JP4106976B2 - Chromium-containing wastewater treatment method - Google Patents

Chromium-containing wastewater treatment method Download PDF

Info

Publication number
JP4106976B2
JP4106976B2 JP2002180264A JP2002180264A JP4106976B2 JP 4106976 B2 JP4106976 B2 JP 4106976B2 JP 2002180264 A JP2002180264 A JP 2002180264A JP 2002180264 A JP2002180264 A JP 2002180264A JP 4106976 B2 JP4106976 B2 JP 4106976B2
Authority
JP
Japan
Prior art keywords
chromium
reaction
ferrous
ion source
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002180264A
Other languages
Japanese (ja)
Other versions
JP2004017025A (en
Inventor
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002180264A priority Critical patent/JP4106976B2/en
Publication of JP2004017025A publication Critical patent/JP2004017025A/en
Application granted granted Critical
Publication of JP4106976B2 publication Critical patent/JP4106976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、6価クロム(Cr6+)を含有する排水に第一鉄イオンを添加して6価クロムを3価クロム(Cr3+)に還元した後、固液分離するクロム含有排水の処理方法に係り、特に、この還元処理のための薬剤使用量及び汚泥発生量を低減して効率的な処理を行う方法に関する。
【0002】
【従来の技術】
Cr6+を含有する排水からCr6+を除去する方法としては、Cr6+をCr3+に還元し、不溶性化合物として除去する方法が行われている。
【0003】
従来、このような処理方法として、亜硫酸塩還元法が一般的である。この方法は、pH2〜2.5の酸性域で亜硫酸塩によりCr6+をCr3+に還元し、その後pH8〜9でCr3+をCr(OH)として不溶化し、これを沈殿分離する方法である。しかし、この方法は、亜硫酸塩の注入制御のためにORP計が必要であり、また、pH2〜2.5の低pH条件下でないと還元反応が定量的に進行しないため、このpH調整のために多量の酸を必要とし、還元処理後の中和のためにも多量のアルカリを必要とするという欠点がある。
【0004】
一方、pH中性でCr6+をCr3+に還元する方法として、還元剤として第一鉄(Fe2+)塩を用いる方法がある。しかし、この方法では、pH中性で過剰のFe2+が存在すると、これがイオンのまま処理水中に流出し、処理水の着色や鉄の排水基準を超える恐れがあるなどの問題を引き起こす。
【0005】
本出願人は、この第一鉄塩によるCr6+の還元処理において、的確な薬注制御を行う方法として、Cr6+含有排水のpHを4以上に調整し、溶存酸素(DO)が2mg/L以下になるように第一鉄塩を添加する方法を提案した(特開平3−254889号公報)。
【0006】
この方法は、第一鉄塩の添加量制御にDO計を適用し、pH4以上でDOが2mg/L以下となるような条件であれば、Cr6+のCr3+への還元が終了した状態と判断するものであるが、その原理は次の通りである。
【0007】
即ち、第一鉄イオン(Fe2+)は溶存酸素で酸化され、下記反応式▲1▼に従って第二鉄イオン(Fe3+)に変化する。この反応はpH4付近より顕著となり、中性以上では瞬時の反応となる。pH3未満の酸性では、▲1▼の酸化反応は起き難い。一方、Cr6+もFe2+と瞬時に反応し、酸性、アルカリ性のいずれにおいても下記反応式▲2▼に従って還元される。
【0008】
2Fe2++O+HO→2Fe3++2OH …▲1▼
Cr6++3Fe2+→3Fe3++Cr3+ …▲2▼
ここで、▲2▼の反応が▲1▼の反応に優先すれば、DO計によるDOの測定により、即ち、DO計によるDO測定値が所定値以下となったことを検知したときが、Cr6+の還元反応が完結したときであるので、Cr6+の還元反応終了を検知することができ、第一鉄塩のDO計による薬注制御が可能となる。
【0009】
実際、pH4以上の反応条件であれば、▲2▼の反応が▲1▼の反応に優先し、DO計を薬注制御に適用することが可能となることから、特開平3−254889号公報記載の方法では、pH4以上の条件でDO2mg/L以下となるように第一鉄塩の薬注制御を行う。
【0010】
【発明が解決しようとする課題】
特開平3−254889号公報記載の方法であれば、第一鉄塩の過剰添加を防止した上でCr6+を効率的にCr3+に還元することができるが、より一層第一鉄塩の添加量を低減した上で、効率的な還元処理を行うことが望まれる。
【0011】
本発明は、Cr6+含有排水に第一鉄イオン源を添加してCr6+をCr3+に還元した後固液分離する方法において、第一鉄イオン源の必要添加量をより一層低減させることができるクロム含有排水の処理方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明のクロム含有排水の処理方法は、6価クロムを含有する排水に、第一鉄イオン源を添加して6価クロムを3価クロムに還元した後、固液分離するクロム含有排水の処理方法において、前記6価クロム含有排水に第一鉄イオン源を添加し、pH7〜11の条件で6価クロムを3価クロムに還元する還元工程と、該還元工程の流出水を固液分離することなくpH4.5〜6.5に調整するpH調整工程と、該pH調整工程の流出水から不溶化物を分離除去する固液分離工程とを有することを特徴とする。
【0013】
前述の如く、特開平3−254889号公報に記載される方法では、Fe2+とCr6+との反応がFe2+とDOとの反応よりも優先することを利用して、Fe2+とCr6+との反応が終了し、Fe2+とDOとの反応が開始してDOが低下したことをDO計で検知することにより薬注制御するものである。
【0014】
Fe2+とDOとの反応は、pH4〜6の条件下では進行が遅く、Fe2+が過剰注入され易いため、好ましくはpH7〜11の条件で還元処理が行われる。この条件で、DOがわずかでも低下すれば、Fe2+とDOとの反応が開始したこと、即ち、Fe2+とCr6+との反応が終了したことになるが、実際には、Fe2+とCr6+との反応時に、Fe2+とDOとの反応が併発しており、このため、特開平3−254889号公報の方法では、Fe2+とCr6+との反応が確実に終了するように、DOが2mg/L以下となるまでFe2+を添加している。
【0015】
しかし、水中の飽和DO濃度が例えば8mg/Lであった場合、DOが2mg/L以下となるには、少なくとも8−2=6mg/LのDOがFe2+との反応により低減したこと、即ち、前記▲1▼式よりDO1mgに対して7mgのFe2+が反応するのであるから(2Fe/O=55.8×2/16≒7)、Fe2+は42mg/L(=7×6mg/L)もDOとの反応に消費されたことになる。
【0016】
Fe2+の過剰添加を防止して、適正な薬注制御を行うためには、DOとの反応に消費されるFe2+を極力減らし、このDO低下がなるべく小さい値においてFe2+の薬注制御を行うことが必要であるが、Fe2+とCr6+との反応が完全に終了した後Fe2+とDOとの反応が開始するものではなく、Fe2+とCr6+との反応時に一部Fe2+とDOとの反応が併発すること、即ち、Fe2+とDOとの反応が開始したときには、未だCr6+が残留していることから、特開平3−254889号公報に記載される方法においては、このCr6+の残留を防止し、Fe2+とCr6+との反応を確実に終了させるために、飽和DO濃度(例えば8mg/L)に対して、十分に低いDO2mg/L以下をFe2+の薬注制御基準としていた。
【0017】
本発明者は、このようなFe2+によるCr6+の還元処理におけるFe2+の必要添加量を低減すべく検討したところ、次のような実験結果を得た。
【0018】
即ち、Cr6+10mg/Lを含む水を、pH8の条件でDOが1mg/Lだけ低下するまでFe2+を添加した後固液分離したところ、得られた上澄水のCr6+濃度は0.8mg/Lであり、Cr6+の残留が認められた。しかし、このようにpH8の条件でDOが1mg/Lだけ低下するまでFe2+を添加した後、固液分離することなく酸を添加してpH6に調整し、その後固液分離を行ったところ、上澄水のCr6+濃度は0.02mg/L以下となり、Cr6+の残留は認められなかった。
【0019】
この反応機構を解明すべく、更に検討を重ねた結果、pH酸性条件で下記の反応に従って、残留するCr6+が、Cr6+の還元で生成した水酸化第二鉄の沈殿に吸着されることにより除去されることを知見した。
【0020】
[Fe(OH)+Cr6+→[Fe(OH)・Cr6+
上記反応は、pHに基く平衡反応であり、[Fe(OH)は、pH7以下の弱酸性でCr6+を吸着し、pH7以上のアルカリ性では吸着したCr6+を脱着する。
【0021】
本発明では、pH7〜11の条件で、わずかに、例えばDOが1mg/L低下するまで第一鉄イオン源を添加して、Fe2+とCr6+とを反応させる。このDOの低下は、Fe2+とDOとの反応の開始を示すものであるが、この際、未反応のCr6+がわずかではあるが残留している。しかし、その後、pH4.5〜6.5に調整することにより、残留しているCr6+を[Fe(OH)に吸着させ、これを固液分離することにより除去することができる。
【0022】
従って、本発明では、第一鉄イオン源は、例えば、第一鉄イオン源の添加前よりもDOが1mg/L低下するような量で添加すれば良く、このDOが1mg/L低下する際のFe2+消費量は7mg/Lであり、従来法に比べて、第一鉄イオン源の必要添加量を大幅に低減することができる。そして、第一鉄イオン源の添加量が低減することにより、汚泥発生量も低減される。
【0023】
また、本発明の方法では、次のような副次効果も得ることができる。
【0024】
即ち、被処理排水中にリンが含まれている場合、pH7以上では、リンは、[Fe(OH)・PO 3−+PO 3−の様にコロイド状とイオン状となって溶解し、沈殿し難いために、リンの処理特性が悪化するが、pH6.5以下であれば、FePOとして沈殿し、凝集性も改善されるため、リンの処理効率も向上する。
【0025】
【発明の実施の形態】
以下に図面を参照して本発明のクロム含有排水の処理方法の実施の形態を詳細に説明する。
【0026】
図1は本発明のクロム含有排水の処理方法の実施の形態を示す系統図である。
【0027】
図1の方法では、Cr6+含有排水(原水)をまず還元槽1に導入して第一鉄イオン源を添加すると共に、必要に応じてpH調整剤を添加してpHを7〜11に調整することにより、原水中のCr6+をCr3+に還元する。
【0028】
原水に添加する第一鉄イオン源としては、特に制限はなく、例えば、硫酸第一鉄が最も一般的であるが、他に塩化第一鉄、硫酸第一鉄アンモニウム、硝酸第一鉄、水酸化第一鉄等を使用することができる。また、これらの第一鉄塩を含有する一般廃液、例えば製鉄工業等の酸洗廃液、非鉄金属の製錬廃水等も使用することができる。
【0029】
また、pH調整剤としては、カセイソーダ、消石灰、ソーダ灰等のアルカリや硫酸、塩酸等の酸を用いることができる。
【0030】
第一鉄イオン源の添加量を制御する方法に制限はなく、ORP制御、DO制御、一定量添加などの方法を採用することができるが、本発明では、還元槽1にDO計を設け、DO濃度が予め定めた設定値以下になるように第一鉄イオン源を添加するのが処理操作が単純で、第一鉄イオン源の使用量を少なくし、発生する水酸化物汚泥を減少させる上で好ましい。
【0031】
この場合、前述の如く、従来法ではCr6+を完全に処理するために通常、DO濃度が1〜2mg/Lになるまで第一鉄イオン源を添加するように制御を行っているが、この場合には、DOとの反応に消費させる第一鉄イオンが多く、無駄が多い。本発明では、後段のpH調整により残留するCr6+を吸着除去することができることから、DO制御基準は、従来よりも高いDO濃度とすることができる。
【0032】
DOによる第一鉄イオン源の薬注制御を行う場合、還元槽の形状、撹拌条件等によって設定するDO濃度は異なるが、本発明では、通常、DO濃度が第一鉄イオン源添加前の原水のDO濃度よりも1〜2mg/L程度低下するような添加量、即ち、例えば、飽和DO濃度8mg/Lであれば、DOが6〜7mg/L程度となるように、第一鉄イオン源の添加量制御を行うことで十分な処理効果を得ることができる。
【0033】
この還元槽1のpH条件が7未満では、Cr6+とFe2+との反応が遅く、十分な反応効率を得ることができない。また、pHが11を超えると第一鉄イオンはCr6+と反応する前にFe(OH)となって析出し反応性が悪くなるため、pH計の測定結果に基いて、還元槽1内のpHが7〜11の範囲となるように、必要に応じてpH調整剤を添加する。
【0034】
還元槽1の流出水は次いでpH調整槽2に導入し、塩酸、硫酸等の酸を添加してpH4.5〜6.5に調整する。このpH調整槽2のpHが6.5を超えると前述のCr6+の吸着効果が得られず、処理水中にCr6+が残留する。このpHが4.5未満であると水酸化第二鉄のCr6+吸着効果が悪くなる。従って、pH調整槽2ではpH4.5〜6.5、好ましくは5.0〜6.0に調整する。
【0035】
pH調整槽2でpH調整された水は、還元槽1での還元処理でなお残留するCr6+が[Fe(OH)に吸着された水であり、凝集槽3で高分子凝集剤等を添加して不溶化物を凝集処理した後、沈澱槽4で固液分離することにより、Cr6+及びCr3+を高度に除去した処理水を得ることができる。
【0036】
なお、図1に示す方法は、本発明のクロム含有排水の処理方法の実施の形態の一例であって、本発明は、その要旨を超えない限り、何ら図示の方法に限定されるものではない。例えば、図1では、固液分離法として凝集沈殿法を採用しているが、これに限らず膜分離による固液分離を行っても良い。また、pH調整槽と凝集槽とを独立に設けず、一つの槽でpH調整と凝集処理とを行うこともできる。
【0037】
このような本発明のクロム含有排水の処理方法は、汚濁物質が主にCr6+である、プリント基板、シャドウマスク等のエッチング工程排水、クロメート処理などの表面処理排水や、ステンレス鋼製造における脱脂工程排水、その他のCr6+含有排水の処理に有効に適用することができる。
【0038】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0039】
実施例1〜5、比較例1〜3
原水として、Cr6+:20mg/L,COD:30mg/L,DO:8.5mg/Lの工場排水を1L容のビーカーに採り、pH9に保ちながら、DOが7.5mg/Lになるまで硫酸第一鉄を添加した。
【0040】
Cr6+:20mg/Lの還元とDO:1mg/Lとの反応に必要な理論Fe2+量は、

Figure 0004106976
より、71mg/L(=64+7)であるが、実際のFe2+添加量は75mg/Lであった。
【0041】
次に、反応後の液に硫酸を添加して表1に示すpHに調整した後(ただし、比較例3では、硫酸を添加せずpH9のまま)、濾紙No.5Aで濾過し、濾液の分析を行い、結果を表1に示した。
【0042】
比較例4
比較例3において、硫酸第一鉄を、添加後のDOが2mg/Lとなるまで添加したこと以外は同様にして処理を行い、濾液の分析結果を表1に示した。
【0043】
この比較例3では、DOが2mg/Lに低下するまで硫酸第一鉄を添加したため、Fe2+添加量は120mg/Lとなった。
【0044】
【表1】
Figure 0004106976
【0045】
表1より、Fe2+添加による還元処理後にpHを4.5〜6.5に調整して固液分離することにより、少ないFe添加量でCr6+を高度に除去することができることがわかる。
【0046】
なお、このようなpH調整を行わない場合でも、DOが2mg/LとなるまでFe2+を添加した比較例4では、Cr6+除去効果は良好であるが、Fe2+添加量が非常に多くなる。
【0047】
【発明の効果】
以上詳述した通り、本発明のクロム含有排水の処理方法によれば、Cr6+含有排水に第一鉄イオン源を添加してCr6+をCr3+に還元した後固液分離する方法において、第一鉄イオン源の必要添加量を大幅に低減した上で、クロムを高度に除去することができる。従って、本発明によれば、少ない薬剤使用量で低コストに効率的な処理を行うと共に、汚泥発生量も低減することができる。また、排水中のリンの除去特性も高めることができ、良好な処理水を得ることができる。
【図面の簡単な説明】
【図1】本発明のクロム含有排水の処理方法の実施の形態を示す系統図である。
【符号の説明】
1 還元槽
2 pH調整槽
3 凝集槽
4 沈澱槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating chromium-containing wastewater, in which ferrous ions are added to wastewater containing hexavalent chromium (Cr 6+ ) to reduce hexavalent chromium to trivalent chromium (Cr 3+ ), and then solid-liquid separation is performed. In particular, the present invention relates to a method for efficiently performing treatment by reducing the amount of chemical used for the reduction treatment and the amount of sludge generated.
[0002]
[Prior art]
As a method for removing the Cr 6+ from wastewater containing Cr 6+, reducing the Cr 6+ to Cr 3+, a method of removing the insoluble compound is performed.
[0003]
Conventionally, a sulfite reduction method is generally used as such a treatment method. This method is a method in which Cr 6+ is reduced to Cr 3+ with sulfite in an acidic range of pH 2 to 2.5, and then Cr 3+ is insolubilized as Cr (OH) 3 at pH 8 to 9, and this is precipitated and separated. . However, this method requires an ORP meter for controlling the injection of sulfite, and the reduction reaction does not proceed quantitatively only under low pH conditions of pH 2 to 2.5. Requires a large amount of acid, and also requires a large amount of alkali for neutralization after the reduction treatment.
[0004]
On the other hand, as a method of reducing Cr 6+ to Cr 3+ at pH neutrality, there is a method of using ferrous (Fe 2+ ) salt as a reducing agent. However, in this method, if there is excess Fe 2+ at neutral pH, it flows out into the treated water as ions, causing problems such as coloring of the treated water and the possibility of exceeding the iron drainage standard.
[0005]
In the reduction treatment of Cr 6+ with this ferrous salt, the present applicant adjusts the pH of the waste water containing Cr 6+ to 4 or more as a method for performing accurate chemical injection control, and the dissolved oxygen (DO) is 2 mg / L. A method of adding ferrous salt was proposed as follows (Japanese Patent Laid-Open No. 3-254889).
[0006]
In this method, a DO meter is applied to control the amount of ferrous salt added, and if the pH is 4 or more and DO is 2 mg / L or less, the reduction of Cr 6+ to Cr 3+ is completed. The principle is as follows.
[0007]
That is, ferrous ions (Fe 2+ ) are oxidized by dissolved oxygen and changed to ferric ions (Fe 3+ ) according to the following reaction formula (1). This reaction becomes prominent from around pH 4, and an instantaneous reaction at neutral or higher. When the pH is less than 3, the oxidation reaction (1) hardly occurs. On the other hand, Cr 6+ reacts instantaneously with Fe 2+ and is reduced according to the following reaction formula (2) in both acidic and alkaline conditions.
[0008]
2Fe 2+ + O + H 2 O → 2Fe 3+ + 2OH − ( 1)
Cr 6+ + 3Fe 2+ → 3Fe 3+ + Cr 3+ ( 2)
Here, if the reaction of (2) has priority over the reaction of (1), the measurement of DO by the DO meter, that is, when it is detected that the DO measurement value by the DO meter has become a predetermined value or less is Cr Since the 6+ reduction reaction is complete, the end of the Cr 6+ reduction reaction can be detected, and the chemical injection control by the DO meter of ferrous salt can be performed.
[0009]
In fact, if the reaction condition is pH 4 or higher, the reaction (2) has priority over the reaction (1), and the DO meter can be applied to the chemical injection control. In the method described, the ferrous salt chemical injection control is performed so that DO is 2 mg / L or less under the condition of pH 4 or more.
[0010]
[Problems to be solved by the invention]
According to the method described in JP-A-3-254948, Cr 6+ can be efficiently reduced to Cr 3+ while preventing excessive addition of ferrous salt. It is desired to perform an efficient reduction treatment while reducing the amount.
[0011]
In the method of solid-liquid separation after adding a ferrous ion source to Cr 6+ containing wastewater and reducing Cr 6+ to Cr 3+ , the present invention can further reduce the required addition amount of the ferrous ion source. It aims at providing the processing method of the waste water containing chromium which can be performed.
[0012]
[Means for Solving the Problems]
The chromium-containing wastewater treatment method of the present invention is a treatment of chromium-containing wastewater that is solid-liquid separated after adding ferrous ion source to the wastewater containing hexavalent chromium to reduce hexavalent chromium to trivalent chromium. In the method, a ferrous ion source is added to the hexavalent chromium-containing waste water, and a reduction step of reducing hexavalent chromium to trivalent chromium under conditions of pH 7 to 11 and effluent water of the reduction step are solid-liquid separated. It has the pH adjustment process adjusted to pH4.5-6.5 without, and the solid-liquid separation process which isolate | separates and removes an insolubilization thing from the effluent of this pH adjustment process, It is characterized by the above-mentioned.
[0013]
As described above, in the method described in Japanese Patent Laid-Open No. 3-254889, Fe 2+ and Cr 6+ are utilized by utilizing the fact that the reaction between Fe 2+ and Cr 6+ takes precedence over the reaction between Fe 2+ and DO. The chemical injection control is carried out by detecting with the DO meter that the reaction has been completed and the reaction between Fe 2+ and DO has started and the DO has decreased.
[0014]
The reaction between Fe 2+ and DO proceeds slowly under the conditions of pH 4-6, and Fe 2+ is easily excessively injected. Therefore, the reduction treatment is preferably performed under the conditions of pH 7-11. In this condition, when reduced even slight DO, the reaction between Fe 2+ and DO has started, i.e., so that the reaction between Fe 2+ and Cr 6+ is finished, in fact, Fe 2+ and Cr During the reaction with 6+ , the reaction between Fe 2+ and DO occurs simultaneously. For this reason, in the method of JP-A-3-254889, the reaction between Fe 2+ and Cr 6+ is reliably terminated. Fe 2+ is added until the amount becomes 2 mg / L or less.
[0015]
However, when the saturated DO concentration in water is, for example, 8 mg / L, in order for DO to be 2 mg / L or less, at least 8-2 = 6 mg / L of DO has been reduced by reaction with Fe 2+ , that is, (1) From the formula, 7 mg of Fe 2+ reacts with 1 mg of DO (2Fe / O = 55.8 × 2 / 16≈7), so Fe 2+ is 42 mg / L (= 7 × 6 mg / L) It is consumed in reaction with DO.
[0016]
In order to prevent excessive addition of Fe 2+ and perform appropriate chemical injection control, Fe 2+ consumed for reaction with DO is reduced as much as possible, and Fe 2+ chemical injection control is performed at a value where this DO decrease is as small as possible. it is necessary to perform, and not the reaction between Fe 2+ and DO after the reaction between Fe 2+ and Cr 6+ is completely finished is started, a part Fe 2+ on reaction with Fe 2+ and Cr 6+ In the method described in JP-A-3-254889, the reaction with DO occurs simultaneously, that is, when the reaction between Fe 2+ and DO starts, Cr 6+ still remains. preventing residual cr 6+, to terminate reliably the reaction between Fe 2+ and Cr 6+, with respect to the saturated DO concentration (e.g. 8 mg / L), the following sufficiently low DO2mg / L of Fe 2+ chemical feeding, chemical dosing It was with your criteria.
[0017]
The present inventors have was studied to reduce the required amount of Fe 2+ in the reduction process of Cr 6+ by such Fe 2+, was obtained experimental results as follows.
[0018]
That is, water containing Cr 6+ 10 mg / L was subjected to solid-liquid separation after adding Fe 2+ until DO decreased by 1 mg / L under the condition of pH 8, and the Cr 6+ concentration of the obtained supernatant water was 0.8 mg. / L, and Cr 6+ residue was observed. However, after adding Fe 2+ until DO decreased by 1 mg / L under the condition of pH 8 in this way, acid was added without solid-liquid separation to adjust to pH 6, and then solid-liquid separation was performed. The Cr 6+ concentration of the supernatant water was 0.02 mg / L or less, and no Cr 6+ residue was observed.
[0019]
In order to elucidate this reaction mechanism, the result of further studies, according to the following reaction at pH acidic conditions, by residual Cr 6+ it is adsorbed to the precipitation of ferric hydroxide generated in the reduction of Cr 6+ It was found that it was removed.
[0020]
[Fe (OH) 3 ] n + Cr 6+ → [Fe (OH) 3 ] n · Cr 6+
The above reaction is an equilibrium reaction based on pH, and [Fe (OH) 3 ] n adsorbs Cr 6+ with a weak acidity of pH 7 or lower, and desorbs adsorbed Cr 6+ with an alkaline pH of 7 or higher.
[0021]
In the present invention, a ferrous ion source is added to react with Fe 2+ and Cr 6+ slightly under a condition of pH 7 to 11, for example, until DO is lowered by 1 mg / L. This decrease in DO indicates the start of the reaction between Fe 2+ and DO, but at this time, a small amount of unreacted Cr 6+ remains. However, after that, by adjusting the pH to 4.5 to 6.5, the remaining Cr 6+ can be adsorbed on [Fe (OH) 3 ] n and removed by solid-liquid separation.
[0022]
Therefore, in the present invention, the ferrous ion source may be added, for example, in such an amount that DO is 1 mg / L lower than before addition of the ferrous ion source. Fe 2+ consumption is 7 mg / L, and the required addition amount of the ferrous ion source can be greatly reduced as compared with the conventional method. And the amount of sludge generation is also reduced by reducing the addition amount of a ferrous ion source.
[0023]
The method of the present invention can also provide the following secondary effects.
[0024]
In other words, when phosphorus is included in the wastewater to be treated, at pH 7 or higher, phosphorus becomes colloidal and ionic like [Fe (OH) 3 ] n · PO 4 3− + PO 4 3− . Since it is difficult to dissolve and precipitate, the processing characteristics of phosphorus are deteriorated. However, if the pH is 6.5 or less, it precipitates as FePO 4 and the aggregation property is also improved, so that the processing efficiency of phosphorus is also improved.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a method for treating chromium-containing wastewater according to the present invention will be described below in detail with reference to the drawings.
[0026]
FIG. 1 is a system diagram showing an embodiment of a method for treating chromium-containing wastewater according to the present invention.
[0027]
In the method of FIG. 1, Cr 6+ containing waste water (raw water) is first introduced into the reduction tank 1 and a ferrous ion source is added, and a pH adjuster is added as necessary to adjust the pH to 7-11. By doing this, Cr 6+ in the raw water is reduced to Cr 3+ .
[0028]
The ferrous ion source added to the raw water is not particularly limited. For example, ferrous sulfate is the most common, but ferrous chloride, ammonium ferrous sulfate, ferrous nitrate, water Ferrous oxide or the like can be used. Moreover, the general waste liquid containing these ferrous salts, for example, the pickling waste liquid of the iron industry, the smelting waste water of a nonferrous metal, etc. can be used.
[0029]
Moreover, as a pH adjuster, alkalis, such as caustic soda, slaked lime, and soda ash, and acids, such as a sulfuric acid and hydrochloric acid, can be used.
[0030]
There is no limitation on the method of controlling the addition amount of the ferrous ion source, and methods such as ORP control, DO control, and constant amount addition can be adopted. In the present invention, a DO meter is provided in the reduction tank 1, Adding the ferrous ion source so that the DO concentration is less than or equal to a preset value is a simple operation, reducing the amount of ferrous ion source used and reducing the generated hydroxide sludge. Preferred above.
[0031]
In this case, as described above, in the conventional method, in order to completely treat Cr 6+ , the ferrous ion source is usually controlled until the DO concentration becomes 1 to 2 mg / L. In some cases, the amount of ferrous ions consumed in the reaction with DO is large and wasteful. In the present invention, the residual Cr 6+ can be adsorbed and removed by adjusting the pH at the latter stage, so the DO control standard can be set to a higher DO concentration than the conventional one.
[0032]
When dosing control of the ferrous ion source by DO, the DO concentration set by the shape of the reduction tank, the stirring conditions, etc. is different, but in the present invention, the DO concentration is usually the raw water before the addition of the ferrous ion source. The ferrous ion source so that the added amount is about 1 to 2 mg / L lower than the DO concentration of NO, that is, for example, if the saturated DO concentration is 8 mg / L, the DO is about 6 to 7 mg / L. A sufficient treatment effect can be obtained by controlling the amount of addition.
[0033]
When the pH condition of the reducing tank 1 is less than 7, the reaction between Cr 6+ and Fe 2+ is slow, and sufficient reaction efficiency cannot be obtained. Also, if the pH exceeds 11, ferrous ions are precipitated as Fe (OH) 2 before reacting with Cr 6+ and the reactivity becomes poor. Therefore, based on the measurement result of the pH meter, the inside of the reducing tank 1 If necessary, a pH adjuster is added so that the pH of the solution is in the range of 7-11.
[0034]
The effluent from the reduction tank 1 is then introduced into the pH adjustment tank 2 and adjusted to pH 4.5 to 6.5 by adding an acid such as hydrochloric acid or sulfuric acid. When the pH of the pH adjusting tank 2 exceeds 6.5, the above Cr 6+ adsorption effect cannot be obtained, and Cr 6+ remains in the treated water. When this pH is less than 4.5, the effect of adsorbing Cr 6+ of ferric hydroxide is deteriorated. Therefore, in the pH adjusting tank 2, the pH is adjusted to 4.5 to 6.5, preferably 5.0 to 6.0.
[0035]
The water whose pH has been adjusted in the pH adjusting tank 2 is water in which Cr 6+ remaining in the reduction treatment in the reducing tank 1 is adsorbed by [Fe (OH) 3 ] n. After the insolubilized material is coagulated by adding etc., treated water in which Cr 6+ and Cr 3+ are highly removed can be obtained by solid-liquid separation in the precipitation tank 4.
[0036]
The method shown in FIG. 1 is an example of an embodiment of the method for treating chromium-containing wastewater according to the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist. . For example, in FIG. 1, the coagulation sedimentation method is adopted as the solid-liquid separation method, but not limited to this, solid-liquid separation by membrane separation may be performed. Further, the pH adjustment tank and the coagulation tank are not provided independently, and the pH adjustment and the aggregation treatment can be performed in one tank.
[0037]
Such a method for treating chrome-containing wastewater according to the present invention is such that the pollutant is mainly Cr 6+ , wastewater from etching processes such as printed circuit boards and shadow masks, surface treatment wastewater such as chromate treatment, and degreasing process in stainless steel production. It can be effectively applied to the treatment of waste water and other Cr 6+ containing waste water.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0039]
Examples 1-5, Comparative Examples 1-3
As raw water, take the factory wastewater of Cr 6+ : 20 mg / L, COD: 30 mg / L, DO: 8.5 mg / L in a 1 L beaker and keep the pH at 9 until sulfuric acid reaches 7.5 mg / L. Ferrous iron was added.
[0040]
Cr 6+ : Theoretical Fe 2+ amount required for the reaction of reduction of 20 mg / L and DO of 1 mg / L is:
Figure 0004106976
From the results, it was 71 mg / L (= 64 + 7), but the actual Fe 2+ addition amount was 75 mg / L.
[0041]
Next, sulfuric acid was added to the solution after the reaction to adjust the pH shown in Table 1 (however, in Comparative Example 3, the sulfuric acid was not added and the pH was 9), and then the filter paper No. 1 was adjusted. The filtrate was analyzed with 5A, and the filtrate was analyzed. The results are shown in Table 1.
[0042]
Comparative Example 4
In Comparative Example 3, the same treatment was carried out except that ferrous sulfate was added until the DO after addition was 2 mg / L, and the analysis results of the filtrate are shown in Table 1.
[0043]
In Comparative Example 3, since ferrous sulfate was added until DO decreased to 2 mg / L, the Fe 2+ addition amount was 120 mg / L.
[0044]
[Table 1]
Figure 0004106976
[0045]
From Table 1, it can be seen that Cr 6+ can be highly removed with a small amount of Fe addition by adjusting the pH to 4.5 to 6.5 after the reduction treatment by Fe 2+ addition and solid-liquid separation.
[0046]
Even when such pH adjustment is not performed, in Comparative Example 4 in which Fe 2+ was added until DO reached 2 mg / L, the Cr 6+ removal effect was good, but the Fe 2+ addition amount was very large. .
[0047]
【The invention's effect】
As described in detail above, according to the method for treating chromium-containing wastewater of the present invention, in the method of solid-liquid separation after adding ferrous ion source to Cr 6+ containing wastewater and reducing Cr 6+ to Cr 3+ , Chromium can be removed to a high degree while greatly reducing the required amount of ferrous ion source. Therefore, according to the present invention, it is possible to perform an efficient process at a low cost with a small amount of medicine used, and to reduce the amount of sludge generated. Moreover, the removal characteristic of the phosphorus in waste_water | drain can also be improved, and favorable treated water can be obtained.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a method for treating chromium-containing wastewater according to the present invention.
[Explanation of symbols]
1 Reduction tank 2 pH adjustment tank 3 Coagulation tank 4 Precipitation tank

Claims (3)

6価クロムを含有する排水に、第一鉄イオン源を添加して6価クロムを3価クロムに還元した後、固液分離するクロム含有排水の処理方法において、
前記6価クロム含有排水に第一鉄イオン源を添加し、pH7〜11の条件で6価クロムを3価クロムに還元する還元工程と、
該還元工程の流出水を固液分離することなくpH4.5〜6.5に調整するpH調整工程と、
該pH調整工程の流出水から不溶化物を分離除去する固液分離工程と
を有することを特徴とするクロム含有排水の処理方法。
In the wastewater containing hexavalent chromium, the ferrous ion source is added to reduce the hexavalent chromium to trivalent chromium, and then the chromium containing wastewater is separated into solid and liquid.
A reduction step of adding a ferrous ion source to the hexavalent chromium-containing wastewater, and reducing hexavalent chromium to trivalent chromium under the conditions of pH 7-11;
A pH adjusting step for adjusting the effluent water of the reducing step to pH 4.5 to 6.5 without solid-liquid separation;
And a solid-liquid separation step of separating and removing insolubles from the effluent of the pH adjustment step.
請求項1において、残留するCrThe residual Cr in claim 1 6+6+ をCrCr 6+6+ の還元で生成した水酸化第二鉄に吸着させることを特徴とするクロム含有排水の処理方法。A method for treating chrome-containing wastewater, characterized by adsorbing to ferric hydroxide produced by reduction of the chromium. 請求項1又2において、前記6価クロムを含有する排水にリンが含まれていることを特徴とするクロム含有排水の処理方法。The method for treating chromium-containing wastewater according to claim 1 or 2, wherein phosphorus is contained in the wastewater containing hexavalent chromium.
JP2002180264A 2002-06-20 2002-06-20 Chromium-containing wastewater treatment method Expired - Lifetime JP4106976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180264A JP4106976B2 (en) 2002-06-20 2002-06-20 Chromium-containing wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180264A JP4106976B2 (en) 2002-06-20 2002-06-20 Chromium-containing wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2004017025A JP2004017025A (en) 2004-01-22
JP4106976B2 true JP4106976B2 (en) 2008-06-25

Family

ID=31177445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180264A Expired - Lifetime JP4106976B2 (en) 2002-06-20 2002-06-20 Chromium-containing wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4106976B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589748B2 (en) * 2005-02-04 2010-12-01 新日本製鐵株式会社 Treatment of acidic waste liquid containing iron and chromium
CN114031228A (en) * 2021-11-12 2022-02-11 西安优瑞卡环保科技有限公司 Method for breaking and stably releasing chromium in organic chromium-containing wastewater

Also Published As

Publication number Publication date
JP2004017025A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US7220360B2 (en) Integrated technology in sequential treatment of organics and heavy metal ions wastewater
JP4255154B2 (en) Method for removing arsenic from a solution containing sulfur dioxide
US5853573A (en) Groundwater total cyanide treatment apparatus
JP4374636B2 (en) Treatment method of waste liquid containing heavy metal complex
USH1852H (en) Waste treatment of metal plating solutions
JPH11314094A (en) Method for treating drainage containing arsenic and other heavy metals
JP4106976B2 (en) Chromium-containing wastewater treatment method
JP4614093B2 (en) Arsenic wastewater treatment method
JP3596631B2 (en) Treatment of wastewater containing selenium
JP5073354B2 (en) Waste liquid treatment method and treatment equipment using iron-oxidizing bacteria
JPS6283090A (en) Treatment of waste water containing chromium
JPS6339308B2 (en)
JP4106415B2 (en) Treatment method of wastewater containing cyanide
JP2906521B2 (en) Chromium-containing wastewater treatment method
JPH03254889A (en) Treatment of chromium-containing waste water
JPH0675707B2 (en) Method and apparatus for treating liquid containing cyanide compound
JPS634478B2 (en)
JP4305938B2 (en) Treatment method for wastewater containing hexavalent chromium
JP3398692B2 (en) Treatment method for wastewater containing heavy metals
JP4103230B2 (en) Treatment method for wastewater containing hexavalent chromium
JPS591118B2 (en) How to treat organic wastewater
JP2001293486A (en) Method for treating hexavalent chromium-containing waste water
JP5985925B2 (en) Method and apparatus for treating waste liquid containing heavy metal
JPH02102787A (en) Treatment of waste pickling liquid
JPH10180266A (en) Treatment of waste liquid of electroless nickel plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6