JP4111858B2 - Underwater discharge plasma method and liquid treatment apparatus - Google Patents

Underwater discharge plasma method and liquid treatment apparatus Download PDF

Info

Publication number
JP4111858B2
JP4111858B2 JP2003105852A JP2003105852A JP4111858B2 JP 4111858 B2 JP4111858 B2 JP 4111858B2 JP 2003105852 A JP2003105852 A JP 2003105852A JP 2003105852 A JP2003105852 A JP 2003105852A JP 4111858 B2 JP4111858 B2 JP 4111858B2
Authority
JP
Japan
Prior art keywords
discharge plasma
water
porous dielectric
dielectric pipe
underwater discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003105852A
Other languages
Japanese (ja)
Other versions
JP2004268003A (en
Inventor
アント・トリ・スギアルト
正之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003105852A priority Critical patent/JP4111858B2/en
Publication of JP2004268003A publication Critical patent/JP2004268003A/en
Application granted granted Critical
Publication of JP4111858B2 publication Critical patent/JP4111858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、化学工場排水、薬品工場排水、食品工場排水、油脂工場排水、パルプ工場排水、その他の産業排水、河川水、上水道、などに含まれる有害有機物及びダイオキシン類のような生物難分解性有機物処理を行うための水中放電プラズマ法及び液体処理装置に関するものである。
【0002】
【従来の技術】
従来の有機物を含む排水処理では微生物を含む活性汚泥を用いた生物処理法が広く実用化されている。しかし、生物処理では芳香族化合物、難生物分解性有機物等が除去できないとの問題が発生している。また、窒素、燐の除去を目的とした従来の高度処理に加えて、脱臭、脱色、殺菌、微量汚染物質、ダイオキシン類や内分泌攪乱物質除去等を目的とした処理方法の導入が進められるようとしている。
【0003】
そこで、生物難分解性物質等の除去法や水を再利用可能とする処理法として、促進酸化法が提案され、紫外線処理法、オゾン処理法、水中放電プラズマ処理法等の実用化が進められている。
【0004】
しかし、上記の紫外線処理法は汚染有機物質を除去、殺菌可能であるが、水中では紫外線の透過距離が小さいため、処理効率が悪い。オゾン処理法は脱臭、脱色、殺菌、有機物質の除去に優れているが、オゾンガスは不安定で加圧、熱により分解され易いため、オゾンガスは現場で放電式オゾナイザーにより製造し、送配管を通して処理すべき水に混合させる。したがって、設備全体の効率が悪い。
【0005】
これらの処理法に対して水中プラズマ放電法は水中にプラズマの発生に伴って生じるラジカル、紫外線、衝撃波、また、急激な電界の変化によって、有機物質を分解除去する方法であり、脱臭、脱色、殺菌作用も優れている。また、二次的な廃棄物も生じず、好ましい処理方法である。尚この様な水中放電プラズマ処理法としては、例えば、特開2000−93972号に記載されている様な放電容器内の水に平行平板電極の間に微***を有する電気絶縁性隔離壁を設け、両電極に高電圧パルスを印加すると、微***において電界が集中して水中放電プラズマが生ずる。これは金属の溶出が少ないが、プラズマ領域が限られるため実用上の障害となっている。さらに、特開2001−9463号には放電容器内の水に非接触状態で対向した電極に交流パルス電圧を印加し、放電容器内に発生する電場により微細気泡中で水中放電プラズマを起こす方法がある。この方法では電極金属の溶出は押さえられるが、絶縁物を介して水と接しているため、電気エネルギーの注入量が少なく、従って実用上大きな問題となる。
【0006】
【発明が解決しようとする課題】
水中にプラズマを発生させるためには高電圧を印加して電界密度を高める必要がある。針対平板電極を用いることにより、電界を針電極に集中し、水中放電プラズマを発生させる方法が一般に用いられる。しかし、この方法では放電プラズマが針電極の近傍にしか発生しないため、広域の放電プラズマが得られない。また、電極は直接に水と接するため、針電極の溶出を避けることができない。したがって、針対平板電極は実用化が困難であり、全体的な処理効率が悪い。
【0007】
本発明においては、高いエネルギー効率で有機物質の分解ができ、さらに金属電極の溶出を防止することができる、高効率液体処理方法及び液体処理装置を提供する。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の水中放電プラズマ装置では、多孔質誘電体パイプの内側にスパイラル電極(高電圧側)を貼り付けて、多孔質誘電体パイプ及びスパイラル電極の内部にガス通路を形成する。多孔質誘電体パイプの外部を囲んだ接地電極との間に水通路を形成する。ガスは多孔質誘電体パイプを通して微細気泡の形で水に供給される。そこで、両電極に高電圧高周波電源又は高電圧パルス電源を接続することで、電界は多孔質パイプの外部に集中し、微細気泡の存在により水中放電プラズマを発生させることを特徴とする。
【0009】
この場合、多孔質誘電体としてはポーラスセラミック製或いは合成樹脂製あるいは電気絶縁体よりなるパイプあるいはそれらよりなる平板を用いる。多孔質誘電体はガスと処理水を介しており、ガス圧を水圧より高く保つておくと、ガスは微細気泡として処理水に供給される。
【0010】
ここでは、微細気泡の存在により、低いエネルギーで水中放電プラズマの生成ができる。また、微細気泡は多孔質パイプの外部に広い範囲で生成されるため、広い範囲の水中放電プラズマを生成することができる。
【0011】
ガスは空気、酸素、アルゴン等を用いることができる。放電により、OH、O、Hラジカル等と共にオゾンや過酸化水素が生成され、特に酸素ガスの場合はラジカルの他に多量のオゾンも生成できる。
【0012】
さらに、本発明は高圧側のスパイラル電極は水と接触していないので、電極の溶出を防止できる。
【0013】
これらの結果、本発明は低いエネルギーで水中放電プラズマが広く生成できるうえに、オゾンも生成できるため、高効率な液体処理装置となる。
【発明の実施の形態】
以下、本発明について実施例に基づき図面を参照して詳細に説明する。
【0014】
【実施例】
図1は本発明の実施例を示す水中放電プラズマ装置である。セラミックで形成された多孔質誘電体パイプ6の内側にスパイラル電極(高電圧電極側)5を配している。また、多孔質誘電体パイプ6の外側に網状、円筒状などに成型された接地電極9が置かれている。
【0015】
高電圧電極5はブッシング16を、また、接地電極9は電流導入端子13をそれぞれ介して電源18に接続されている。電源18としては高電圧パルス電源や高周波高電圧電源を用いる。
【0016】
処理すべき水は入口2より多孔質誘電体パイプ6と容器10の間に形成された水の通路8を通って水出口3から排水される。
【0017】
空気、アルゴン、酸素ガス等をガス入口1より多孔質誘電体パイプ6と高電圧電極5の内部4に供給する。ガスは多孔質誘電体パイプ6を通過して処理すべき水に微細気泡19として供給する。高電圧パルスや高周波高電圧を印加すると電界が発生し、集中された電界が多孔質誘電体パイプ6の細孔を微細気泡とともに通過することにより、放電プラズマが発生する。この放電プラズマは、電子温度は高いがガス温度が低い、低温非平衡放電プラズマとなる。水中では低温非平衡放電プラズマにより水分子がOHラジカルとHラジカルに効率的に解離する。また、原料ガスが酸素ガスの場合は、低温非平衡放電プラズマ中では酸素分子が解離することにより酸素原子が発生しオゾンが生成する。
【0018】
その結果、処理水中の有機物はOHラジカルおよびオゾンにより分解される。また、酸素ガスを原料ガスとした場合、処理すべき水が純水であれば、オゾンガス及びオゾン水が水出口3から排水される。
【0019】
図2に示したのは水処理システムに本水中放電プラズマ水処理装置を組み込んだ一実施例であり、処理槽20は図1示した水中放電プラズマ装置を用いる。
【0020】
貯留槽内の被処理液23は、ポンプ24によって被処理水導入経路22を経由して処理槽20に導入される。同時に、ガスボンベ25からガス導入経路26を経由して、図1における多孔質誘電体パイプ6内に導入される。そして、ガスと被処理液23は処理済排出経路21を経て、貯留槽30に返送される。
【0021】
この際、図1における電極5,9間に高電圧電源18によりパルス状の高電圧が印加され、プラズマが発生し、上記被処理液23がプラズマ処理される。
【0022】
<プラズマ発生に必要な最低電圧>上記装置No.1〜5についてプラズマ発生に必要な最低の印加電圧に関する実験を行った。尚比較として、装置No.1はガスを導入しないときのプラズマの発生について示す。
【0023】
【表−1】

Figure 0004111858
【0024】
<プラズマ処理に要するエネルギー量>本発明においてプラズマ処理に要するエネルギー量に関する比較として、表1中の装置条件1と3と5について実験を行った。
【0025】
被処理液23として、蒸留水にオレンジII染料を10ppm添加し、更にKClを添加して導電率を1.0×10−4S/cmに調整した試料液200mlを使用し、ピーク電圧が15kVの直流パルス電圧を印加してオレンジIIの脱色を行った。その結果を図3に示す。尚図3は、電気パルスの印加投入エネルギーと、被処理液のオレンジII濃度との関係を表すグラフである。
【0026】
【発明の効果】
以上に説明した通り、本発明による水中放電プラズマ処理装置は、電界を多孔質誘電体の細孔に集中し、微細気泡の存在により、低いエネルギーで水中放電プラズマを生成できる。さらに、放電プラズマが多孔質誘電体パイプの細孔に発生するため、電極金属の溶出を防止できる。また、多孔質誘電体パイプ全体にわたって放電が発生するため、広範囲な水中放電プラズマが可能である。
【図面の簡単な説明】
【図1】本発明の実施例における水中放電プラズマ処理装置の構成図の断面図である。
【図2】本発明の一実施例に係る液体処理装置を示す。
【図3】電気パルスの印加投入エネルギーと、被処理液の染料オレンジII濃度との関係を示すグラフ。
【符号の説明】
11 容器フランジ(水入口部)
12 容器フランジ(水出口部)
14 接地側配線
15 配線
17 高圧側配線
18 電源[0001]
[Technical field to which the invention belongs]
The present invention relates to biodegradability such as harmful organic matter and dioxins contained in chemical factory effluent, chemical factory effluent, food factory effluent, fat factory effluent, pulp factory effluent, other industrial effluent, river water, waterworks, etc. The present invention relates to an underwater discharge plasma method and a liquid processing apparatus for treating organic substances.
[0002]
[Prior art]
In conventional wastewater treatment containing organic matter, biological treatment methods using activated sludge containing microorganisms have been widely put into practical use. However, there is a problem that biological treatment cannot remove aromatic compounds, hardly biodegradable organic substances, and the like. In addition to conventional advanced treatments aimed at removing nitrogen and phosphorus, the introduction of treatment methods aimed at deodorizing, decolorizing, sterilizing, removing trace pollutants, dioxins and endocrine disrupting substances will be promoted. Yes.
[0003]
Therefore, an accelerated oxidation method has been proposed as a method for removing biologically degradable substances, etc., and a treatment method that makes water reusable, and an ultraviolet treatment method, an ozone treatment method, an underwater discharge plasma treatment method, etc. are being put to practical use. ing.
[0004]
However, although the above-mentioned ultraviolet treatment method can remove and sterilize contaminating organic substances, the treatment efficiency is poor because the ultraviolet ray transmission distance is short in water. The ozone treatment method is excellent for deodorization, decolorization, sterilization, and removal of organic substances, but ozone gas is unstable and easily decomposed by pressure and heat, so ozone gas is manufactured on site with a discharge-type ozonizer and processed through a pipe. Mix in the water to be. Therefore, the efficiency of the entire facility is poor.
[0005]
In contrast to these treatment methods, the underwater plasma discharge method is a method of decomposing and removing organic substances by radicals, ultraviolet rays, shock waves, and abrupt changes in the electric field generated by the generation of plasma in water. Bactericidal action is also excellent. In addition, secondary waste does not occur, which is a preferable treatment method. In addition, as such an underwater discharge plasma treatment method, for example, an electrically insulating isolation wall having a minute hole between parallel plate electrodes is provided in water in a discharge vessel as described in JP-A-2000-93972. When a high voltage pulse is applied to both electrodes, the electric field concentrates in the minute holes and underwater discharge plasma is generated. This is a practical impediment due to the limited plasma region, although there is little metal elution. Furthermore, Japanese Patent Laid-Open No. 2001-9463 discloses a method in which an AC pulse voltage is applied to an electrode facing the water in the discharge vessel in a non-contact state, and an underwater discharge plasma is generated in the fine bubbles by the electric field generated in the discharge vessel. is there. In this method, the elution of the electrode metal can be suppressed, but since it is in contact with water through an insulator, the amount of injected electric energy is small, and therefore, it becomes a large practical problem.
[0006]
[Problems to be solved by the invention]
In order to generate plasma in water, it is necessary to increase the electric field density by applying a high voltage. Generally, a method of concentrating an electric field on the needle electrode and generating an underwater discharge plasma by using a needle-to-plate electrode is generally used. However, in this method, since discharge plasma is generated only in the vicinity of the needle electrode, a wide range of discharge plasma cannot be obtained. Further, since the electrode is in direct contact with water, elution of the needle electrode cannot be avoided. Therefore, it is difficult to put the needle-to-plate electrode into practical use, and the overall processing efficiency is poor.
[0007]
The present invention provides a high-efficiency liquid processing method and liquid processing apparatus that can decompose organic substances with high energy efficiency and can prevent elution of metal electrodes.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, in the underwater discharge plasma apparatus of the present invention, a spiral electrode (high voltage side) is attached to the inside of a porous dielectric pipe, and a gas passage is formed inside the porous dielectric pipe and the spiral electrode. Form. A water passage is formed between the porous dielectric pipe and the ground electrode surrounding the outside. Gas is supplied to the water in the form of fine bubbles through a porous dielectric pipe. Therefore, by connecting a high-voltage high-frequency power source or a high-voltage pulse power source to both electrodes, the electric field is concentrated outside the porous pipe, and underwater discharge plasma is generated by the presence of fine bubbles.
[0009]
In this case, as the porous dielectric, a pipe made of porous ceramic, synthetic resin, or an electrical insulator or a flat plate made of them is used. The porous dielectric material passes through gas and treated water. If the gas pressure is kept higher than the water pressure, the gas is supplied to the treated water as fine bubbles.
[0010]
Here, underwater discharge plasma can be generated with low energy due to the presence of fine bubbles. In addition, since the fine bubbles are generated in a wide range outside the porous pipe, a wide range of underwater discharge plasma can be generated.
[0011]
As the gas, air, oxygen, argon or the like can be used. By discharge, ozone and hydrogen peroxide are generated together with OH, O, H radicals and the like, and particularly in the case of oxygen gas, a large amount of ozone can be generated in addition to the radicals.
[0012]
Furthermore, in the present invention, since the high-pressure side spiral electrode is not in contact with water, it is possible to prevent electrode elution.
[0013]
As a result, the present invention can generate a wide variety of underwater discharge plasmas with low energy, and can also generate ozone, so that it becomes a highly efficient liquid processing apparatus.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on examples with reference to the drawings.
[0014]
【Example】
FIG. 1 shows an underwater discharge plasma apparatus according to an embodiment of the present invention. A spiral electrode (high voltage electrode side) 5 is disposed inside a porous dielectric pipe 6 made of ceramic. In addition, a ground electrode 9 formed in a net shape, a cylindrical shape, or the like is placed outside the porous dielectric pipe 6.
[0015]
The high voltage electrode 5 is connected to the power supply 18 via the bushing 16 and the ground electrode 9 is connected to the power supply 18 via the current introduction terminal 13. As the power source 18, a high voltage pulse power source or a high frequency high voltage power source is used.
[0016]
Water to be treated is drained from the water outlet 3 through the water passage 8 formed between the porous dielectric pipe 6 and the container 10 from the inlet 2.
[0017]
Air, argon, oxygen gas or the like is supplied from the gas inlet 1 to the porous dielectric pipe 6 and the inside 4 of the high voltage electrode 5. The gas passes through the porous dielectric pipe 6 and is supplied as fine bubbles 19 to the water to be treated. When a high voltage pulse or a high frequency high voltage is applied, an electric field is generated, and the concentrated electric field passes through the pores of the porous dielectric pipe 6 together with fine bubbles, thereby generating discharge plasma. This discharge plasma is a low temperature non-equilibrium discharge plasma having a high electron temperature but a low gas temperature. In water, water molecules are efficiently dissociated into OH radicals and H radicals by low-temperature nonequilibrium discharge plasma. When the source gas is oxygen gas, oxygen atoms are generated by the dissociation of oxygen molecules in the low temperature non-equilibrium discharge plasma, and ozone is generated.
[0018]
As a result, organic substances in the treated water are decomposed by OH radicals and ozone. When oxygen gas is used as the raw material gas, if the water to be treated is pure water, ozone gas and ozone water are drained from the water outlet 3.
[0019]
FIG. 2 shows an embodiment in which the present underwater discharge plasma water treatment apparatus is incorporated in the water treatment system, and the treatment tank 20 uses the underwater discharge plasma apparatus shown in FIG.
[0020]
The liquid to be treated 23 in the storage tank is introduced into the treatment tank 20 by the pump 24 via the water to be treated introduction path 22. At the same time, the gas is introduced from the gas cylinder 25 into the porous dielectric pipe 6 in FIG. Then, the gas and the liquid to be processed 23 are returned to the storage tank 30 through the processed discharge path 21.
[0021]
At this time, a pulsed high voltage is applied between the electrodes 5 and 9 in FIG. 1 by the high voltage power source 18 to generate plasma, and the liquid to be processed 23 is plasma processed.
[0022]
<Minimum voltage required for plasma generation> Experiments on the minimum applied voltage required for plasma generation were conducted for 1-5. For comparison, the device No. Reference numeral 1 denotes plasma generation when no gas is introduced.
[0023]
[Table-1]
Figure 0004111858
[0024]
<Energy Amount Required for Plasma Treatment> As a comparison regarding the energy amount required for the plasma treatment in the present invention, an experiment was conducted with respect to apparatus conditions 1, 3 and 5 in Table 1.
[0025]
As the liquid to be treated 23, 200 ml of a sample liquid prepared by adding 10 ppm of Orange II dye to distilled water and further adding KCl to adjust the conductivity to 1.0 × 10 −4 S / cm is used, and the peak voltage is 15 kV. The DC pulse voltage was applied to decolorize Orange II. The result is shown in FIG. FIG. 3 is a graph showing the relationship between the applied energy of electric pulses and the orange II concentration of the liquid to be treated.
[0026]
【The invention's effect】
As described above, the underwater discharge plasma processing apparatus according to the present invention concentrates the electric field on the pores of the porous dielectric and can generate underwater discharge plasma with low energy due to the presence of fine bubbles. Furthermore, since discharge plasma is generated in the pores of the porous dielectric pipe, it is possible to prevent electrode metal from eluting. In addition, since discharge is generated over the entire porous dielectric pipe, a wide range of underwater discharge plasma is possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a configuration diagram of an underwater discharge plasma processing apparatus in an embodiment of the present invention.
FIG. 2 shows a liquid processing apparatus according to an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the electric pulse application energy and the concentration of dye orange II in the liquid to be treated.
[Explanation of symbols]
11 Container flange (water inlet)
12 Container flange (water outlet)
14 Grounding side wiring 15 Wiring 17 High voltage side wiring 18 Power supply

Claims (5)

水処理を対象として、水中放電プラズマ法において、多孔質誘電体パイプの内側に高電圧電極をはり付けて、多孔質誘電体パイプ及び高電圧電極の内部にガス通路を形成し、多孔質誘電体パイプの外部と囲んだ接地電極の間に処理すべき水通路を形成し、両電極に高電圧高周波電源又は高電圧パルス電源を接続することで、多孔質誘電体パイプを通過した微細気泡に水中放電プラズマを行うことを特徴とする水中放電プラズマ法。  For water treatment, in the underwater discharge plasma method, a high voltage electrode is attached to the inside of the porous dielectric pipe to form a gas passage inside the porous dielectric pipe and the high voltage electrode. A water passage to be treated is formed between the outside of the pipe and the surrounding ground electrode, and a high-voltage high-frequency power source or a high-voltage pulse power source is connected to both electrodes, so that the fine bubbles that have passed through the porous dielectric pipe are submerged in water. An underwater discharge plasma method characterized by performing discharge plasma. 上記の装置に酸素ガスを利用することにより、処理すべき水にOH、H、O等のラジカル及びオゾンを生成させる請求項1に記載の水中放電プラズマ法。The underwater discharge plasma method according to claim 1 , wherein radicals such as OH, H, and O and ozone are generated in water to be treated by using oxygen gas in the apparatus. 上記の装置にメタンガスを利用することにより、水素ガス及びメタノールを生成させる請求項1に記載の水中放電プラズマ法。The underwater discharge plasma method according to claim 1 , wherein hydrogen gas and methanol are generated by using methane gas in the apparatus. 水処理を対象として、水中放電プラズマ装置において、高電圧電極は水と非接触状態で多孔質誘電体パイプの内側に貼り付けて、多孔質誘電体パイプの内部にガス通路を形成し、接地電極は多孔質誘電体パイプの外部に設置し、接地電極と多孔質誘電体パイプとの間に処理すべき水通路を形成し、ガスは多孔質誘電体パイプを通過し、微細気泡の状態で処理すべき水に供給し、両電極に印加電圧電源を有していることを特徴とする水中放電プラズマ装置。  For underwater discharge plasma equipment for water treatment, the high-voltage electrode is attached to the inside of the porous dielectric pipe in a non-contact state with water, a gas passage is formed inside the porous dielectric pipe, and the ground electrode Is installed outside the porous dielectric pipe to form a water passage to be processed between the ground electrode and the porous dielectric pipe, and the gas passes through the porous dielectric pipe and is processed in the form of fine bubbles. An underwater discharge plasma apparatus characterized in that it supplies water to be supplied and has an applied voltage power supply at both electrodes. 上記の多孔質誘電体パイプはポーラスセラミック製或いは合成樹脂製あるいは電気絶縁体よりなるパイプあるいはそれらよりなる平板である請求項4に記載の液体処理装置。5. The liquid processing apparatus according to claim 4 , wherein the porous dielectric pipe is a pipe made of a porous ceramic, a synthetic resin, or an electrical insulator, or a flat plate made of them.
JP2003105852A 2003-03-06 2003-03-06 Underwater discharge plasma method and liquid treatment apparatus Expired - Fee Related JP4111858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105852A JP4111858B2 (en) 2003-03-06 2003-03-06 Underwater discharge plasma method and liquid treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105852A JP4111858B2 (en) 2003-03-06 2003-03-06 Underwater discharge plasma method and liquid treatment apparatus

Publications (2)

Publication Number Publication Date
JP2004268003A JP2004268003A (en) 2004-09-30
JP4111858B2 true JP4111858B2 (en) 2008-07-02

Family

ID=33127877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105852A Expired - Fee Related JP4111858B2 (en) 2003-03-06 2003-03-06 Underwater discharge plasma method and liquid treatment apparatus

Country Status (1)

Country Link
JP (1) JP4111858B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108260A1 (en) 2011-02-08 2012-08-16 パナソニック株式会社 Plasma generator, cleaning and purifying device using the plasma generator, and small-sized electrical apparatus
CN105428196A (en) * 2015-11-12 2016-03-23 大连民族大学 Liquid phase uniform mixing treatment discharge apparatus
KR20190021732A (en) 2017-08-23 2019-03-06 주식회사 셀로닉스 Apparatus for generating dielectric discharge plasma and surface coating method of liquid dispersion material using the same

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938323B1 (en) * 2005-03-25 2010-01-22 미츠비시 레이온 가부시키가이샤 Method of surface treatment and surface-treated article
WO2007063987A1 (en) * 2005-12-02 2007-06-07 Osaka University Method for processing/washing with ultra-pure water plasma foams and apparatus for the method
JP5295485B2 (en) * 2006-02-01 2013-09-18 株式会社栗田製作所 Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus
WO2007105330A1 (en) * 2006-03-06 2007-09-20 Juridical Foundation Osaka Industrial Promotion Organization Glow plasma generator and method for generating glow plasma
JP2008006336A (en) * 2006-06-27 2008-01-17 Toshiba Corp Water cleaning system
JP2008173521A (en) * 2006-08-09 2008-07-31 Honda Electronic Co Ltd Submerged plasma treatment apparatus and submerged plasma treatment method
JP5067802B2 (en) * 2006-12-28 2012-11-07 シャープ株式会社 Plasma generating apparatus, radical generating method, and cleaning and purifying apparatus
WO2008123749A1 (en) 2007-04-10 2008-10-16 21C Shipbuilding Co., Ltd. Underwater plasma processing apparatus and system and method for processing ballast water of ship using the same
JP4842895B2 (en) * 2007-07-31 2011-12-21 株式会社テドリ Fluid processing apparatus and fluid processing method
JP2009241055A (en) * 2008-03-12 2009-10-22 Sekisui Chem Co Ltd Water treating apparatus
JP2009234900A (en) * 2008-03-28 2009-10-15 Univ Of Miyazaki Underwater ozonizer
NL1035555C2 (en) * 2008-06-09 2009-12-10 Cooeperatieve Vereniging Easym Device for producing ozone, radical and UV radiation used for various applications, has generator provided with two electrodes for generating alternating voltage in reactor
NL1035556C2 (en) * 2008-06-09 2009-12-10 Cooeperatieve Vereniging Easym Device for producing ozone, radical and UV radiation used for various applications, has generator provided with two electrodes for generating alternating voltage in reactor
EP2338610A4 (en) * 2008-09-25 2013-02-20 Panasonic Corp Reduced water mist generating device and electrical equipment
JP5394032B2 (en) * 2008-09-30 2014-01-22 パナソニック株式会社 Reduced water generator
JP2010082213A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Hair care appliance incorporating reduced water mist spraying device
JP5523689B2 (en) * 2008-09-30 2014-06-18 パナソニック株式会社 Air conditioner
JP5537010B2 (en) * 2008-09-25 2014-07-02 パナソニック株式会社 Plant growing device
US20110240539A1 (en) * 2008-11-12 2011-10-06 Taisuke Nose Water treatment system
JP2011011126A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Apparatus for producing functional liquid
WO2011027973A2 (en) * 2009-09-02 2011-03-10 한국기초과학지원연구원 Liquid medium plasma discharge generating apparatus
JP5204061B2 (en) * 2009-09-11 2013-06-05 国立大学法人東京工業大学 Gas-liquid two-phase flow plasma processing equipment
FR2953279B1 (en) * 2009-11-30 2013-08-02 Commissariat Energie Atomique METHOD AND DEVICE FOR TREATING WASTE BY INJECTION IN IMMERSE PLASMA.
JP5575529B2 (en) * 2010-04-15 2014-08-20 安斎 聡 Ultra-fine bubble generator
JP5445966B2 (en) * 2010-06-30 2014-03-19 国立大学法人名古屋大学 Water treatment method and water treatment apparatus
JP5870279B2 (en) 2010-07-21 2016-02-24 パナソニックIpマネジメント株式会社 Plasma generating apparatus and radical generating method, cleaning and purifying apparatus and electrical equipment using them
JP2012164557A (en) * 2011-02-08 2012-08-30 Panasonic Corp Plasma generating device, and cleaning/purifying device and small electric appliance using plasma generating device
KR101157122B1 (en) * 2011-03-22 2012-06-22 이재혁 Advanced water treatment apparatus using plasma
JP2012204248A (en) * 2011-03-28 2012-10-22 Panasonic Corp Plasma generating device and washing and cleaning device using the same
JP2013022475A (en) * 2011-07-15 2013-02-04 Panasonic Corp Cleaning device
JP2013022476A (en) * 2011-07-15 2013-02-04 Panasonic Corp Plasma generating apparatus and cleaning/purifying apparatus using the same
JP5866694B2 (en) * 2011-10-21 2016-02-17 国立大学法人東北大学 Radical generator and purification method using the same
JP2013170844A (en) * 2012-02-17 2013-09-02 Mitsubishi Heavy Ind Ltd Decontamination method and decontamination device
CN102595756A (en) * 2012-03-15 2012-07-18 大连海事大学 Generating device and generating method for gas-liquid mixed dielectric barrier discharge
JP6008359B2 (en) * 2012-03-30 2016-10-19 公立大学法人大阪市立大学 In-liquid plasma generation apparatus, liquid to be treated purification apparatus, and ion-containing liquid generation apparatus
JP6164801B2 (en) * 2012-05-08 2017-07-19 三菱重工業株式会社 Decontamination apparatus and decontamination method
KR101222695B1 (en) * 2012-08-28 2013-01-16 (주)대진환경개발 Apparatus for treating sewage using electric field pretreatment and membrane
CN103466754B (en) * 2012-11-01 2015-07-01 王志农 Apparatus for processing sewage through high-pressure dielectric barrier liquid phase discharge plasma, and method thereof
CN102923830B (en) * 2012-11-15 2017-03-08 王国秋 A kind of water treatment facilities
KR101236202B1 (en) * 2012-11-23 2013-02-26 주식회사 플라즈마코리아 Underwater plasma generation apparatus
CN103880126A (en) * 2012-12-21 2014-06-25 陈晓波 Surge-controllable low-temperature plasma discharge water treatment pipeline structure
KR200468568Y1 (en) * 2012-12-26 2013-08-21 하태준 Nano water treatment device
KR101476644B1 (en) * 2013-01-30 2014-12-26 주식회사 플라즈마코리아 Underwater plasma generation apparatus
US9475710B2 (en) 2013-03-14 2016-10-25 North Carolina State University Very high frequency (VHF) driven atmospheric plasma sources and point of use fertigation of irrigation water utilizing plasma production of nitrogen bearing species
CN103432975B (en) * 2013-07-30 2015-08-12 兰州盛源科技有限责任公司 Stop the method and the device that container or inner-walls of duct are formed solid adhesion
CN103482735B (en) * 2013-09-09 2015-11-25 河海大学常州校区 Water spray discharge air plasma jet processing unit and high voltage source thereof
JP5638678B1 (en) 2013-09-10 2014-12-10 Pmディメンションズ株式会社 Liquid dielectric barrier discharge plasma apparatus and liquid purification system
JP5899455B2 (en) 2013-10-25 2016-04-06 パナソニックIpマネジメント株式会社 Liquid processing apparatus and liquid processing method
JP2015085297A (en) * 2013-11-01 2015-05-07 国立大学法人東京工業大学 Liquid treatment apparatus and produced water treatment method
JP2016059853A (en) * 2014-09-17 2016-04-25 前澤工業株式会社 Water treatment method and apparatus
WO2016152745A1 (en) * 2015-03-20 2016-09-29 日本碍子株式会社 Water treatment device, water treatment method, sterile water production device, and sterile water production method
CN107879520A (en) * 2017-12-01 2018-04-06 南京苏曼等离子科技有限公司 Rotate bubbling cavitation arc discharge wastewater treatment equipment and method
KR102145101B1 (en) * 2018-07-02 2020-08-14 광운대학교 산학협력단 Liquid discharge plasma source with capillary tube
CN108675387A (en) * 2018-08-08 2018-10-19 中国矿业大学(北京) A kind of purifier and purification method of processing used water difficult to degradate
CN109351299A (en) * 2018-10-09 2019-02-19 浙江工业大学 It a kind of rotation electrode discharge reactor and its is converted for methane or ethylene
CN110180858B (en) * 2019-05-29 2023-07-28 台州学院 Treatment method and device for accelerating refuse mineralization of refuse landfill based on pulse electric field
KR102501689B1 (en) * 2019-11-19 2023-02-21 주식회사 플라리트 Plasma humidifier for air washer
KR102421790B1 (en) * 2020-12-31 2022-07-18 울산과학기술원 Apparatus for dispersing nanomaterials using underwater plasma and a nanomaterial dispersion method using the apparatus for dispersing the same
CN112811572B (en) * 2021-01-26 2022-07-15 佛山科学技术学院 Ozone oxidation reactor and sewage treatment system
WO2023149845A1 (en) * 2022-02-01 2023-08-10 Chiang Mai University Plasma activated water machine for decontamination of chemical residues and microorganisms in vegetables and fruits
CN114716077B (en) * 2022-03-14 2023-06-09 浙江一龙环保科技有限公司 Plasma sewage treatment device, sewage treatment system and sewage treatment method
WO2023176232A1 (en) * 2022-03-15 2023-09-21 ローレルバンクマシン株式会社 Device and method for producing plasma functional liquid and horticultural plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108260A1 (en) 2011-02-08 2012-08-16 パナソニック株式会社 Plasma generator, cleaning and purifying device using the plasma generator, and small-sized electrical apparatus
US9392680B2 (en) 2011-02-08 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Plasma generator, and cleaning and purifying device apparatus and small-sized electrical appliance using plasma generator
CN105428196A (en) * 2015-11-12 2016-03-23 大连民族大学 Liquid phase uniform mixing treatment discharge apparatus
KR20190021732A (en) 2017-08-23 2019-03-06 주식회사 셀로닉스 Apparatus for generating dielectric discharge plasma and surface coating method of liquid dispersion material using the same

Also Published As

Publication number Publication date
JP2004268003A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4111858B2 (en) Underwater discharge plasma method and liquid treatment apparatus
US9352984B2 (en) Fluid treatment using plasma technology
US7704401B2 (en) Liquid treatment apparatus and liquid treatment method
JP4041224B2 (en) Liquid processing method and liquid processing apparatus
JP5778911B2 (en) Water sterilizer and water sterilization method
KR100932377B1 (en) Method of water purification using high density underwater plasma torch
CN102583697B (en) Dielectric barrier discharge water treatment device and dielectric barrier discharge water treatment method
CN100480192C (en) Method and apparatus for treating electrodeless discharging liquid
KR100924649B1 (en) Generator and method of high desity underwater plasma torch
JP3910849B2 (en) Water purification system and method
JP2013211204A (en) Submerged plasma generating method, submerged plasma generating device, processed liquid purifying device, and ion containing liquid creating device
JP2000093972A (en) Liquid treating method and liquid treating apparatus
KR101497591B1 (en) Apparatus for treating water using discharge in reactor
Cui et al. The types of plasma reactors in wastewater treatment
GB2536210A (en) Method and apparatus for decontamination of fluids
WO1999047230A1 (en) Treatment of liquids
RU2152359C1 (en) Device for cleaning and decontamination of water by high-voltage electrical discharges
Nur et al. Development of DDBD and plasma jet reactors for production reactive species plasma chemistry
KR101444290B1 (en) Wastewater purification apparatus using the magnetic resonance device
KR20030015622A (en) Water treatment apparatus using plasma gas discharge in reactor
WO2002098799A1 (en) Treatment of liquids
RU2478580C1 (en) Device for decontamination of effluents by electric discharges
KR20220012035A (en) Submerged arc plasma coupled with ozone generator for wastewater treatment
KR20090009493A (en) System for purifying waste water using ozone
RU2234470C2 (en) Water purification system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060320

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees