JPS6283090A - Treatment of waste water containing chromium - Google Patents

Treatment of waste water containing chromium

Info

Publication number
JPS6283090A
JPS6283090A JP22394785A JP22394785A JPS6283090A JP S6283090 A JPS6283090 A JP S6283090A JP 22394785 A JP22394785 A JP 22394785A JP 22394785 A JP22394785 A JP 22394785A JP S6283090 A JPS6283090 A JP S6283090A
Authority
JP
Japan
Prior art keywords
chromium
sulfite
tank
liquid
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22394785A
Other languages
Japanese (ja)
Inventor
Isamu Kato
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP22394785A priority Critical patent/JPS6283090A/en
Publication of JPS6283090A publication Critical patent/JPS6283090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To almost perfectly remove hexavalent chromium, by removing excessive sulfite in water before separating and removing trivalent chromium. CONSTITUTION:Chromium-containing waste water is introduced into a reducing tank 1 and sulfite and sulfuric acid are added to said waste water to perform reducing treatment under such a condition that pH is 2-2.5, ORP is 250-300mv and a reaction time is 10-30min and hexavalent chromium is reduced to trivalent chromium. Next, the reaction liquid is introduced into an aeration tank 2 and air is blown in the aeration tank 2 to perform aeration and excessive sulfite is diffused and removed as sulfur dioxide. The liquid from which sulfite is removed is introduced into a neutralizing flocculation tank 3 and sodium hydroxide is added to said liquid to perform neutralizing flocculation reaction at pH 8-10 to form trivalent chromium hydroxide. Subsequently, this liquid is introduced into a sedimentation tank 4 to perform solid-liquid separation and trivalent chromium hydroxide is separated and removed as sludge.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はクロム含有廃水を還元し、クロムを水酸化物
として分離除去するクロム含有廃水の処理方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for treating chromium-containing wastewater, which reduces the chromium-containing wastewater and separates and removes chromium as a hydroxide.

〔従来の技術〕[Conventional technology]

クロム含有廃水の処理方法として、亜硫酸塩を添加して
6価クロムを3価クロムに還元した後。
As a treatment method for chromium-containing wastewater, sulfite is added to reduce hexavalent chromium to trivalent chromium.

3価クロムを水酸化物として沈殿分離等により分離除去
する方法が知られている(例えば丸善株式%式%) この方法では、6価クロムの還元を完全に行うために、
ORP設定値を低く設定し、亜硫酸塩を過剰に注入して
還元し、生成した3価クロムをアルカリ添加により水酸
化物として除去している。
A method is known in which trivalent chromium is separated and removed as a hydroxide by precipitation separation, etc. (for example, Maruzen stock % formula %). In this method, in order to completely reduce hexavalent chromium,
The ORP set value is set low, sulfite is injected in excess for reduction, and the generated trivalent chromium is removed as hydroxide by adding alkali.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来の処理方法においては、
6価クロムがほぼ完全に3価クロムに還元されるにもか
か力らず、沈殿槽および放流水から6価クロムが検出さ
れる場合があるという問題点があった。
However, in such conventional processing methods,
There was a problem in that even though hexavalent chromium was almost completely reduced to trivalent chromium, hexavalent chromium was sometimes detected in the settling tank and discharged water.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上記問題点を解決するためのもので、6価ク
ロムをほぼ完全に除去することが可能なりロム含有廃水
の処理方法を提供することを目的としている。
This invention is intended to solve the above-mentioned problems, and aims to provide a method for treating ROM-containing wastewater, which makes it possible to almost completely remove hexavalent chromium.

この発明は、クロム含有廃水に亜硫酸塩を添加して6価
クロムを3価クロムに還元した後、3価クロムを水酸化
物として分離除去する方法において、水中の過剰亜硫酸
塩を除去した後、3価クロムを分離除去することを特徴
とするクロム含有廃水の処理方法である。
This invention is a method of adding sulfite to chromium-containing wastewater to reduce hexavalent chromium to trivalent chromium, and then separating and removing trivalent chromium as hydroxide. A method for treating chromium-containing wastewater characterized by separating and removing trivalent chromium.

6価クロムが3価クロムに還元されるにもかかわらず、
沈殿槽および放流水から6価クロムが検出される原因を
調べたところ、直方亜硫酸塩が酸化されて酸化物が生成
し、残留する3価のクロムがこれと反応して6価クロム
に酸化されるためであると推定された。また過剰の亜硫
酸塩が存在すると、クロムの亜硫酸錯体が生成して沈殿
分離性が悪くなる。
Although hexavalent chromium is reduced to trivalent chromium,
An investigation into the cause of hexavalent chromium being detected in the sedimentation tank and discharged water revealed that orthogonal sulfite is oxidized to produce oxides, and the remaining trivalent chromium reacts with this to oxidize to hexavalent chromium. It is presumed that this is because of the Furthermore, if an excessive amount of sulfite is present, a chromium sulfite complex is formed, resulting in poor precipitation separation.

3価クロムが6価クロムに酸化される反応は次のような
ものであると推定される。まず亜硫酸塩が重金属を触媒
として溶存酸素と反応し、次式により亜硫酸イオンの酸
化物が生成する。
The reaction in which trivalent chromium is oxidized to hexavalent chromium is presumed to be as follows. First, sulfite reacts with dissolved oxygen using a heavy metal as a catalyst, and oxides of sulfite ions are generated according to the following equation.

(触媒) S03”−+ O,+OH−→5xOy       
 −(13次に亜硫酸イオンの酸化物が3価クロムと反
応して次式により6価クロムが生成する。
(Catalyst) S03”-+ O, +OH-→5xOy
-(13) Next, the oxide of sulfite ion reacts with trivalent chromium to produce hexavalent chromium according to the following formula.

Cr” + 5xOy−+Cr” + SO42−−(
II)従って6価クロムの生成には次の4条件が必要で
あると結論づけられている。この点は後述の実験例によ
り明らかにされている。
Cr" + 5xOy-+Cr" + SO42--(
II) Therefore, it has been concluded that the following four conditions are necessary for the production of hexavalent chromium. This point is clarified by the experimental examples described below.

■過剰亜硫酸塩 ■溶存酸素 ■Cu、 Ni、 Mnなどの共存重金属■水酸イオン
(01−1−) 上記4条件のうち、溶存酸素は空気中から常に供給され
1重金属は廃水中にすでに存在しており、また水酸イオ
ンは3価クロムを沈殿させるために必要であり、いずれ
もゼロにすることは固着である。そこで本発明では還元
工程後、過剰の亜硫酸塩を除去して3価クロムを分離除
去することにより、3価クロムが6価クロムに酸化され
るのを防止し、クロムを効率よく除去するものである。
■ Excess sulfite ■ Dissolved oxygen ■ Coexisting heavy metals such as Cu, Ni, Mn ■ Hydroxide ion (01-1-) Of the four conditions above, dissolved oxygen is always supplied from the air and one heavy metal is already present in the wastewater. Furthermore, hydroxide ions are necessary to precipitate trivalent chromium, and reducing them to zero is a fixation. Therefore, in the present invention, after the reduction process, excess sulfite is removed and trivalent chromium is separated and removed, thereby preventing trivalent chromium from being oxidized to hexavalent chromium and efficiently removing chromium. be.

過剰の亜硫酸塩の除去は酸性下において曝気することに
より可能であるが、他の方法によってもよい。この場合
亜硫酸塩は硫酸塩に酸化されると安定であるが、硫酸塩
以外の酸化物になるとクロムの酸化に関与するので、系
外に除去するのが望ましい。
Excess sulfite can be removed by aeration under acidic conditions, but other methods may also be used. In this case, sulfite is stable when oxidized to sulfate, but oxides other than sulfate participate in the oxidation of chromium, so it is desirable to remove them from the system.

以下、本発明を図面に基づいて説明する。第1図は本発
明の一実施態様を示す系統図である。図において、1は
還元槽、2は曝気槽、3は中和凝集槽、4は沈殿槽、5
は吸収塔である。
Hereinafter, the present invention will be explained based on the drawings. FIG. 1 is a system diagram showing one embodiment of the present invention. In the figure, 1 is a reduction tank, 2 is an aeration tank, 3 is a neutralization flocculation tank, 4 is a settling tank, and 5
is an absorption tower.

処理方法はクロム含有廃水を還元槽1に導入し。The treatment method is to introduce chromium-containing wastewater into reduction tank 1.

ここに亜硫酸塩および硫酸を添加して、 pH2〜2.
5゜ORP 250〜300mV、反応時間10〜30
分間で、次式による還元工程を行い、6価クロムを3価
クロムに還元する。
Add sulfite and sulfuric acid to pH 2-2.
5゜ORP 250-300mV, reaction time 10-30
A reduction process according to the following formula is performed for 1 minute to reduce hexavalent chromium to trivalent chromium.

2H□Cr、O,+ 6NaH5O,+ 3H2SO4
→2Cr、(SO4)、 + 3Na2So4+ 88
20   ”・(m)次いで反応液を曝気槽2に導入し
、ここで空気を吹込んで曝気を行い、過剰亜硫酸塩を亜
硫酸ガスとして気散させて除去する。曝気は3117未
満。
2H□Cr, O, + 6NaH5O, + 3H2SO4
→2Cr, (SO4), + 3Na2So4+ 88
20".(m) Next, the reaction solution is introduced into the aeration tank 2, where air is blown in to perform aeration, and excess sulfite is diffused and removed as sulfur dioxide gas. Aeration is less than 3117.

好ましくは5以下の酸性下で行うと亜硫酸ガスが放出さ
れるが、pHが7以上になると亜硫酸塩がCuなとの重
金属を触媒として溶存酸素により酸化され、3価クロム
を6価クロムに酸化する酸化物が生成するので好ましく
ない。曝気槽2における曝気量は一般的には0.5〜1
00m3−air/mJ−廃水・hr、曝気時間は0.
5〜5時間程度であり、これにより残留亜硫酸塩を20
mg/ l、好ましくは完全に除去する。
Sulfur dioxide gas is released when the pH is preferably 5 or less, but when the pH is 7 or more, sulfite is oxidized by dissolved oxygen using heavy metals such as Cu as a catalyst, and trivalent chromium is oxidized to hexavalent chromium. This is not preferable because it produces oxides. The amount of aeration in the aeration tank 2 is generally 0.5 to 1
00m3-air/mJ-wastewater/hr, aeration time is 0.
It takes about 5 to 5 hours, and this reduces the residual sulfite by 20
mg/l, preferably completely removed.

曝気槽2の代りにストリッピング塔その他の曝気手段を
用いてもよい。
In place of the aeration tank 2, a stripping tower or other aeration means may be used.

曝気槽2において発生する亜硫酸ガスは吸収塔5に導き
、吸収液槽6から水酸化ナトリウム等の吸収液を循環さ
せて吸収を行い、無害化された排ガスを大気中に排出す
る。吸収された亜硫酸ガスは亜硫酸塩として再利用でき
る。
The sulfur dioxide gas generated in the aeration tank 2 is led to the absorption tower 5, where absorption liquid such as sodium hydroxide is circulated from the absorption liquid tank 6 to absorb the gas, and the detoxified exhaust gas is discharged into the atmosphere. The absorbed sulfur dioxide gas can be reused as sulfite.

曝気槽2において亜硫酸塩を除去した液は中和凝集槽3
に導入して水酸化ナトリウム、消石灰等のアルカリを添
加し、また必要により同時に有機高分子凝集剤を添加し
て、pl(8〜10で次式により中和凝集反応を行い、
3価クロム水酸化物を生成させる。ここでは亜硫酸塩が
残留しないため、クロムの亜硫酸錯体は生成せず、沈降
性の良い3価クロム水酸化物のフロックが生成する。
The liquid from which sulfites have been removed in the aeration tank 2 is transferred to the neutralization flocculation tank 3.
and add alkali such as sodium hydroxide and slaked lime, and if necessary, add an organic polymer flocculant at the same time to perform a neutralization flocculation reaction according to the following formula at pl (8 to 10).
Generates trivalent chromium hydroxide. Since no sulfite remains here, a chromium sulfite complex is not generated, and a floc of trivalent chromium hydroxide with good sedimentation properties is generated.

Cr、 (SO2)3+ 6NaOH−+ 2Cr(O
H)、↓+3Na、SO4++ (■1中和凝集反応を
行った液は沈殿槽4に導入して固液分離を行い、3価ク
ロム水酸化物を汚泥として分離除去し、分離液を処理水
として放流する。
Cr, (SO2)3+ 6NaOH−+ 2Cr(O
H), ↓+3Na, SO4++ (■1 The liquid that underwent the neutralization and flocculation reaction is introduced into the settling tank 4 for solid-liquid separation, trivalent chromium hydroxide is separated and removed as sludge, and the separated liquid is added to the treated water. be released as

ここでは3価クロム水酸化物の沈降性が良いため分離除
去効率がよく、処理水中の全クロムの量は少ない。そし
て、亜硫酸塩が存在しなくなるため3価クロムの6価ク
ロムへの酸化は起こらず、6価クロムの量も極めて少な
くなる。
Here, since trivalent chromium hydroxide has good sedimentation properties, separation and removal efficiency is high, and the total amount of chromium in the treated water is small. Since sulfites no longer exist, oxidation of trivalent chromium to hexavalent chromium does not occur, and the amount of hexavalent chromium becomes extremely small.

また処理水中に亜硫酸塩が流出しないので、亜硫酸塩に
よる処理水の溶存酸素の低下、および亜a酸塩のCOD
源としての2次公害は発生しない、さらに過剰の亜硫酸
塩による凝集性の阻害が生じないので、還元工程におい
て厳密な○RP制御を行う必要がない。
In addition, since sulfites do not flow out into the treated water, the dissolved oxygen in the treated water decreases due to sulfites, and the COD of a-sulfite decreases.
Since secondary pollution as a source is not generated and furthermore, there is no inhibition of flocculation by excessive sulfite, there is no need to perform strict RP control in the reduction process.

〔実施例〕〔Example〕

以下、この発明を実施例に基づいてさらに詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail based on examples.

実施例1 6価りaム50mg/(2を含む廃水にNa1lSOf
fを添加し。
Example 1 Na1lSOf in wastewater containing 50 mg/(2) of hexavalent am
Add f.

PH2,2〜2.4に維持しながら20分間反応させた
。次いでNa0IIでpl+7.5〜11として20分
間反応後、濾紙Nα5Aで濾過して全クロムおよび6価
クロムを測定した。当量のNaH3O,は150mg/
 Qであるが、6価クロムの還元を完全にするため過剰
に添加した。
The reaction was carried out for 20 minutes while maintaining the pH at 2.2 to 2.4. Next, after reacting with Na0II at pl+7.5 to 11 for 20 minutes, it was filtered through filter paper Nα5A to measure total chromium and hexavalent chromium. The equivalent amount of NaH3O is 150 mg/
Q was added in excess to complete the reduction of hexavalent chromium.

全クロムの測定結果を第2図に示す、6価クロムはいず
れも0.02+ag/ 11以下であった。
The measurement results for total chromium are shown in Figure 2. Hexavalent chromium was 0.02+ag/11 or less in all cases.

第2図から明らかなように、NaH3O1の過剰量に比
例して凝集性が悪くなり、溶解クロムが増加した。そし
テNaH3O,,1200rag/(l テはCr(O
H)iノ沈殿が全く起きなかった。
As is clear from FIG. 2, cohesiveness worsened and dissolved chromium increased in proportion to the excess amount of NaH3O1. Then, NaH3O,,1200rag/(l) is Cr(O
H) No precipitation occurred at all.

以上の結果より、過剰の亜硫酸塩を除去することにより
、凝集性が増すことがbがる。
From the above results, it is concluded that removing excess sulfite increases cohesiveness.

実施例2 3価クロム50mg/Qを含む溶液に、共存重金属とし
てCuおよび還元剤としてNaH3O,を添加し、窒素
ガスで攪拌しながらNa011でpH10とし、開放ま
たは窒素ガスでシールした三角フラスコに採り、マグネ
チックスターラで攪拌しながら6価クロム生成の経時変
化を測定した。結果を表1に示す6表1に示すように、
Cu、 NaH3O1、空気の条件がそろった場合(N
n 4〜6)に6価クロムが生成することがわかり、N
at150.10mg/ Qの場合も6価クロムが生成
する。そしてN a jl S 03が存在しない場合
(Nα1および3)には6価クロムが生成しないことが
わかる。またCuの代りにNi、 Co、 Mn、 V
等の遷移金属を使用した場合も同様の結果が得られた。
Example 2 Cu as a coexisting heavy metal and NaH3O as a reducing agent were added to a solution containing 50 mg/Q of trivalent chromium, the pH was adjusted to 10 with Na011 while stirring with nitrogen gas, and the solution was poured into an Erlenmeyer flask that was open or sealed with nitrogen gas. While stirring with a magnetic stirrer, changes in hexavalent chromium production over time were measured. The results are shown in Table 16As shown in Table 1,
When the conditions of Cu, NaH3O1, and air are the same (N
It was found that hexavalent chromium is generated in N 4 to 6), and N
Hexavalent chromium is also produced when at150.10mg/Q. It is also seen that hexavalent chromium is not produced when N a jl S 03 does not exist (N α1 and 3). Also, instead of Cu, Ni, Co, Mn, V
Similar results were obtained when transition metals such as

以上の結果より、過剰の亜硫酸塩を除去することにより
、6価クロムの生成を防止できることがわかる。
The above results show that the generation of hexavalent chromium can be prevented by removing excess sulfite.

′A施例3 3価りロムlomg/Q、 Cu50mg/Q、 Na
25o310On+g/Qの液をNaO+lでPH調整
し、1flメスシリンダで散気縁により0.70−ai
r/ Q−試料水・hrの速度で曝気を行い、所定時間
後NaOHでP)+10とし、10分間攪拌後6価クロ
ム生成量を測定した。結果を表2に示す。
'A Example 3 Trivalent ROM lomg/Q, Cu50mg/Q, Na
Adjust the pH of 25o310On+g/Q liquid with NaO+l, and use a 1fl female cylinder to adjust the pH to 0.70-ai with a diffuser edge.
Aeration was performed at a rate of r/Q-sample water/hr, and after a predetermined time, the temperature was adjusted to P)+10 with NaOH, and the amount of hexavalent chromium produced was measured after stirring for 10 minutes. The results are shown in Table 2.

表2に示すように、pH7以上では曝気に伴い6価クロ
ムが増加する傾向にあるが、pH5以下では曝気を続け
ると6価クロムが生成しなくなる。 pH7以上の場合
はpHが下がる傾向にあり、亜硫酸塩の酸化が進み、中
間酸化物または硫酸が生成することを示している。これ
に対してpH5以下の場合にはpttが上がる傾向にあ
り、亜硫酸塩がSO□として気散することを示している
As shown in Table 2, at pH 7 or higher, hexavalent chromium tends to increase with aeration, but at pH 5 or lower, if aeration is continued, hexavalent chromium is no longer produced. When the pH is 7 or higher, the pH tends to decrease, indicating that oxidation of sulfite progresses and intermediate oxides or sulfuric acid are produced. On the other hand, when the pH is below 5, PTT tends to increase, indicating that sulfite is diffused as SO□.

以上の結果より、酸性下において曝気することにより、
過剰の亜硫酸塩を除去できることがわかる。
From the above results, by aeration under acidic conditions,
It can be seen that excess sulfite can be removed.

〔発明の効果〕〔Effect of the invention〕

以上の通り1本発明によれば、水中の過剰亜硫酸塩を除
去した後3価クロムを分離除去するようにしたので、3
価クロムの分離性を良くして処理水中の全クロムの址を
少なくできるとともに、6価クロムの生成を防止して6
価クロムをほぼ完全に除去することができ、また処理水
中に亜硫酸塩が含まれないため、亜硫酸塩による2次公
害を防止することができる。
As described above, according to the present invention, trivalent chromium is separated and removed after excess sulfite in water is removed.
It improves the separation of valent chromium and reduces the amount of total chromium in the treated water, and also prevents the formation of hexavalent chromium.
Since valent chromium can be almost completely removed and sulfites are not contained in the treated water, secondary pollution caused by sulfites can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施態様を示す系統図、第2図は実
施例1の結果を示すグラフである。 1:還元槽、2:曝気槽、3:中和凝集槽、4:沈殿槽
、5:吸収塔。 代理人 弁理士 柳 原   成 第 1 =クネaン履A 第2図 コ9/! コ9/l ]9/! 沈殿1 汚郭 集I雷
FIG. 1 is a system diagram showing an embodiment of the present invention, and FIG. 2 is a graph showing the results of Example 1. 1: reduction tank, 2: aeration tank, 3: neutralization flocculation tank, 4: settling tank, 5: absorption tower. Agent Patent Attorney Seiichi Yanagihara 1 = Kuneanari A Figure 2 Co9/! ko9/l]9/! Precipitation 1 Dirty Collection I Lightning

Claims (3)

【特許請求の範囲】[Claims] (1)クロム含有廃水に亜硫酸塩を添加して6価クロム
を3価クロムに還元した後、3価クロムを水酸化物とし
て分離除去する方法において、水中の過剰亜硫酸塩を除
去した後、3価クロムを分離除去することを特徴とする
クロム含有廃水の処理方法。
(1) In the method of adding sulfite to chromium-containing wastewater to reduce hexavalent chromium to trivalent chromium, and then separating and removing trivalent chromium as hydroxide, after removing excess sulfite in water, A method for treating chromium-containing wastewater, characterized by separating and removing chromium.
(2)過剰亜硫酸塩の除去が曝気によるものである特許
請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the removal of excess sulfite is by aeration.
(3)曝気が酸性下において行うものである特許請求の
範囲第2項記載の方法。
(3) The method according to claim 2, wherein the aeration is carried out under acidic conditions.
JP22394785A 1985-10-08 1985-10-08 Treatment of waste water containing chromium Pending JPS6283090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22394785A JPS6283090A (en) 1985-10-08 1985-10-08 Treatment of waste water containing chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22394785A JPS6283090A (en) 1985-10-08 1985-10-08 Treatment of waste water containing chromium

Publications (1)

Publication Number Publication Date
JPS6283090A true JPS6283090A (en) 1987-04-16

Family

ID=16806193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22394785A Pending JPS6283090A (en) 1985-10-08 1985-10-08 Treatment of waste water containing chromium

Country Status (1)

Country Link
JP (1) JPS6283090A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538833A (en) * 2002-09-12 2005-12-22 インヴィスタ テクノロジーズ エス.アー.アール.エル Method for reducing chromium in non-volatile residues obtained from air oxidation of cyclohexane
CN101766954A (en) * 2010-03-08 2010-07-07 华北电力大学(保定) Composite type organic inhibitor for magnesia desulfuration by-product recovery
CN102188887A (en) * 2011-04-07 2011-09-21 华北电力大学(保定) Composite inhibitor for recovering by-products generated during desulphurization by sodium alkali method as well as preparation and application thereof
CN102320697A (en) * 2011-05-31 2012-01-18 重庆民丰化工有限责任公司 Desulfuration process for chromate waste water
JP2013200117A (en) * 2013-05-22 2013-10-03 Tsukishima Kankyo Engineering Ltd Incineration disposal device and incineration disposal method of chromium-containing waste liquid
RU2557608C1 (en) * 2014-04-03 2015-07-27 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method of recycling spent chrome plating electrolytes
CN105000650A (en) * 2015-08-12 2015-10-28 沧州金桥环保科技发展有限公司 Chemical method for using complexing agents to remove hexavalent chromium in wastewater
CN108191034A (en) * 2018-03-15 2018-06-22 哈尔滨工业大学 A kind of catalysis NaBH4Synchronous production hydrogen, the method except Cr (VI)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538833A (en) * 2002-09-12 2005-12-22 インヴィスタ テクノロジーズ エス.アー.アール.エル Method for reducing chromium in non-volatile residues obtained from air oxidation of cyclohexane
CN101766954A (en) * 2010-03-08 2010-07-07 华北电力大学(保定) Composite type organic inhibitor for magnesia desulfuration by-product recovery
CN102188887A (en) * 2011-04-07 2011-09-21 华北电力大学(保定) Composite inhibitor for recovering by-products generated during desulphurization by sodium alkali method as well as preparation and application thereof
CN102320697A (en) * 2011-05-31 2012-01-18 重庆民丰化工有限责任公司 Desulfuration process for chromate waste water
JP2013200117A (en) * 2013-05-22 2013-10-03 Tsukishima Kankyo Engineering Ltd Incineration disposal device and incineration disposal method of chromium-containing waste liquid
RU2557608C1 (en) * 2014-04-03 2015-07-27 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method of recycling spent chrome plating electrolytes
CN105000650A (en) * 2015-08-12 2015-10-28 沧州金桥环保科技发展有限公司 Chemical method for using complexing agents to remove hexavalent chromium in wastewater
CN108191034A (en) * 2018-03-15 2018-06-22 哈尔滨工业大学 A kind of catalysis NaBH4Synchronous production hydrogen, the method except Cr (VI)
CN108191034B (en) * 2018-03-15 2020-11-03 哈尔滨工业大学 Catalytic NaBH4Method for synchronously producing hydrogen and removing Cr (VI)

Similar Documents

Publication Publication Date Title
CN107140763A (en) A kind of processing method of the good mercury-containing waste water of applicability
CN105084589A (en) Treatment method and system for wet magnesium desulphurization wastewater
CN111498960A (en) Defluorination medicament and application thereof
JPS6283090A (en) Treatment of waste water containing chromium
JP4042169B2 (en) Cement production equipment extraction dust processing method
JP3334786B2 (en) Treatment method for wastewater containing insoluble and soluble lead, chromium and zinc
JPS6328492A (en) Treatment of waste liquid of stack gas scrubbing
JPS59199097A (en) Disposal of waste cement slurry
JPH0521636B2 (en)
JP2007038196A (en) Metal etching wastewater treatment method
JPH105769A (en) Treatment of fluorine-containing discharge water
JP2001286875A (en) Method for treating arsenic-containing waste water
JPH0338294A (en) Method for flocculation treatment of waste water
AU2015377617B2 (en) Chromium-containing water treatment method
JP4591641B2 (en) Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components
JPH03254889A (en) Treatment of chromium-containing waste water
KR20030008074A (en) Photo-oxideatic treatment of waster discharged from FGD
KR0157198B1 (en) Two-stage treatment process of phosphoric acid and fluoric acid wastewater by sludge recycle
CN113173662B (en) Acid mist tower wastewater treatment method and system
JP3822855B2 (en) Sludge treatment method
JPH02102787A (en) Treatment of waste pickling liquid
JP2001293486A (en) Method for treating hexavalent chromium-containing waste water
JPH091162A (en) High degree treating method for waste water and catalyst for oxidation treatment of waste water
JPH0314519B2 (en)
CN111847703A (en) Treatment process of industrial desulfurization wastewater