JP4096653B2 - Method for producing activated carbon, polarizable electrode and electric double layer capacitor - Google Patents

Method for producing activated carbon, polarizable electrode and electric double layer capacitor Download PDF

Info

Publication number
JP4096653B2
JP4096653B2 JP2002221850A JP2002221850A JP4096653B2 JP 4096653 B2 JP4096653 B2 JP 4096653B2 JP 2002221850 A JP2002221850 A JP 2002221850A JP 2002221850 A JP2002221850 A JP 2002221850A JP 4096653 B2 JP4096653 B2 JP 4096653B2
Authority
JP
Japan
Prior art keywords
activated carbon
treatment
alkali metal
activated
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002221850A
Other languages
Japanese (ja)
Other versions
JP2004059387A (en
Inventor
義史 江川
充則 人見
修志 西村
輝弘 岡田
健 藤野
祐二 河淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kuraray Chemical Co Ltd
Original Assignee
Honda Motor Co Ltd
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kuraray Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002221850A priority Critical patent/JP4096653B2/en
Publication of JP2004059387A publication Critical patent/JP2004059387A/en
Application granted granted Critical
Publication of JP4096653B2 publication Critical patent/JP4096653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、活性炭の製造方法、分極性電極及び電気二重層キャパシタに関する。本発明の活性炭は高密度で体積あたりの静電容量が大きいので、分極性電極に成形して電気二重層キャパシタに好適に使用される。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの様な新しい電子機器が急速に普及し、メモリーバックアップ用やモーター等の補助電源として電気二重層キャパシタが注目されている。特に、高比表面積を持つ活性炭を電極材に用いた電気二重層キャパシタが多く開発されている。これまで、電気二重層キャパシタ用の活性炭として椰子殻、樹脂、石炭、ピッチなどを水蒸気や炭酸ガスなどの酸性ガス雰囲気下で賦活して得た活性炭が多く使用されている。また、炭素質材料をKOHなどのアルカリ金属水酸化物を使用して賦活(アルカリ賦活)することも行われるようになっている。中でもアルカリ賦活により得られる活性炭は、比表面積が相対的に大きく、高い静電容量を示すので、電気二重層キャパシタの分極性電極として期待されている(例えば、WO91/12203、特開平10−199767号公報など)。
【0003】
ところで、近年の電子機器の小型軽量化に伴い、使用される電気二重層キャパシタに対しては小型大容量化が要求される傾向にあるため、その分極性電極となる活性炭に対しても今まで以上に高い静電容量を示すことが求められている。このため、活性炭を従来と同様の手法で更に多孔化し高比表面積化することが考えられるが、重量あたりの静電容量の向上は期待できるものの、活性炭密度が低下するために単位体積あたりの静電容量向上は期待できない。また、アルカリ金属水酸化物の使用量や反応温度を制御し、アルカリ賦活の進行を抑制することにより活性炭密度を増大させることが可能であるが、結果的に単位重量あたりの静電容量が低下するため、やはり単位体積あたりの静電容量の向上は期待できない。
【0004】
これを解決するものとして、炭素質原料をアルカリ賦活した後、アルカリ金属化合物を除去し、さらに熱処理することにより活性炭を製造することが提案されている(特開平9−213590号公報)。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平9−213590号公報に記載の方法に従って、活性炭密度を向上させるために、炭素質原料のアルカリ賦活処理物からアルカリ金属化合物を除去したものに熱処理を施すと、単位重量あたりの静電容量が低下し、結果的に単位体積あたりの静電容量向上がせいぜい数%程度に過ぎないという問題があった。
【0006】
本発明の目的は、賦活度を変えたり、通常の熱処理を加える方法によらず、単位重量あたりの静電容量を低下させること無く、高密度化を図り、単位体積あたりの静電容量の高い活性炭を得る方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは鋭意検討し、炭素質原料のアルカリ賦活処理物からアルカリ金属化合物を除去したものに単純に熱処理を施すのではなく、炭素質材料とアルカリ金属水酸化物とを混合して一旦炭化処理を施し、さらにアルカリ金属水酸化物を加えてアルカリ賦活することによって上記目的を達成できることを見出し、本発明に至った。
【0008】
即ち、本発明は、炭素質材料と、該炭素質材料の0.01〜0.5重量倍のアルカリ金属水酸化物とを一次混合処理し、得られた一次混合物を300〜1000℃で炭化処理し、得られた炭化処理物と、該炭化処理物の0.5〜4重量倍のアルカリ金属水酸化物とを二次混合処理し、得られた二次混合物を500〜1000℃で賦活処理することにより活性炭を得ることを特徴とする活性炭の製造方法を提供する。
【0009】
また、本発明は、このようにして得た活性炭と、少なくともバインダー及び導電性材料を混合して成形した分極性電極を提供し、また、かかる分極性電極を組み込んだ電気二重層キャパシタを提供する。
【0010】
【発明の実施の形態】
本発明の製造方法は、炭素質材料とアルカリ金属水酸化物とを一次混合処理し、得られた一次混合物を炭化処理し、得られた炭化処理物とアルカリ金属水酸化物とを二次混合処理し、得られた二次混合物を賦活処理することにより活性炭を得ることを特徴とする。本発明の製造方法により得られる活性炭は、高い静電容量を示す。この理由は、明確に説明することはできないが、一次混合処理に使用するアルカリ金属水酸化物は炭化処理時に炭素質材料の炭化(強酸化)に寄与し、二次混合処理に使用するアルカリ金属水酸化物が賦活処理に寄与することで、活性炭の結晶性を増加させながら、電気二重層に有効な表面を増加させるためであると推測できる。
【0011】
まず、本発明において使用する原材料について説明する。
【0012】
本発明において使用される炭素質材料は賦活して活性炭を形成できるものであれば特に限定はなく、例えば、石炭、椰子殻、樹脂、石油コークス、石炭ピッチコークスなどが挙げられる。炭素質材料としては、1000℃以上、より好ましくは600℃以上の熱処理を施していない炭素質材料が好ましい。炭素質材料の形状も特に限定はなく、粒状、粉末状、繊維状、シート状など各種形状のものを使用することができる。
【0013】
また、炭素質材料の状態は、固体でも液体でも限らず使用することができる。ここで、炭素質材料が固体の場合には、アルカリ金属水酸化物との混合を均一化するため、粉砕したものを使用することが好ましい。粉砕粒度は中心粒径2mm以下が好ましく、0.2mm以下がより好ましい。炭素質材料が液状レゾール樹脂等の液状の場合には、そのまま使用することができる。
【0014】
アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウムが挙げられる。これらは単独で使用してもよく、2種類以上を混合して使用してもよい。中でも、好ましいアルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、またはこれらの混合物が挙げられる。
【0015】
また、アルカリ金属水酸化物も炭素質材料との混合が均一化される点で、粉末状、液状に限らず使用することができる。アルカリ金属水酸化物を液状にする場合、アルカリ金属水酸化物が液状態にあれば特に限定はない。アルカリ金属水酸化物を、水、アルコールなどに溶解したアルカリ金属水酸化物溶液で使用してもよい。
【0016】
次に、本発明の活性炭の製造方法を各処理毎に説明する。
【0017】
本発明の活性炭の製造方法では、まず、炭素質材料とアルカリ金属水酸化物とを一次混合処理して一次混合物を得る。この処理の際に用いる混合機としては、特に限定されるものではなく、公知の回転容器型混合機や固定容器型混合機などが用いられるが、均一な混合が得られる点で回転容器型混合機を用いるのがよい。これらの装置の材質としては、耐アルカリ性の材質、特にニッケルを主成分とする材質のものが好ましい。
【0018】
一次混合処理において、アルカリ金属水酸化物の使用量は、少なすぎると結晶化の進行が遅く、多すぎると結晶化進行より賦活が先に進行するため、炭素質材料の好ましくは0.01〜0.5重量倍、より好ましくは0.05〜0.3重量倍とするのが好ましい。
【0019】
一次混合処理時の処理温度は、通常は室温下で十分である。
【0020】
一次混合処理により得られる一次混合物(炭素質材料が液状の場合、アルカリ金属水酸化物と均一に混合し、不融化処理したもの)は、そのまま炭化処理を施してもよいが、常法により、球状、顆粒状、ペレット状、板状などに成形してもよい。成型時に、必要に応じて成形性向上のためにピッチ、タールなどの公知のバインダーを混合してもよい。
【0021】
次に、一次混合処理物を炭化処理して炭化処理物を得る。この炭化処理は、炭素質材料と比較的少量のアルカリ金属水酸化物と共に加熱することにより、炭素質材料中に含まれている有機物を酸化して炭化する処理である。この炭化処理を行わずに、炭素質材料と比較的多量のアルカリ金属水酸化物との混合物を賦活処理すると、活性体の体積あたりの静電容量を向上させることが困難となる。
【0022】
炭化処理の際の処理温度は、低すぎると結晶化促進効果が少なく、高すぎると結晶化が進行し過ぎて、賦活の進行を阻害するため、好ましくは300℃〜1000℃、より好ましくは300℃〜800℃である。
【0023】
炭化処理の際の処理温度への昇温速度はとくに限定されないが、遅すぎると所期の処理温度に到達までに時間がかかりすぎるため、工業的生産性が低下し、速すぎると温度班の発生や急激なガス発生が起き、危険なため、好ましくは0.1〜4.0℃/分程度、より好ましくは0.5〜3.0℃/分程度で実施ある。また、炭化処理時間(熱処理時間)に制限はないが、通常1〜24時間で実施される。
【0024】
また、炭化処理は、高温熱処理であるために、窒素、炭酸ガス、アルゴンガス、燃焼ガス、これらの混合ガス等の不活性ガスの雰囲気下に実施することが好ましい。
【0025】
なお、一次混合処理と炭化処理とは、別々に実施してもよいが、一次混合処理しながら炭化処理を行ってもよい。
【0026】
次に、炭化処理により得られた炭化処理物に、更にアルカリ金属水酸化物を二次混合し、二次混合物を得る。この場合、例えば、室温まで放冷した炭化処理物を使用してもよく、放冷せずに炭化処理に連続して処理してもよい。この処理の際に用いる混合機としては、一次混合処理において例示した混合機を使用することができる。
【0027】
二次混合処理において、アルカリ金属水酸化物の使用量は、少なすぎると賦活の進行が遅く、多すぎると過賦活となるので、炭素質材料の好ましくは0.5倍〜10重量倍、より好ましくは操作性、安全性の面を考慮して0.5〜4重量倍とするのが好ましい。
【0028】
二次混合処理時の処理温度は、通常は室温〜80℃の範囲で行うことができるが、二次混合処理を炭化処理に連続して行う場合には、炭化処理温度と同じ温度としてもよい。
【0029】
また、二次混合処理は、室温下で行う場合には空気雰囲気下でもよいが、二次混合処理温度が炭化処理温度とほぼ同じ場合には、窒素、炭酸ガス、アルゴンガス、燃焼ガス、これらの混合ガス等の不活性ガスの雰囲気下に実施することが好ましい。
【0030】
次に、二次混合処理により得られる二次混合物を、賦活処理して賦活処理物を得、更にそれから活性炭を得る。ここで、二次混合処理と賦活処理とは、別々に実施してもよいが、二次混合処理しながら賦活処理を行ってもよい。特に、炭化処理に続いて、反応系の温度を低下させずに、炭化処理物にアルカリ金属水酸化物を添加して二次混合処理を行うと同時に賦活処理を進行させるようにしてもよい。
【0031】
賦活処理としては、炭素、177(1997)p.76−79等に記載されている公知のアルカリ賦活法を適用することができる。例えば、二次混合処理により得られる二次混合物を、窒素、炭酸ガス、アルゴンガス、燃焼ガス、これらの混合ガスの不活性ガスの雰囲気下で、バッチ又は連続式に、加熱することにより行うことができる。ここで、賦活処理温度が高すぎると、活性炭の表面積は増大するが電気二重層キャパシタとしたときの静電容量が小さくなり、また、賦活処理で生成する金属カリウムが蒸発するため、危険性が著しく高くなる。また、賦活処理温度をあまり低くすると、賦活処理によってガス化されて系外に除去されるべき微細な構造が除去されないため、例えば電極材料として使用した時の電気抵抗が大きくなる。したがって、賦活処理温度は、好ましくは500〜1000℃、より好ましくは600℃〜800℃である。
【0032】
賦活処理により得られた賦活処理物は、処理物の燃焼を抑制するために、窒素、アルゴンなどの不活性ガス気流下で、冷却される。次いで、常法により、賦活処理物を水洗し、必要に応じて酸洗、水洗してアルカリ金属分や不純物を除去し、大気圧下又は減圧下で常温又は加熱し、乾燥して目的物の活性炭を得る。
【0033】
以上説明した本発明の製造方法により得られる活性炭は、特に電気二重層キャパシタ用に適した分極性電極の材料として有用なものとなる。
【0034】
このような分極性電極は、本発明の製造方法により得られた活性炭に、少なくともポリビニリデンフロライド、ポリテトラフロロエチレン等のバインダー及びカーボンブラックなどの導電性材料を混合し、成型してなるものである。導電性材料を混合することにより、電極の抵抗を低下させることができ、これにより、分極性電極の内部抵抗を下げ、電極体積を小さくするのに有効である。
【0035】
このような電気二重層キャパシタ用に適した分極性電極を製造するには、通常知られた方法を適用することが可能である。例えば、市販されている、ポリビニリデンフロライド、ポリテトラフロロエチレンなどバインダーとして知られた物質やカーボンブラックなどの導電性材料を必要に応じて、数%程度まで加えてよく混練した後、金型に入れて加圧成形したり、圧延してシート化し、必要な形状に打ちぬくことで電極に成形することができる。また、混練物を集電体に塗布して塗布電極としてもよい。電極化の際、必要に応じて、アルコールやN−メチルピロリドンなどの有機化合物や水などの溶剤、分散剤、各種添加物を使用してもよい。また、発明の効果を損なわない範囲で熱を加えることも可能である。
【0036】
以上説明した分極性電極は、図1(概略断面図)に示すような電気二重層キャパシタの電極として有用である。図1のキャパシタを構成する各構成要素は、本発明による分極性電極を使用する以外は、公知の電気二重層キャパシタと同様の構成とすることができ、例えば、図中、1及び2はアルミニウムなどからなる集電部材、3及び4は本発明の活性炭からなる分極性電極、5はポリプロピレン不織布などから構成されるセパレータ、6はポリプロピレン、ポリエチレン、ポリアミド、ポリアミドイミド、ポリブチレンなどから構成されるガスケット、7はステンレスなどの素材で構成されるケースを示す。
【0037】
なお、電気二重層キャパシタとして機能させるためには、ケース7内に、テトラエチルアンモニウムテトラフロロボレート、テトラメチルアンモニウムテトラフロロボレートなど公知の電解質を、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどのカーボネート類、アセトニトリルなどのニトリル類、α−メチル−γ−ブチロラクトンなどのラクトン類、ジメチルスルホキシドなどのスルホキシド類、ジメチルフォルムアミドなどのアミド類などの溶媒に溶解した電解液を封入する必要がある。
【0038】
図1に示した構成の電気二重層キャパシタは、本発明の活性炭を使用しているので、小型でありながら静電容量の高いものとなる。
【0039】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0040】
実施例1
直径10cm、高さ90cmのニッケル製の円筒に、ボールミルで中心粒径50μm程度に粉砕した半無煙炭50g及び50重量%の水酸化カリウム水溶液20gを投入し、混練した。混練後ペレット化し、120℃で乾燥し、次いで窒素0.6リットル(L)/分の気流下730℃にて炭化処理した。得られた炭化物43.2gに85%水酸化カリウム86.4gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥して26.7gの活性炭を得た。
【0041】
実施例2
実施例1と同様の装置に、ボールミルで中心粒径50μm程度に粉砕した半無煙炭33g及び50重量%の水酸化カリウム水溶液10gを投入し、更にバインダー兼用でフェノール樹脂粉末(鐘紡製S−890)10gを添加し、混練した。混練後ペレット化し、120℃で乾燥し、次いで窒素0.6L/分の気流下730℃にて炭化処理した。得られた炭化処理物42.5gに85%水酸化カリウム85.0gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し、酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥して26.6gの活性炭を得た。
【0042】
比較例1
ボールミルで中心粒径50μm程度に粉砕した半無煙炭50g及び85%KOH100gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、乾燥して活性炭を得た。
【0043】
比較例2
半無煙炭50gをボールミルで中心粒径50μm程度に粉砕し、窒素0.6L/分の気流下730℃にて炭化処理した。得られた炭化処理物45.6gに85%KOH91.2gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、乾燥して活性炭を得た。
【0044】
比較例3
半無煙炭100gをボールミルで中心粒径50μm程度に粉砕し、窒素0.6L/分の気流下830℃にて炭化処理した。得られた炭化処理物81.2gに85%KOH162.4gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、乾燥して活性炭を得た。
【0045】
実施例3
実施例1と同様の装置に、ボールミルで中心粒径50μm程度に粉砕した石油コークス50g及び50重量%の水酸化カリウム水溶液10gを投入し、さらに10gの水を添加し、混練した。混練後ペレット化し、120℃で乾燥し、次いで窒素0.6L/分の気流下730℃にて炭化処理した。得られた炭化処理物42.5gに85%水酸化カリウム85.0gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し、酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥して29.5gの活性炭を得た。
【0046】
実施例4
実施例3と同様の装置に、ボールミルで中心粒径50μm程度に粉砕した石油コークス50g及び50重量%の水酸化カリウム水溶液10gを投入し、さらに10gの水を添加し、混練した。混練後ペレット化し、120℃で乾燥し、次いで窒素0.6L/分の気流下730℃にて炭化処理した。炭化処理物42.5gを温水洗し、アルカリを除去した後、120℃で乾燥した。アルカリ除去された炭化物40gに85%水酸化カリウム80.0gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し、酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥して28.1gの活性炭を得た。
【0047】
実施例5
実施例3と同様の装置に、ボールミルで中心粒径50μm程度に粉砕した石油コークス50g及び50重量%の水酸化カリウム水溶液10gを投入し、さらに10gの水を添加し、混練した。混練後ペレット化し、120℃で乾燥し、窒素0.6L/分の気流下630℃にて炭化処理した。得られた炭化処理物53.0gを温水洗し、洗浄後の炭化処理物40gに85%水酸化カリウム80.0gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し、酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥し、26.2gの活性炭を得た。
【0048】
比較例4
ボールミルで中心粒径50μm程度に粉砕した石油コークス50g及び85%KOH100.0gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、乾燥して活性炭を得た。
【0049】
比較例5
石油コークス70gをボールミルで中心粒径50μm程度に粉砕し、窒素0.6L/分の気流下730℃にて炭化処理した。得られた炭化処理物61.0gに85%KOH122.0gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、活性炭を得た。
【0050】
比較例6
石油コークス100gをボールミルで中心粒径50μm程度に粉砕し、窒素0.6L/分の気流下630℃にて炭化処理した。得られた炭化処理物50.0gに85%KOH100.0gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、活性炭を得た。
【0051】
比較例7
石油コークス50gをボールミルで中心粒径50μm程度に粉砕し、85%KOH125.0gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、活性炭を得た。
【0052】
(評価)
なお、以上の実施例及び比較例で得られた活性炭の細孔容積及び比表面積を評価するために、ベンゼン(Bz)吸着量及びヨウ素吸着量をJIS 1474により測定した。測定結果を表1に示す。
【0053】
また、各実施例及び比較例で得られた活性炭を、振動ミルにより平均粒径5〜30μmに粉砕して粉末活性炭とし、この粉末活性炭80重量部に、導電性カーボン10重量部とポリテトラフロオロエチレン(PTFE)10重量部とを添加し、メノウ乳鉢で混練した。次いで、えられた混練物をロール圧延により、厚さ200μm程度のシートに成形し、直径2cmの円形に打ち抜き、150℃で4時間減圧下で乾燥することにより分極性電極を作製した。
【0054】
作製した分極性電極を、露点−50℃以下のクローブボックス内で、図1に示すように、ステンレスケースにアルミ集電極とガラスセパレータを用いてセルに組み立て、テトラエチルアンモニウムテトラフルオロボレートを含有するプロピレンカーボネート溶液を含侵させ、グローブボックス内でかしめ封印した。静電容量はパワーシステム製電気二重層キャパシタ評価装置を用い、室温中2.7V定電流、充放電サイクルを5回行い測定した。5回目の充放電サイクルからエネルギー換算法により求めた静電容量を表1に示す。
【0055】
【表1】

Figure 0004096653
【0056】
表1の結果から、本発明の製造方法により得られた活性炭は、細孔容積及び比表面積は低下するが、静電容量は向上していることがわかる。従って、本発明の製造方法によれば、単位重量あたりの静電容量を低下させることなく、通常の熱処理を施した活性炭よりも単位体積あたりの静電容量の向上した活性炭を得ることができる。
【0057】
【発明の効果】
本発明の製造方法によれば、単位重量あたりの静電容量を低下させること無く、単位体積あたりの静電容量の高い活性炭が得られる。
【図面の簡単な説明】
【図1】 電気二重層キャパシタの一例を示す断面概略図である。
【符号の説明】
1,2 集電部材、3,4 分極性電極、5 セパレータ、6 ガスケット、7 ケース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing activated carbon, a polarizable electrode, and an electric double layer capacitor. Since the activated carbon of the present invention has a high density and a large capacitance per volume, it is formed into a polarizable electrode and is suitably used for an electric double layer capacitor.
[0002]
[Prior art]
In recent years, new electronic devices such as mobile phones and notebook computers have rapidly spread, and electric double layer capacitors have attracted attention as auxiliary power sources for memory backup and motors. In particular, many electric double layer capacitors using activated carbon having a high specific surface area as an electrode material have been developed. Until now, activated carbon obtained by activating coconut shell, resin, coal, pitch, etc. in an acidic gas atmosphere such as water vapor or carbon dioxide has been used as an activated carbon for electric double layer capacitors. In addition, the carbonaceous material is activated (alkali activated) using an alkali metal hydroxide such as KOH. Among them, the activated carbon obtained by alkali activation has a relatively large specific surface area and exhibits a high capacitance, and therefore is expected as a polarizable electrode of an electric double layer capacitor (for example, WO91 / 12203, JP-A-10-1997767). Issue gazette).
[0003]
By the way, along with the recent reduction in size and weight of electronic devices, the electric double layer capacitors used tend to be required to be smaller and larger in capacity. It is required to show a higher capacitance than the above. For this reason, it is conceivable to further increase the specific surface area by making the activated carbon more porous by the same method as before, but although an improvement in the electrostatic capacity per weight can be expected, the activated carbon density decreases, so We cannot expect an improvement in electric capacity. Moreover, it is possible to increase the activated carbon density by controlling the amount of alkali metal hydroxide used and the reaction temperature and suppressing the progress of alkali activation, but as a result the capacitance per unit weight decreases. Therefore, the improvement in the capacitance per unit volume cannot be expected.
[0004]
As a solution to this problem, it has been proposed to produce activated carbon by alkali-activating a carbonaceous raw material, removing the alkali metal compound, and further heat-treating (Japanese Patent Laid-Open No. 9-213590).
[0005]
[Problems to be solved by the invention]
However, in order to improve the activated carbon density in accordance with the method described in JP-A-9-213590, when the alkali metal compound is removed from the alkali activated product of the carbonaceous raw material, As a result, there was a problem that the capacitance decreased, and as a result, the improvement in the capacitance per unit volume was only about several percent.
[0006]
The object of the present invention is to increase the density and reduce the capacitance per unit volume without reducing the capacitance per unit weight, regardless of the method of changing the degree of activation or applying ordinary heat treatment. The object is to provide a method for obtaining activated carbon.
[0007]
[Means for Solving the Problems]
The present inventors diligently studied, and instead of simply performing a heat treatment on the alkali-activated product obtained by removing the alkali-activated carbonaceous material, the carbonaceous material and the alkali metal hydroxide were mixed once. It discovered that the said objective can be achieved by performing a carbonization process and adding alkali metal hydroxide and activating alkali, and it came to this invention.
[0008]
That is, the present invention includes a primary mixing treatment of a carbonaceous material and 0.01 to 0.5 times the alkali metal hydroxide of the carbonaceous material, and carbonizing the resulting primary mixture at 300 to 1000 ° C. The obtained carbonized product and the alkali metal hydroxide 0.5 to 4 times by weight of the carbonized product are subjected to a secondary mixing treatment, and the resulting secondary mixture is activated at 500 to 1000 ° C. Provided is a method for producing activated carbon, wherein activated carbon is obtained by treatment.
[0009]
The present invention also provides a polarizable electrode formed by mixing the activated carbon thus obtained with at least a binder and a conductive material, and also provides an electric double layer capacitor incorporating such a polarizable electrode. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention includes a primary mixing treatment of a carbonaceous material and an alkali metal hydroxide, a carbonization treatment of the obtained primary mixture, and a secondary mixing of the obtained carbonization treatment product and the alkali metal hydroxide. The activated carbon is obtained by treating and activating the obtained secondary mixture. Activated carbon obtained by the production method of the present invention exhibits a high capacitance. The reason for this cannot be clearly explained, but the alkali metal hydroxide used in the primary mixing process contributes to carbonization (strong oxidation) of the carbonaceous material during the carbonization process, and the alkali metal used in the secondary mixing process. It can be presumed that the hydroxide contributes to the activation treatment to increase the effective surface of the electric double layer while increasing the crystallinity of the activated carbon.
[0011]
First, raw materials used in the present invention will be described.
[0012]
The carbonaceous material used in the present invention is not particularly limited as long as it can be activated to form activated carbon, and examples thereof include coal, coconut shell, resin, petroleum coke, and coal pitch coke. As the carbonaceous material, a carbonaceous material that has not been heat-treated at 1000 ° C. or higher, more preferably 600 ° C. or higher is preferable. The shape of the carbonaceous material is not particularly limited, and various shapes such as a granular shape, a powder shape, a fiber shape, and a sheet shape can be used.
[0013]
Moreover, the state of the carbonaceous material can be used regardless of whether it is solid or liquid. Here, when the carbonaceous material is solid, it is preferable to use a pulverized one in order to make the mixing with the alkali metal hydroxide uniform. The pulverization particle size is preferably 2 mm or less, more preferably 0.2 mm or less. When the carbonaceous material is a liquid such as a liquid resol resin, it can be used as it is.
[0014]
Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, cesium hydroxide, and rubidium hydroxide. These may be used alone or in combination of two or more. Among these, preferable alkali metal hydroxides include sodium hydroxide, potassium hydroxide, or a mixture thereof.
[0015]
Alkali metal hydroxides can be used not only in the form of powder and liquid but also in terms of uniform mixing with the carbonaceous material. When the alkali metal hydroxide is liquefied, there is no particular limitation as long as the alkali metal hydroxide is in a liquid state. The alkali metal hydroxide may be used in an alkali metal hydroxide solution dissolved in water, alcohol or the like.
[0016]
Next, the manufacturing method of the activated carbon of this invention is demonstrated for every process.
[0017]
In the method for producing activated carbon of the present invention, first, a carbonaceous material and an alkali metal hydroxide are subjected to a primary mixing treatment to obtain a primary mixture. The mixer used for this treatment is not particularly limited, and a known rotary container type mixer or a fixed container type mixer can be used. It is better to use a machine. The material of these devices is preferably an alkali-resistant material, particularly a material mainly composed of nickel.
[0018]
In the primary mixing treatment, if the amount of alkali metal hydroxide used is too small, the progress of crystallization is slow, and if too large, the activation proceeds earlier than the progress of crystallization. It is preferably 0.5 times by weight, more preferably 0.05 to 0.3 times by weight.
[0019]
The treatment temperature during the primary mixing treatment is usually sufficient at room temperature.
[0020]
The primary mixture obtained by the primary mixing treatment (when the carbonaceous material is liquid, it is uniformly mixed with the alkali metal hydroxide and infusibilized) may be subjected to carbonization as it is. You may shape | mold in spherical shape, granule shape, pellet shape, plate shape, etc. At the time of molding, a known binder such as pitch or tar may be mixed as necessary to improve the moldability.
[0021]
Next, the primary mixed product is carbonized to obtain a carbonized product. This carbonization treatment is a treatment that oxidizes and carbonizes organic substances contained in the carbonaceous material by heating together with the carbonaceous material and a relatively small amount of alkali metal hydroxide. If the carbonaceous material and a mixture of a relatively large amount of alkali metal hydroxide are activated without performing the carbonization treatment, it is difficult to improve the capacitance per volume of the active material.
[0022]
If the treatment temperature during carbonization is too low, the effect of promoting crystallization is small, and if it is too high, crystallization proceeds excessively and inhibits the progress of activation, and therefore preferably 300 ° C. to 1000 ° C., more preferably 300 ° C. C. to 800.degree.
[0023]
The rate of temperature increase to the treatment temperature during the carbonization treatment is not particularly limited, but if it is too slow, it takes too much time to reach the desired treatment temperature. Since generation or rapid gas generation occurs and is dangerous, it is preferably performed at about 0.1 to 4.0 ° C./min, more preferably about 0.5 to 3.0 ° C./min. Moreover, although there is no restriction | limiting in carbonization time (heat processing time), Usually, it implements in 1 to 24 hours.
[0024]
Further, since the carbonization treatment is a high-temperature heat treatment, it is preferable to carry out in an atmosphere of an inert gas such as nitrogen, carbon dioxide gas, argon gas, combustion gas, or a mixed gas thereof.
[0025]
In addition, although a primary mixing process and a carbonization process may be implemented separately, you may perform a carbonization process, performing a primary mixing process.
[0026]
Next, the carbonized product obtained by the carbonization is further mixed with an alkali metal hydroxide to obtain a secondary mixture. In this case, for example, a carbonized product that has been allowed to cool to room temperature may be used, or the carbonized product may be continuously processed without being allowed to cool. As a mixer used in this process, the mixer illustrated in the primary mixing process can be used.
[0027]
In the secondary mixing treatment, if the amount of alkali metal hydroxide used is too small, the progress of activation is slow, and if it is too much, it becomes over-activated. Therefore, the carbonaceous material is preferably 0.5 to 10 times by weight, more In view of operability and safety, it is preferably 0.5 to 4 times by weight.
[0028]
The treatment temperature at the time of the secondary mixing treatment can usually be carried out in the range of room temperature to 80 ° C. However, when the secondary mixing treatment is carried out continuously to the carbonization treatment, it may be the same temperature as the carbonization treatment temperature. .
[0029]
The secondary mixing treatment may be performed in an air atmosphere when performed at room temperature, but when the secondary mixing treatment temperature is substantially the same as the carbonization treatment temperature, nitrogen, carbon dioxide gas, argon gas, combustion gas, these It is preferable to carry out in the atmosphere of inert gas, such as mixed gas of these.
[0030]
Next, the secondary mixture obtained by the secondary mixing treatment is activated to obtain an activated treatment, and then activated carbon is obtained therefrom. Here, the secondary mixing process and the activation process may be performed separately, but the activation process may be performed while performing the secondary mixing process. In particular, following the carbonization treatment, the activation treatment may be advanced simultaneously with the secondary mixing treatment by adding an alkali metal hydroxide to the carbonized product without lowering the temperature of the reaction system.
[0031]
As the activation treatment, carbon, 177 (1997) p. The well-known alkali activation method described in 76-79 grade | etc., Can be applied. For example, the secondary mixture obtained by the secondary mixing treatment is heated in a batch or continuous manner in an atmosphere of nitrogen, carbon dioxide gas, argon gas, combustion gas, or an inert gas of these mixed gases. Can do. Here, if the activation treatment temperature is too high, the surface area of the activated carbon increases, but the capacitance when the electric double layer capacitor is made becomes small, and the metal potassium generated by the activation treatment evaporates, so there is a risk. Remarkably high. Also, if the activation treatment temperature is too low, the fine structure that is gasified by the activation treatment and removed from the system is not removed. For example, the electrical resistance when used as an electrode material increases. Therefore, the activation treatment temperature is preferably 500 to 1000 ° C, more preferably 600 to 800 ° C.
[0032]
The activation treatment product obtained by the activation treatment is cooled under an inert gas stream such as nitrogen or argon in order to suppress combustion of the treatment product. Next, the activation treatment product is washed with water by an ordinary method, and if necessary, pickled, washed with water to remove alkali metal components and impurities, dried at room temperature or under atmospheric pressure or reduced pressure, and dried. Obtain activated carbon.
[0033]
The activated carbon obtained by the production method of the present invention described above is useful as a material for a polarizable electrode particularly suitable for an electric double layer capacitor.
[0034]
Such a polarizable electrode is obtained by mixing and molding at least a binder such as polyvinylidene fluoride and polytetrafluoroethylene and a conductive material such as carbon black into the activated carbon obtained by the production method of the present invention. It is. By mixing the conductive material, the resistance of the electrode can be reduced, which is effective in reducing the internal resistance of the polarizable electrode and reducing the electrode volume.
[0035]
In order to manufacture a polarizable electrode suitable for such an electric double layer capacitor, a generally known method can be applied. For example, commercially available materials known as binders such as polyvinylidene fluoride and polytetrafluoroethylene, and conductive materials such as carbon black are added to a few percent as necessary, and kneaded well, then the mold It can be molded into an electrode by pressing it into a mold or rolling it into a sheet and punching it into the required shape. Alternatively, the kneaded product may be applied to a current collector to form a coated electrode. When forming an electrode, if necessary, an organic compound such as alcohol or N-methylpyrrolidone, a solvent such as water, a dispersant, or various additives may be used. It is also possible to apply heat within a range that does not impair the effects of the invention.
[0036]
The polarizable electrode described above is useful as an electrode of an electric double layer capacitor as shown in FIG. 1 (schematic cross-sectional view). Each component constituting the capacitor of FIG. 1 can have the same configuration as a known electric double layer capacitor except that the polarizable electrode according to the present invention is used. For example, in the figure, 1 and 2 are aluminum. Current collecting member made of, etc., 3 and 4 are polarizable electrodes made of activated carbon of the present invention, 5 is a separator made of polypropylene nonwoven fabric, 6 is a gasket made of polypropylene, polyethylene, polyamide, polyamideimide, polybutylene, etc. , 7 indicates a case made of a material such as stainless steel.
[0037]
In order to function as an electric double layer capacitor, a known electrolyte such as tetraethylammonium tetrafluoroborate or tetramethylammonium tetrafluoroborate is placed in case 7 with a carbonate such as ethylene carbonate, dimethyl carbonate, diethyl carbonate, or propylene carbonate. It is necessary to enclose an electrolytic solution dissolved in a solvent such as nitriles such as acetonitrile, lactones such as α-methyl-γ-butyrolactone, sulfoxides such as dimethyl sulfoxide, amides such as dimethylformamide.
[0038]
Since the electric double layer capacitor having the configuration shown in FIG. 1 uses the activated carbon of the present invention, it has a small capacitance and a high capacitance.
[0039]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[0040]
Example 1
A nickel cylinder having a diameter of 10 cm and a height of 90 cm was charged with 50 g of semi-anthracite coal pulverized with a ball mill to a center particle size of about 50 μm and 20 g of a 50 wt% potassium hydroxide aqueous solution and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and then carbonized at 730 ° C. under a stream of nitrogen of 0.6 liter (L) / min. 43.2 g of the obtained carbide was mixed with 86.4 g of 85% potassium hydroxide, and the temperature was increased to 730 ° C. at a rate of 200 ° C./hour under an air current of 0.6 L / min. After reaching 730 ° C., the material was activated for 3 hours and then allowed to cool to room temperature. The obtained activated product was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 26.7 g of activated carbon.
[0041]
Example 2
In the same apparatus as in Example 1, 33 g of semi-anthracite coal pulverized with a ball mill to a center particle size of about 50 μm and 10 g of a 50 wt% potassium hydroxide aqueous solution were added. 10 g was added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and then carbonized at 730 ° C. under an air current of 0.6 L / min. 82.5 g of 85% potassium hydroxide was mixed with 42.5 g of the obtained carbonized product, and the temperature was increased to 730 ° C. at a rate of 200 ° C./hour under an air current of 0.6 L / min. After reaching 730 ° C., the material was activated for 3 hours and then allowed to cool to room temperature. The obtained activated product was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 26.6 g of activated carbon.
[0042]
Comparative Example 1
Semi-anthracite 50 g and a 85% KOH 100 g pulverized with a ball mill to a center particle size of about 50 μm were mixed, activated in the same manner as in Example 1, potassium was removed, and dried to obtain activated carbon.
[0043]
Comparative Example 2
50 g of semi-anthracite was pulverized with a ball mill to a center particle size of about 50 μm and carbonized at 730 ° C. under an air current of 0.6 L / min. 95.6 g of 85% KOH was mixed with 45.6 g of the obtained carbonized product, activated in the same manner as in Example 1, potassium was removed, and drying was performed to obtain activated carbon.
[0044]
Comparative Example 3
100 g of semi-anthracite was pulverized with a ball mill to a center particle size of about 50 μm and carbonized at 830 ° C. under an air current of 0.6 L / min. 162.4 g of 85% KOH was mixed with 81.2 g of the obtained carbonized product, and activation treatment was performed in the same manner as in Example 1 to remove potassium, followed by drying to obtain activated carbon.
[0045]
Example 3
In the same apparatus as in Example 1, 50 g of petroleum coke pulverized with a ball mill to a center particle size of about 50 μm and 10 g of a 50 wt% potassium hydroxide aqueous solution were added, and further 10 g of water was added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and then carbonized at 730 ° C. under an air current of 0.6 L / min. 82.5 g of 85% potassium hydroxide was mixed with 42.5 g of the obtained carbonized product, and the temperature was increased to 730 ° C. at a rate of 200 ° C./hour under an air current of 0.6 L / min. After reaching 730 ° C., the material was activated for 3 hours and then allowed to cool to room temperature. The activated product thus obtained was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 29.5 g of activated carbon.
[0046]
Example 4
In the same apparatus as in Example 3, 50 g of petroleum coke pulverized with a ball mill to a center particle size of about 50 μm and 10 g of a 50 wt% potassium hydroxide aqueous solution were added, and 10 g of water was added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and then carbonized at 730 ° C. under an air current of 0.6 L / min. 42.5 g of the carbonized product was washed with warm water to remove the alkali, and then dried at 120 ° C. 80.0 g of 85% potassium hydroxide was mixed with 40 g of the alkali-removed carbide, and the temperature was increased to 730 ° C. at a rate of 200 ° C./hour under an air current of 0.6 L / min. After reaching 730 ° C., the material was activated for 3 hours and then allowed to cool to room temperature. The activated product thus obtained was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 28.1 g of activated carbon.
[0047]
Example 5
In the same apparatus as in Example 3, 50 g of petroleum coke pulverized with a ball mill to a center particle size of about 50 μm and 10 g of a 50 wt% potassium hydroxide aqueous solution were added, and 10 g of water was added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and carbonized at 630 ° C. under an air current of 0.6 L / min. 53.0 g of the obtained carbonized product was washed with warm water, 80.0 g of 85% potassium hydroxide was mixed with 40 g of the carbonized product after washing, and 200 ° C./hour up to 730 ° C. under an air current of 0.6 L / min. The temperature was raised. After reaching 730 ° C., the material was activated for 3 hours and then allowed to cool to room temperature. The activated product thus obtained was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 26.2 g of activated carbon.
[0048]
Comparative Example 4
Petroleum coke 50 g and a 85% KOH 100.0 g pulverized to a center particle size of about 50 μm by a ball mill were mixed, activated in the same manner as in Example 1, potassium was removed, and dried to obtain activated carbon.
[0049]
Comparative Example 5
70 g of petroleum coke was pulverized with a ball mill to a center particle size of about 50 μm and carbonized at 730 ° C. under an air current of 0.6 L / min. 121.0 g of 85% KOH was mixed with 61.0 g of the obtained carbonized product, and activation treatment was performed in the same manner as in Example 1 to remove potassium and obtain activated carbon.
[0050]
Comparative Example 6
Petroleum coke (100 g) was pulverized with a ball mill to a center particle size of about 50 μm and carbonized at 630 ° C. under an air current of 0.6 L / min. 100.0 g of 85% KOH was mixed with 50.0 g of the obtained carbonized product, and activated in the same manner as in Example 1 to remove potassium and obtain activated carbon.
[0051]
Comparative Example 7
50 g of petroleum coke was pulverized with a ball mill to a center particle size of about 50 μm, mixed with 125.0 g of 85% KOH, and activated in the same manner as in Example 1 to remove potassium and obtain activated carbon.
[0052]
(Evaluation)
In addition, in order to evaluate the pore volume and specific surface area of the activated carbon obtained in the above examples and comparative examples, the benzene (Bz) adsorption amount and iodine adsorption amount were measured according to JIS 1474. The measurement results are shown in Table 1.
[0053]
In addition, the activated carbon obtained in each of the examples and comparative examples was pulverized to an average particle size of 5 to 30 μm by a vibration mill to form powdered activated carbon. 10 parts by weight of oroethylene (PTFE) was added and kneaded in an agate mortar. Subsequently, the obtained kneaded material was formed into a sheet having a thickness of about 200 μm by roll rolling, punched into a circle having a diameter of 2 cm, and dried under reduced pressure at 150 ° C. for 4 hours to produce a polarizable electrode.
[0054]
Propylene containing tetraethylammonium tetrafluoroborate was assembled in a cell using a stainless steel case and an aluminum collector electrode and a glass separator in a clove box having a dew point of −50 ° C. or less, as shown in FIG. The carbonate solution was impregnated and caulked and sealed in a glove box. The electrostatic capacity was measured by using a power system electric double layer capacitor evaluation device and performing a 2.7 V constant current and charge / discharge cycle 5 times at room temperature. Table 1 shows the capacitance determined by the energy conversion method from the fifth charge / discharge cycle.
[0055]
[Table 1]
Figure 0004096653
[0056]
From the results in Table 1, it can be seen that the activated carbon obtained by the production method of the present invention has a reduced pore volume and specific surface area, but an improved capacitance. Therefore, according to the production method of the present invention, it is possible to obtain activated carbon having an increased capacitance per unit volume as compared with activated carbon subjected to normal heat treatment without reducing the capacitance per unit weight.
[0057]
【The invention's effect】
According to the production method of the present invention, activated carbon having a high capacitance per unit volume can be obtained without reducing the capacitance per unit weight.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of an electric double layer capacitor.
[Explanation of symbols]
1, 2 Current collector, 3, 4 Polarized electrode, 5 Separator, 6 Gasket, 7 Case

Claims (2)

炭素質材料と、該炭素質材料の0.01〜0.5重量倍のアルカリ金属水酸化物とを一次混合処理し、得られた一次混合物を300〜1000℃で炭化処理し、得られた炭化処理物と、該炭化処理物の0.5〜4重量倍のアルカリ金属水酸化物とを二次混合処理し、得られた二次混合物を500〜1000℃で賦活処理することにより活性炭を得ることを特徴とする活性炭の製造方法。A carbonaceous material and an alkali metal hydroxide 0.01 to 0.5 times by weight of the carbonaceous material were subjected to primary mixing treatment, and the obtained primary mixture was carbonized at 300 to 1000 ° C. to obtain The carbonized product and 0.5 to 4 times the alkali metal hydroxide of the carbonized product are subjected to a secondary mixing treatment, and the resulting secondary mixture is activated at 500 to 1000 ° C. to activate the activated carbon. A method for producing activated carbon, characterized in that it is obtained. 該アルカリ金属水酸化物が水酸化ナトリウム、水酸化カリウム又はこれらの混合物である請求項1記載の活性炭の製造方法。The alkali metal hydroxide is sodium hydroxide, potassium hydroxide or manufacturing method of the activated carbon of claim 1 Symbol placement mixtures thereof.
JP2002221850A 2002-07-30 2002-07-30 Method for producing activated carbon, polarizable electrode and electric double layer capacitor Expired - Lifetime JP4096653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221850A JP4096653B2 (en) 2002-07-30 2002-07-30 Method for producing activated carbon, polarizable electrode and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221850A JP4096653B2 (en) 2002-07-30 2002-07-30 Method for producing activated carbon, polarizable electrode and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2004059387A JP2004059387A (en) 2004-02-26
JP4096653B2 true JP4096653B2 (en) 2008-06-04

Family

ID=31942048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221850A Expired - Lifetime JP4096653B2 (en) 2002-07-30 2002-07-30 Method for producing activated carbon, polarizable electrode and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4096653B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597727B2 (en) * 2005-03-18 2010-12-15 本田技研工業株式会社 Electric double layer capacitor
WO2015119269A1 (en) * 2014-02-10 2015-08-13 コスモ石油株式会社 Production method for activated carbon, and activated carbon
KR101631180B1 (en) * 2014-09-30 2016-06-20 인하대학교 산학협력단 Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation
EP3929153A4 (en) * 2019-02-18 2022-11-23 Kuraray Co., Ltd. Activated carbon and method for producing same

Also Published As

Publication number Publication date
JP2004059387A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4432493B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
US5956225A (en) Activated carbon, process for the preparation thereof and electric double layer-type capacitor electrode
KR100785158B1 (en) Method for Preparing Porous Carbon Material, Porous Carbon Material and Electrical Double Layer Capacitor Using the Same
JP4618929B2 (en) Activated carbon for electric double layer capacitors
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP2006294817A (en) Electric double layer capacitor, electrode material therefor, manufacturing method thereof, and electrode for electric double layer capacitor
Xiong et al. Hydrothermal synthesis of porous sugarcane bagasse carbon/MnO 2 nanocomposite for supercapacitor application
JPH10199767A (en) Manufacture of carbon material for electric double layer capacitor
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JP2007186411A (en) Activated carbon, process of making the same and use of the same
WO2001013390A1 (en) Method for producing activated carbon for electrode of electric double-layer capacitor
JP3920411B2 (en) Method for producing electrode material
JP2017204628A (en) Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby
JP3846022B2 (en) Electric double layer capacitor
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
KR101381710B1 (en) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
JP5619367B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
KR102173010B1 (en) Method for manufacturing electrode material for capacitors
JP4718320B2 (en) Porous material and electric double layer capacitor
JP2005243933A (en) Electric double-layer capacitor
JP4101681B2 (en) Method for producing activated carbon fiber for capacitor electrode and electric double layer capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5