膜は、均一で充分な厚みを有し、かつ被膜の密着性に優れていることを確認している。その一方、比較例の被膜は、均一であっても薄く、密着性にも劣っていた。
【0050】
【発明の効果】
以上述べたように、本発明は、MgO中のホウ素の形態を制御したことにより、フォルステライト(グラス被膜)形成に非常に優れた焼鈍分離剤用MgOを安定して、かつ確実に提供することができる。また、本発明のMgOを用いて処理して得ることができる方向性電磁鋼板は、方向性電磁鋼板として充分な磁気特性を有するものである。
【図面の簡単な説明】
【図1】本発明の酸化マグネシウムについてのB−NMRスペクトルである。
【図2】試料MgOにおける三配位Bの比率とフォルステライト生成率の関係図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to magnesium oxide for an annealing separator excellent in forsterite film-forming ability, and more particularly relates to magnesium oxide in which the form and amount of boron contained in magnesium oxide are controlled.
[0002]
[Patent Document 1]
Patent No. 2650817 [Patent Document 2]
JP-A-11-269555 [Patent Document 3]
Japanese Patent No. 2665451 [Patent Document 4]
Japanese Patent No. 1740962 [Patent Document 5]
Japanese Patent No. 2690841 [Patent Document 6]
Patent No. 3043975 [Patent Document 7]
Japanese Patent Laid-Open No. 10-88244
[Prior art]
Oriented electrical steel sheets used in transformers and generators are generally hot-rolled silicon steel containing about 3% silicon, then cold-rolled to the final thickness, and then decarburized (primary re-annealing). It is manufactured through crystal annealing) and finish annealing. At this time, for the purpose of imparting insulating properties to the electromagnetic steel sheet, after decarburization annealing, a slurry (annealing separator) containing magnesium oxide is applied to the steel sheet surface, dried, wound in a coil shape, and then finally finished annealing. It is carried out. In the decarburization annealing, silicon and oxygen in the steel plate react to form a silicon oxide (SiO 2 ) coating on the steel plate surface. Next, in finish annealing, this SiO 2 coating and magnesium oxide (MgO) in the slurry react to form a forsterite (Mg 2 SiO 4 ) coating excellent in insulation on the steel sheet surface (2MgO + SiO 2 → Mg). 2 SiO 4 ). This forsterite film is usually referred to as a glass film. In the formation of this forsterite film, the properties and characteristics of magnesium oxide are considered to be affected. In addition to imparting insulation to steel sheets, forsterite coating reduces the iron loss of grain-oriented electrical steel sheets and improves magnetic properties by imparting tension to the steel sheet surface due to the difference in thermal expansion coefficient with steel sheets. It is thought to let you.
[0004]
Therefore, the forsterite film plays an extremely important role in the manufacture of grain-oriented electrical steel sheets, and it is thought that the characteristics of magnesium oxide forming this film directly affect the magnetic properties of grain-oriented electrical steel sheets. ing.
[0005]
As an evaluation value for judging the characteristics of magnesium oxide as an annealing separator, the reaction activity between magnesium oxide particles and citric acid (Citric Acid Activity, hereinafter abbreviated as CAA) has been focused on, and the CAA distribution is controlled. By doing so, research has been made to improve the performance of the annealing separator.
[0006]
For example, in order to obtain an alkaline earth metal having a wide CAA distribution, after obtaining calcination products having different CAA average values by changing the calcination conditions, the production method for blending these, or the calcination temperature is increased stepwise. There is a manufacturing method for obtaining fired products having different CAA average values (see Patent Documents 1 to 3). However, the amount of forsterite produced and the uniformity of the coating are low, and the performance as an annealing separator is insufficient.
[0007]
On the other hand, proposals have been made to improve the performance of an annealing separator for magnesium oxide by controlling the amount of impurities contained in a trace amount in magnesium oxide. In particular, the forsterite film formation promoting effect of boron (B) is expected.
[0008]
A magnesium oxide for an annealing separator that specifies the amount of calcium oxide (CaO) and the amount of B is known (see Patent Document 4). Further, magnesium oxide for an annealing separator having a specified chlorine (Cl) amount and B amount is known (see Patent Document 5). Further, magnesium oxide for annealing separators is known in which the amounts of CaO, SO 3 , halogen, and B are specified, and other physical properties are specified (see Patent Document 6). Furthermore, magnesium oxide for annealing separators, in which many physical properties including B are controlled, is known (see Patent Document 7). In this way, attempts have been made to stabilize the forsterite formation promoting effect of B by controlling a plurality of physical property values including the B content, both of which are sufficient in terms of the amount of forsterite produced and the film performance. No results have been obtained yet.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to stably and reliably provide magnesium oxide for an annealing separator that is very excellent in forming forsterite (glass coating). Furthermore, it is providing the grain-oriented electrical steel sheet which has the outstanding magnetic characteristic using the magnesium oxide for annealing separators of this invention.
[0010]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve the above problems, and as a result, paying attention to the form of boron contained in magnesium oxide, and controlling this form and the amount thereof, a stable glass film The present inventors have found a magnesium oxide for an annealing separator that can be formed and its use.
[0011]
That is, the magnesium oxide of the present invention is a magnesium oxide for annealing separator containing boron, and the ratio of tricoordinate boron in boron contained in the magnesium oxide is 55 to 70%. And magnesium oxide for annealing separator.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
[0013]
In the present invention, tri-coordinate boron (hereinafter referred to as “tri-coordinate B”) refers to boron which is a boron which constitutes a coordination compound as a central atom and has three ligands.
[0014]
Here, the abundance of the tricoordinate B can be calculated by determining the form of B by Fourier transform analysis of a nuclear magnetic resonance (B-NMR) spectrum.
[0015]
The 11 B-NMR analysis was carried out using a CMX-300 manufactured by Chemagnetics at room temperature and the nuclide 11 B to be measured by the DD-MAS (Dipole Decoupling-Magic Angle Spinning) method at an observation frequency of 96.326403 MHz. The pulse intensity is set by measuring solid boric anhydride, and the adjustment is performed by adjusting the peak due to the transition of 11 B m = -1 / 2⇔m = 1/2 to the baseline when the pulse width is 4.5 μs or less. On the other hand, the phase was set so that it was observed in the positive direction of the y-axis, and then the pulse width was increased so that the average peak intensity with respect to the baseline became 0 at 9 μs. Next, the measurement is performed with a pulse width of 1.5 μs, an observation width of 200 kHz, an observation point of 4096 points, an observation repetition time of 5.0 seconds, a sample rotation speed of 5.0 kHz, and a chemical shift standard using a saturated boric acid aqueous solution, Performed at 19.49 ppm.
[0016]
In FIG. 1, the B-NMR spectrum about the magnesium oxide of this invention obtained in this way is shown. In addition, the B-NMR spectrum of this figure is information of m = 1 / 2−m = −1 / 2 transition among those transitioned by Zeeman splitting, the horizontal axis is chemical shift δ [ppm], and the vertical axis is Intensity is shown.
[0017]
In the B-NMR spectrum in FIG. 1, three peaks appear overlapping. The central peak is tetracoordinate B in which four nuclei are coordinated around the B nucleus, and the two shoulder peaks appearing on both sides thereof are tricoordinate B in which three nuclei are coordinated around the B nucleus. It is. Since the tricoordinate B has an electric field gradient in the vicinity of the B nucleus, the tricoordinate B is observed on both sides of the tetracoordinate B peak due to quadrupole splitting. In the present invention, the presence of two types of B having different coordinations was simply evaluated by the following method.
[0018]
In the B-NMR spectrum, the central peak range of 6 to -4 ppm is defined as tetracoordinate B, and the shoulder peaks range of 22 to 6 ppm and -4 to -20 ppm is defined as tricoordinate B, and the area calculated by the integration method is integrated. Value. Next, using these integrated values, the ratio of tricoordinate boron was calculated using the following equation.
Three-coordinate B ratio [%]
= Integral value of tri-coordinate B / (Integrated value of tri-coordinate B + Integral value of four-coordinate B) × 100
[0019]
Next, the preferred range of the ratio of tricoordinate B in boron (B) was determined as follows. Here, the B content is a numerical value obtained by dissolving a sample in an acid and performing ICP emission spectroscopic analysis.
[0020]
First, Table 1 shows the B content and the ratio of tricoordinate B calculated by the above method for a plurality of magnesium oxides (hereinafter referred to as “MgO”) manufactured under different manufacturing conditions and firing conditions. These fired products were mixed in the formulation shown in Table 2 to obtain sample oxidized MgO having the characteristics shown in Table 3. Tables 1 and 3 also show the CAA values measured by the measurement method described later. FIG. 2 shows the relationship between the ratio of tricoordinate B and the forsterite production rate in these sample MgO.
[0021]
[Table 1]
Figure 0004122448
[0022]
[Table 2]
Figure 0004122448
[0023]
[Table 3]
Figure 0004122448
[0024]
In FIG. 2, the relationship between the ratio of tricoordinate B and the forsterite production rate can be roughly classified into three groups. The first is a group in which the ratio of tricoordinate B is 55 to 70% and the amount of forsterite produced is 90% or more, and the second is the ratio of tricoordinate B is 55 to 70%. A group in which the amount of forsterite produced is 70 to 87%, and a third group has a tricoordinate B ratio of less than 55% and a forsterite production of less than 90%. Here, according to Table 3, the difference between the first and second groups is that the latter B content is 0.034 mass%, 0.185 mass%, and 0.195 mass%, whereas the former is Is approximately 0.04 to 0.15% by mass.
[0025]
Therefore, in order to satisfy the forsterite production rate of 90% or more, the ratio of the tricoordinate B needs to be 55% to 70%, preferably 57% to 65%. The ratio of tricoordinate B is in this range, and the B content is in the range of 0.04 to 0.15% by mass, more preferably in the range of 0.05 to 0.12% by mass, particularly preferably 0.8. It can be seen that a forsterite production rate of 90% or more can be stably obtained when it is in the range of 06 to 0.10% by mass. The standard value of forsterite production was 90%. If this standard value can be satisfied, the solid phase reactivity between the MgO particles and the coating on the surface of the steel plate containing silica as a main component can be obtained. This is because a forsterite film having excellent adhesion can be formed.
[0026]
Next, MgO having such a preferred range of tricoordinate B content can be produced by the following method.
[0027]
MgO itself can be produced using a known general method. That is, using magnesium chloride as a raw material, an alkaline aqueous solution (slurry) such as calcium hydroxide, sodium hydroxide or potassium hydroxide is added to and reacted with a magnesium chloride-containing aqueous solution to produce magnesium hydroxide, which is fired. Can be obtained. Further, MgO obtained by an Amman method or magnesite firing from a magnesium chloride-containing aqueous solution, or magnesium hydroxide obtained by rehydrating MgO obtained by firing magnesite can also be obtained by firing.
[0028]
Magnesium hydroxide is filtered, washed with water, dried, then fired in a direct continuous heating furnace to produce MgO, then MgO is pulverized, the particle size is controlled, and magnesium oxide for annealing separator Manufacturing. Here, the direct continuous heating furnace refers to a heating furnace that directly heats an object to be heated with a burner or the like, and examples thereof include a rotary kiln. The conditions for firing magnesium hydroxide are preferably 1073 to 1473K and 600 to 7200 seconds.
[0029]
In addition, adjustment of the amount of B to be included in MgO is, for example, a method of adding a B compound such as boric acid, sodium borate, potassium borate, calcium borate, lithium borate, ammonium borate, boron oxide to a magnesium chloride aqueous solution, It can be controlled by a method of adding these B compounds when hydrating MgO, a method of previously mixing and baking magnesium hydroxide and a B compound. On the other hand, if the amount of B is excessive, it can be removed by washing or the like.
[0030]
Next, referring to Table 1, the ratio of the tricoordinate B in MgO increases as the firing is performed at a higher temperature and the firing time is increased. Therefore, by optimizing the firing temperature and firing time, the tricoordinate B ratio of 55% or more can be satisfied using only MgO produced under a single production (firing) condition (Table 3, Sample). 3). However, since magnesium oxide baked at high temperature tends to have low CAA activity, MgO having different three-coordinate B amounts is produced in advance by baking under different conditions within the range of the preferable baking conditions described above. It is preferable to mix them so that the ratio of the tricoordinate B is in the above range.
[0031]
Thus, MgO having a tricoordinate B content, and preferably a B content in the range of the present invention, has a CAA of 40% in the range of 100 to 200 seconds and a CAA of 70% in the range of 200 to 2000 seconds. MgO having an appropriate range of activity can be obtained.
[0032]
The CAA was measured as follows.
(1) Take 100 ml of 0.4N citric acid solution in a 300 ml beaker, add 2 ml of 1% phenolphthalein indicator, and maintain at 295.15 ± 0.3 K in a thermostatic bath equipped with a magnetic stirrer.
(2) When the reaction rate is 40%, MgO 2.00 × 10 −3 kg is charged. When the reaction rate is 70%, MgO 1.14 × 10 −3 kg is charged. .
(3) Stirring is started 5 seconds after the addition (rotation speed: 400 rpm).
(4) The end point was a point where the liquid color was pink, and the required time from the addition to the end point was CAA.
[0033]
In addition, examples of MgO for annealing separator include chlorine compounds such as Mg, Ca, Cu, Fe, Zn, Mn, Zr, Co, Ni, Al, Sn, and V described in Japanese Patent No. 2690841. For forming a forsterite film, known reaction aids, inhibitor aids, and tension-imparting insulating coating additives can also be added.
[0034]
The annealing separator for grain-oriented electrical steel sheets and the grain-oriented electrical steel sheet can be produced by the following method. A grain-oriented electrical steel sheet hot-rolls a silicon steel slab containing Si 2.5 to 4.5%, performs cold rolling or cold rolling twice sandwiching intermediate annealing after pickling, and has a predetermined thickness. To do. Next, the cold-rolled coil is subjected to recrystallization annealing also serving as decarburization in a wet hydrogen atmosphere of 923 to 1173K, and at this time, an oxide film mainly composed of silica (SiO 2 ) is formed on the steel plate surface. On this steel plate, the water slurry in which the MgO of the present invention produced by the above method is uniformly dispersed in water is continuously applied by roll coating or spraying and dried at about 573K. The steel sheet coil thus treated is subjected to, for example, final finishing annealing at 1473 K for 20 hours to form forsterite (Mg 2 SiO 4 ) on the surface of the steel sheet. The iron loss value of the grain-oriented electrical steel sheet can be improved.
[0035]
【Example】
The following examples illustrate the invention in detail but are not intended to limit the invention in any way.
[0036]
Example 1
With respect to a magnesium chloride solution having a concentration of 2.0 mol · kg −1 , boric acid is converted to B and 0.0184% by mass, and a calcium hydroxide slurry is obtained with a MgO concentration of 1.2 mol · kg −1. Was added as follows. This mixed solution was reacted at 343 K for 2 hours, filtered, washed with water, and dried to produce magnesium hydroxide. This magnesium hydroxide was baked at 1303 K for 20 minutes using a rotary kiln, and then pulverized to obtain MgO. The tricoordinate B ratio, B amount, CAA 40% and CAA 70% of the obtained MgO were measured, and the results are shown in Table 4.
[0037]
Example 2
Using a rotary kiln, magnesite was fired at 1373K for 1 hour to produce MgO. This MgO is put into water so that the concentration of MgO in the slurry is 2 mol · kg −1 , 2.8% by mass of sodium borate is added to MgO and reacted at 363 K for 2 hours. Magnesium hydroxide was produced. Further, using a rotary kiln, firing was performed at 1173K for 30 minutes and at 1373K for 30 minutes, respectively, and then pulverized to produce MgO having different firing degrees. The respective tricoordination ratios were 49.8% and 68.5%. Moreover, B amount was 0.076 mass% and 0.077 mass%. Thereafter, two kinds of MgO were mixed at a mixing ratio of 55:45 so that the tricoordinate B ratio and the B amount were within the scope of the present invention, whereby the MgO particles of Example 2 were obtained. The tricoordinate B ratio, B amount, CAA 40% and CAA 70% of the obtained MgO were measured, and the results are shown in Table 4.
[0038]
Example 3
MgO obtained by the Aman method was added to water so that the concentration of MgO in the slurry was 3 mol · kg −1, and 3.8% by mass of boric acid was added to MgO at 353 K. Reaction was performed for 2 hours to produce magnesium hydroxide. Next, using a rotary kiln, firing was performed at 1073K for 1 hour, 1323K for 20 minutes, and 1473K for 30 minutes, respectively, and then pulverized to produce MgO having different firing degrees. The respective tricoordinate ratios were 47.0% by mass, 60.5% by mass, and 75.8% by mass. Moreover, B amount was 0.09, 0.092, and 0.093. Thereafter, three kinds of MgO were mixed at a mixing ratio of 40:25:35 so that the tricoordinate B ratio and the B amount were within the scope of the present invention, whereby MgO of Example 3 was obtained. The tricoordinate B ratio, B amount, CAA 40% and CAA 70% of the obtained MgO were measured, and the results are shown in Table 4.
[0039]
Comparative Example 1
Magnesium hydroxide produced under the same conditions as in Example 1 was fired at 1223 K for 1 hour using a rotary kiln and pulverized to obtain MgO of Comparative Example 1. The tricoordinate B ratio, B amount, CAA 40% and CAA 70% of the obtained MgO were measured, and the results are shown in Table 4.
[0040]
Comparative Example 2
Magnesium hydroxide produced under the same conditions as in Example 2 was calcined using a rotary kiln for 1 hour at 1073 K, 2 hours at 1173 K, and 2 hours at 1273 K, and then pulverized to produce MgO having different degrees of firing. . The respective tricoordination ratios were 46.6% by mass, 50.1% by mass, and 54.3% by mass. Moreover, B amount was 0.062, 0.064, 0.066. Thereafter, three kinds of MgO were mixed at a mixing ratio of 30:30:40 to obtain MgO of Comparative Example 2. The tricoordinate B ratio, B amount, CAA 40% and CAA 70% of the obtained MgO were measured, and the results are shown in Table 4.
[0041]
[Table 4]
Figure 0004122448
[0042]
As is clear from Table 4, in Examples 1 to 3, the tricoordinate B ratio satisfied 55% or more. In Comparative Examples 1 and 2, the tricoordinate B ratio was below the lower limit.
[0043]
Next, the formation behavior of the forsterite film was investigated for these MgO. The formation of forsterite is considered to occur according to the solid-phase reaction of 2MgO + SiO 2 → Mg 2 SiO 4 , so the MgO powders of Examples and Comparative Examples and SiO 2 were prepared so as to have a molar ratio of 2: 1. mixture using a pressure 50 MPa, and formed into a diameter of 15 × 10 -3 m, height 15 × 10 -3 m, which in a nitrogen atmosphere, and fired 4 hours at 1473K. This firing temperature corresponds to the finish annealing temperature at which the slurry containing SiO 2 and MgO reacts on the grain-oriented electrical steel sheet. The amount of Mg 2 SiO 4 produced in the sintered body thus obtained was quantitatively analyzed by X-ray diffraction. The results are shown in Table 5.
[0044]
[Table 5]
Figure 0004122448
[0045]
As is clear from Table 5, in Examples 1 to 3, the amount of forsterite produced exceeded 90%. On the other hand, forsterite formation is less than 90% in Comparative Examples 1 and 2, which is not sufficient.
[0046]
Next, MgO was applied on the silicon steel plate, and the film characteristics of forsterite were investigated. The test steel is mass%, C: 0.058%, Si: 2.8%, Mn: 0.06%, Al: 0.026%, S: 0.024%, N: 0.0050% The remainder is subjected to hot rolling, pickling and cold rolling of a silicon steel slab for grain-oriented electrical steel sheets made of unavoidable impurities and Fe by a known method to obtain a final thickness of 0.23 × 10 −3. m, and further decarburized and annealed in a humid atmosphere of 25% nitrogen + 75% hydrogen.
[0047]
To this steel sheet, the MgO of the present invention or the MgO of the comparative example was made into a slurry form and applied to the steel sheet so that the weight after drying was 12 × 10 −3 kg · m −2. After drying, 1473 K, 20 hours The final finish annealing was performed. Table 6 shows the formation state of the forsterite film on the steel plate.
[0048]
[Table 6]
Figure 0004122448
[0049]
As is clear from Table 6, it has been confirmed that the forsterite coating formed from MgO in Examples 1 to 3 has a uniform and sufficient thickness and is excellent in coating adhesion. On the other hand, the coating film of the comparative example was thin even if it was uniform, and inferior in adhesion.
[0050]
【The invention's effect】
As described above, the present invention provides a stable and reliable MgO for annealing separator that is very excellent in forsterite (glass coating) formation by controlling the form of boron in MgO. Can do. Moreover, the grain-oriented electrical steel sheet that can be obtained by processing using MgO of the present invention has sufficient magnetic properties as a grain-oriented electrical steel sheet.
[Brief description of the drawings]
FIG. 1 is a B-NMR spectrum of the magnesium oxide of the present invention.
FIG. 2 is a graph showing the relationship between the ratio of tricoordinate B and forsterite production rate in sample MgO.

Claims (3)

ホウ素を含有する焼鈍分離剤用酸化マグネシウム粉末であって、該酸化マグネシウム粉末中に含有されるホウ素中の三配位ホウ素の比率が、55〜65%であり、該酸化マグネシウム粉末に含有されるホウ素量が、0.04〜0.15質量%であることを特徴とする、方向性電磁鋼板の焼鈍分離剤用酸化マグネシウム粉末A annealing separator for the magnesium oxide powder containing boron, the ratio of the three-coordinate boron in the boron contained in the magnesium oxide powder is a 55 to 65%, is contained in the magnesium oxide powder Magnesium oxide powder for annealing separator for grain- oriented electrical steel sheet , wherein the boron content is 0.04 to 0.15 mass% . 水酸化マグネシウムを1073〜1473K、600〜7200秒の範囲の異なる焼成条件で焼成したホウ素を含有する2種以上の酸化マグネシウム粉末を準備し、該2種以上の酸化マグネシウム粉末の各々の三配位ホウ素の比率を測定し、次いで三配位ホウ素の比率が55〜65%を満たすように該2種以上の酸化マグネシウム粉末を混合し、該酸化マグネシウム粉末に含有されるホウ素量が、0.04〜0.15質量%であるようにして得た、方向性電磁鋼板の焼鈍分離剤用酸化マグネシウム粉末Two or more kinds of magnesium oxide powder containing boron obtained by firing magnesium hydroxide under different firing conditions in the range of 1073 to 1473 K and 600 to 7200 seconds are prepared, and each of the two or more kinds of magnesium oxide powders is tri-coordinated. The boron ratio was measured, and then the two or more magnesium oxide powders were mixed so that the tricoordinate boron ratio was 55 to 65 %, and the boron content contained in the magnesium oxide powder was 0.04. Magnesium oxide powder for an annealing separator for grain- oriented electrical steel sheet, obtained in an amount of ˜0.15% by mass . 請求項1または2に記載の焼鈍分離剤用酸化マグネシウム粉末を用いて形成した方向性電磁鋼板。A grain-oriented electrical steel sheet formed by using the magnesium oxide powder for annealing separator according to claim 1 or 2 .
JP2002345190A 2002-11-28 2002-11-28 Magnesium oxide for annealing separator Expired - Lifetime JP4122448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345190A JP4122448B2 (en) 2002-11-28 2002-11-28 Magnesium oxide for annealing separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345190A JP4122448B2 (en) 2002-11-28 2002-11-28 Magnesium oxide for annealing separator

Publications (2)

Publication Number Publication Date
JP2004176144A JP2004176144A (en) 2004-06-24
JP4122448B2 true JP4122448B2 (en) 2008-07-23

Family

ID=32706429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345190A Expired - Lifetime JP4122448B2 (en) 2002-11-28 2002-11-28 Magnesium oxide for annealing separator

Country Status (1)

Country Link
JP (1) JP4122448B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245277B2 (en) * 2007-04-13 2013-07-24 Jfeスチール株式会社 Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator
JP6468208B2 (en) * 2016-01-21 2019-02-13 Jfeスチール株式会社 Powder for annealing separator, method for producing the same, and grain-oriented electrical steel sheet
JP6613919B2 (en) * 2016-01-21 2019-12-04 Jfeスチール株式会社 Powder for annealing separator and method for producing grain-oriented electrical steel sheet
JP6472767B2 (en) 2016-03-30 2019-02-20 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP6791327B2 (en) * 2019-09-04 2020-11-25 Jfeスチール株式会社 Method for manufacturing powder for annealing separator
US20230323497A1 (en) * 2020-08-28 2023-10-12 Jfe Steel Corporation Powder for annealing separator and method of producing same, and method of producing grain-oriented electrical steel sheet
WO2024048751A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Mixed powder, mgo particles, method for producing grain-oriented electrical steel sheet, method for producing mgo particles, and method for producing mixed powder
WO2024048721A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Mixed powder, mgo particles, method for producing grain-oriented electrical steel sheet, method for producing mgo particles, and method for producing mixed powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1597656A (en) * 1977-05-20 1981-09-09 Armco Inc Process of producing an electrically insulative glass film on silicon steel
JPS62156227A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Annealing and separation agent for grain-oriented magnetic steel sheet having superior film characteristic and magnetic characteristic
JPH01177376A (en) * 1988-01-08 1989-07-13 Nippon Steel Corp Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic
JPH0456781A (en) * 1990-06-27 1992-02-24 Kawasaki Steel Corp Separating agent for annealing for grain-oriented silicon steel sheet
JP3475258B2 (en) * 1994-05-23 2003-12-08 株式会社海水化学研究所 Ceramic film forming agent and method for producing the same
JPH1088244A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JP4192283B2 (en) * 1997-12-24 2008-12-10 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2004176144A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
CN103857827B (en) Orientation electromagnetic steel plate annealing separation agent
CN107109563B (en) Orientation electromagnetic steel plate and its manufacturing method
JP7454334B2 (en) Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP5245277B2 (en) Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator
JP4122448B2 (en) Magnesium oxide for annealing separator
KR100490177B1 (en) Magnesium oxide particle aggregate
CN109348712A (en) Magnesium oxide powder and its manufacturing method
JP3761867B2 (en) Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
KR100967049B1 (en) Method for manufacturing a high-silicon steel sheet
JP4484711B2 (en) Method for producing high silicon grained electrical steel sheet
US20220074012A1 (en) Annealing separator for grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet
JPH11181525A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP5857983B2 (en) Manufacturing method of grain-oriented electrical steel sheet and MgO for annealing separator
JP2007246290A (en) Magnesium oxide for grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet excellent in magnetic properties and glass coating properties using the same
JP2023531107A (en) Method for producing annealing separator, annealing separator, and grain-oriented electrical steel sheet
JP6494554B2 (en) Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JP3549492B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet with excellent glass coating
US11591668B2 (en) Grain-oriented electrical steel sheet and method for manufacturing same and annealing separator
JP3539938B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet with excellent glass coating using the same
JP2004052084A (en) Calcium / boron complex oxide-containing magnesium oxide composition and its production method, and its application
CN117083396A (en) Magnesium oxide for annealing separating agent and oriented electrical steel
JP2024091681A (en) Annealing separator manufacturing method, annealing separator, and grain-oriented electrical steel sheet
KR100905652B1 (en) Coating composition and method for manufacturing high silicon electrical steel sheet
KR20040041773A (en) Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Ref document number: 4122448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term