JP4095703B2 - Ice making equipment - Google Patents

Ice making equipment Download PDF

Info

Publication number
JP4095703B2
JP4095703B2 JP00131698A JP131698A JP4095703B2 JP 4095703 B2 JP4095703 B2 JP 4095703B2 JP 00131698 A JP00131698 A JP 00131698A JP 131698 A JP131698 A JP 131698A JP 4095703 B2 JP4095703 B2 JP 4095703B2
Authority
JP
Japan
Prior art keywords
water supply
pump
water
supply pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00131698A
Other languages
Japanese (ja)
Other versions
JPH11201603A (en
Inventor
豊 八下田
敏夫 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP00131698A priority Critical patent/JP4095703B2/en
Publication of JPH11201603A publication Critical patent/JPH11201603A/en
Application granted granted Critical
Publication of JP4095703B2 publication Critical patent/JP4095703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給水機能を備えた製氷装置を有する冷蔵庫に関する。
【0002】
【従来の技術】
近年、製氷機を備えた冷蔵庫が数多く生産されるようになっている。従来技術による冷蔵庫の製氷装置について説明する。図3は、従来技術による典型的な冷蔵庫に備えられた製氷装置の概略を示す縦断面図である。101は冷蔵庫の庫内に組み込まれた製氷装置であり、この製氷装置101は製氷皿102、反転装置103、貯氷容器104、ポンプ105、給水タンク106、給水パイプ107、および吸い込みパイプ108らによって構成される。上記した構成物の内、製氷皿102、反転装置103、および貯氷容器104は下段の冷凍室109内にあり、ポンプ105と給水タンク106は上段の冷蔵室110に配置される。ポンプ105は例えばギアポンプであり、そのギアの回転と同時に水が給水タンク106から吸い込みパイプ108を通して直接吸い上げられる。また、給水パイプ107は、ポンプ105と製氷皿102との間を導水する経路となるものである。一方、吸い込みパイプ108は、給水タンク106若しくは給水タンク106内の水とポンプ105とを間を導水している。ここで、給水パイプ107は製氷皿102の情報に給水パイプ107の出口先端に設けたノズル111が開口し、このノズル111から製氷皿102に注水する構成となっている。一方、吸い込みパイプ108はその先端は給水タンク106内の水中に没している。
【0003】
上記した製氷装置101の構成物の内、製氷皿102は内部の水を凍らせる皿である。反転装置103はギア列が内蔵されており、製氷皿102を反転して製氷皿102から皿内の氷を離脱させる働きをする。貯氷容器104は、製氷皿102の下にあり、製氷皿102から落下した氷を貯めておく容器である。
【0004】
上記のような構成の製氷装置の製氷動作を簡単に説明する。まず、ポンプ105を正回転させ給水タンク106にある水をパイプ108に吸引し、給水パイプ107に送水し、給水パイプの先端に設けたノズル111から製氷皿102に注水する。製氷皿102がほぼ満水となる水量を注水するとポンプ105は停止し、その後、給水パイプ107を残留した水を給水タンクに戻すためにポンプ108を逆回転させる。このようにポンプ105のモータを一定時間だけ逆回転する理由は、給水パイプ107に残留する水をポンプ105を介して給水タンク106内に回収するためである。製氷皿102で製氷が完了すると、反転装置103で製氷皿102を反転して氷を製氷皿102から離脱させて製氷皿102の下にある貯氷容器104に落下させ、一連の製氷運転は終了する。
【0005】
上記したような従来技術は、例えば特開平7−260305号公報に開示されている。
【0006】
【発明が解決しようとする課題】
上記従来技術では、上述したポンプの給水側の給水パイプは製氷皿の上面に開口されている製氷構造を有し、給水後に給水パイプに残留した水をポンプを通して給水タンク内に回収させる目的で、給水後一定時間ポンプのモータを逆回転させて残留水を回収するようにした残留水の回収制御を行う製氷装置では、下記の問題が生じる点については考慮されていなかった。
【0007】
すなわち、給水パイプのパイプ内径が太かったり、パイプ内面が粗だったり、パイプが横方向に傾斜していたり、あるいはパイプ長さが長かったりした場合、給水パイプ内の残留水を回収する為に残留水の回収制御を行っても、給水パイプ内の径方向全域に発達した水流が途中で切れ、給水パイプの内面に附着し、回収できない残留水が発生する。この残留水は回収制御後に給水パイプの出口部まで自重で集結するのに時間がかかってしまう。さらには、給水パイプの出口部に溜まった残留水は表面張力で自重だけでは落下しにくいものであるため、上記の問題を放置しておくと、図示されていないが、給水パイプの凍結防止用のヒータが切れたり、急冷凍のための押ボタンを間違えて1度以上押したりした場合に、出口部の温度も下がって、給水パイプの出口部の残留水がして給水パイプの出口部を詰らせたり、水滴の場合には給水パイプの出口部を半分ふさぐ状態で結氷し、この影響で再給水時に給水パイプの出口部で、水の方向、角度が変化し、水が飛散し、製氷皿への給水ができなくなる。
【0008】
さらには、上記の問題を解決しようとして、給水パイプの出口部に集結し、表面張力で自重だけでは落下しない残留水をポンプを正回転させ、吸い込みパイプの空気を給水パイプへ送風させて、風圧で落下させようとすると、その間に給水タンクの水を吸引してしまい、この水が再び給水パイプに送水され、給水パイプ内に残留水を発生させてしまう。
【0009】
さらには、給水パイプの出口部に集結した残留水が異常時結氷し給水パイプが詰まった時、ポンプを逆回転すると給水パイプ内が負圧になるため、ポンプが停止していても給水パイプは給水タンクから水を吸引し、前記した異常運転が正常運転に戻った時、サイフォンの作用で製氷皿へ不必要な給水が行われる。
【0010】
あるいは、給水パイプの出口部に集結した残留水が多量に発生して、その自重で給水パイプの出口部から離脱する際に給水パイプ内に瞬間的に負圧になるため、ポンプが停止していても給水パイプは給水タンクから水を吸引し、サイフォンの作用で製氷皿へ不必要な給水が行われる。
【0011】
本発明は、従来技術の上記した問題点に着目し、給水パイプの水切り制御を行うことによって製氷皿への給水不良のない製氷装置を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
上記した目的を達成するための本発明の特徴は、冷蔵庫内に給水タンクと、ポンプと、製氷皿と、これらを結ぶパイプとを配設し、上記ポンプの吸い込み側の吸い込みパイプは給水タンクの内部に接続され、上記ポンプの給水側の給水パイプは上記製氷皿の上面に開口されている製氷構造を有し、上記ポンプを正回転させて製氷皿に給水後、上記ポンプを一定時間逆回転させて上記給水パイプ内の残留水を上記給水タンクに回収する残留水の回収制御を有する製氷装置に於いて、残留水の回収制御の逆回転終了後、上記ポンプ停止させて上記給水パイプの内面に附着した残留水を上記給水パイプの内面に沿って自重で落下させ上記ポンプを正回転させて上記吸込みパイプの空気を上記給水パイプへ送風して上記給水パイプの出口に集結した残留水を風圧で落下させ、上記ポンプを停止させてから前記逆回転させる給水ポンプの水切り制御を附加したことを特徴とする製氷装置にある。
【0013】
このようにすることによって、ポンプで製氷皿に給水後、ポンプを一定時間逆回転させて給水パイプ内の残留水を給水タンク内に回収する残留水の回収制御では給水パイプの水切りができなかったものを給水パイプの水切りができるようにした。
【0014】
また、ポンプ停止させて給水パイプの内面に附着した残留水を上記給水パイプの内面に沿って自重で落下させ上記ポンプを正回転させて吸込みパイプの空気を上記給水パイプへ送風して上記給水パイプの出口に集結した残留水を風圧で落下させ、上記ポンプを停止させてから前記逆回転させる動作をサイクルとする上記ポンプの動作を連続して複数回行うようにしたことを特徴とするものである。
【0015】
このようにすることによって、給水パイプの出口先端の水切りをより確実に行うようにしたものである。
【0016】
さらに、冷蔵室には給水タンクとポンプとを配設し、冷蔵室の下部に形成した冷凍室には製氷皿を配設し、ポンプと製氷皿とを結ぶ給水パイプはポンプから冷蔵室の内箱背面に沿って下降させ、冷蔵室と冷凍室とを仕切る仕切断熱を貫通して製氷皿の上部に配設すると共に、給水パイプの寸法は内径7mm〜9mm、長さ600mm〜900mmとし、その形状は30°〜120°の曲げ部を3ヶ所以上としたことを特徴とするものである。
【0017】
このようにすることによって、ポンプ停止させて給水パイプの内面に附着した残留水を上記給水パイプの内面に沿って自重で落下させ上記ポンプを正回転させて吸込みパイプの空気を上記給水パイプへ送風して上記給水パイプの出口に集結した残留水を風圧で落下させ、上記ポンプを停止させてから前記逆回転させる動作をサイクルとした水切り制御に於いて、ポンプの停止時間内に給水パイプの内面に附着した残留水を給水パイプの出口部まで自重で結集させることができ、次のポンプの正回転時間内に給水パイプの出口部の残留水を風圧で落下させることができるようにしたものである。
【0018】
【発明の実施の形態】
以下本発明の実施例を図1、図2で説明する。図1は、本発明の製氷装置の冷蔵庫組み込み時の主要縦断面説明図である。図2は、本発明の給水工程のフローチャート説明図である。図1に於いて、1は製氷装置であり、該製氷装置は冷蔵庫の庫内に組み込まれ、製氷皿2、反転装置3、貯氷容器4、ポンプ5、給水タンク6、給水パイプ7、および吸い込みパイプ8によって構成される。上記した製氷装置1の構成物の内、製氷皿2、反転装置3、および貯氷容器4は冷蔵庫の下段に配設した冷凍室9に設けられる。製氷皿2は内部の水を凍らせる皿である。反転装置3はギア列が内蔵されており、製氷皿2を反転して離氷させる働きをする。貯氷容器4は製氷皿の下に設けられ、製氷皿2から落下した氷を貯めておく容器である。また、ポンプ5、給水タンク6、吸い込みパイプ8は冷蔵庫の上段に配設した冷蔵室10に設けられている。ポンプ5はギアポンプであり、回転と同時に水が給水タンク6から吸い込みパイプ8を通して直接吸い上げられる。給水タンク6は内部に給水用の水を貯えた容器である。給水パイプ7は冷蔵庫の内箱背面11に沿って下降し、冷凍室9と冷蔵室10とを仕切る仕切断熱12を貫通して製氷皿2の上面に開口されている。給水パイプ7の出口はノズル等で形成した出口部13を有しており、この出口部13から製氷皿2へ水が注水される。給水パイプの寸法は内径7mm〜9mm、長さ600mm〜900mmとし、その形状は給水パイプ7の上部、中間部、下部に30°〜120°の曲げ部7A、7B、7Cを有している。吸い込みパイプ8はポンプ5の吸い込み側に隙間無く連続的に接続され、その先端は給水タンク6内の水中に没している。
【0019】
次に、製氷の動作を説明する。給水タンク6にある水をポンプ5を正回転させ吸い込みパイプ8で吸引し、給水パイプ7に送水し、給水パイプ7の出口部13から製氷皿2に注水する。製氷皿2が満水になるとポンプ5は停止し、その後給水パイプ7に残留した水を給水タンク6に回収するためにポンプ5を逆回転させる。製氷皿2で製氷が完了すると、反転装置3で製氷皿2を反転して離氷させ、製氷皿2の下にある貯氷容器4に落下させ、一連の製氷運転を終了する。この場合、給水パイプ7の寸法は、上記したように内径が7mm〜9mm、長さが600mm〜900mmあり、その形状は給水パイプの上部、中間部、下部に30°〜120°の曲げ部7A、7B、7Cを有しているため、給水パイプ7の残留水を給水タンク6に回収するためにポンプ5を逆回転させる回収制御を行なっても、給水パイプ7の径方向全域に発達した水流が途中で切れ、給水パイプ7の内面に水滴状で附着し、回収できない水滴状の残留水が発生する。この水滴状の残留水のほとんどは自重で給水パイプ7の出口部13に集まるが、集まるのに10秒程度時間がかかる。出口部13に集まった残留水をこのまま放置しておくと結氷して出口部13を詰まらせる。水滴の場合は、出口部13を半分ふさぐ状態で結氷し、再給水時に出口部13で飛散し、製氷皿への給水が出来なくなる。出口部13に集まった残留水が下に落下しないのは、出口部13で表面張力が作用し自重では落下しにくくなるためである。そこで本発明では、ポンプ5を短時間(本例では0.2秒程)正回転させる。この正回転により、吸い込みパイプ8の空気を給水パイプ7に送風し、給水パイプ7の出口部13に集まった残留水を風圧で落下させ、給水パイプ7の出口部13の残留水の水切りを行うものである。ここで、ポンプ5を0.2秒正回転させると給水タンク6の水は吸い込みパイプ8へ吸い上げられることになるが、この間に吸い込みパイプ8へ吸い上げられる位置は給水タンク6の水面A点から給水ポンプ5の入口部B点まである。そこで、次の動作で給水ポンプ5の入口部B点まで吸い上げられた水を給水タンク6へ戻すことが必要となり、給水ポンプ5を1秒逆回転させる。上記したように、ポンプ5の10秒間の停止と、それに続く0.2秒間の正回転と、更に1秒間の逆回転を一サイクルとした給水パイプ7の水切り制御を行うことにより、給水パイプ7の内面に附着した残留水のほとんど(80から90%)を給水パイプ7の出口部13に集め、給水パイプ7の出口部13に集めた水を給水ポンプ5の風圧で落下させ、水切りができるようにしたものである。しかし、給水パイプ7の内面に附着した残留水を給水パイプ7の詰まりや製氷皿2への給水不良を完璧に起こさない程度まで除去するためには、上記した一サイクルの水切り制御を複数回繰返して行うことが必要となる。
【0020】
次に、給水工程を図2のフローチャートによって詳細に説明する。ステップ1で図示されていない制御回路の給水タイマ1が始動し、続いてステップ2でポンプ5のモータが正回転を開始する。この正回転によって水が給水タンク6から吸い込みパイプ8を介して直接吸い上げられ、ポンプ5に入る。そして、ポンプ5から給水パイプ7を経て出口部13から水が製氷皿2に吐出される。給水タイマ1が満了(本例では5秒間)するとポンプ5のモータが停止し、出口部13からの水の吐出は停止する。この時、製氷皿2には水が満たされた状態になっている。製氷皿2へ吐出する水量の制御はタイマー1でポンプ5のモータ回転数を制御することによって行われている。ポンプ5はギアポンプを使用しているから、ポンプ5の総回転数にほほぼ比例した吐出水量が得られる。このためポンプ5のモータの回転時間を一定に定めることにより、希望する水量が得られる。
【0021】
給水タイマー1の満了がステップ3で確認されると、ステップ4でタイマー2が始動を開始する。タイマー2の設定時間は、ポンプ5の停止時間(本例では1秒)と逆回転時間(本例では3秒)からなり、先のタイマー1のそれに比べて短い。そして、タイマー2が始動を開始すると、停止時間(本例では1秒)の後にステップ5でポンプ5のモータが逆回転(本例では3秒)をする。このようにポンプ5のモータを一定時間(3秒)だけ逆回転させる理由は、給水パイプ7に残留する水をポンプ5を介して給水タンク6内に回収するためである。
【0022】
給水タイマー2の満了がステップ6で確認されると、ステップ10でタイマー3が始動を開始する。タイマー3の設定時間は、ポンプ5の停止時間(10秒)と正回転時間(0.2秒)からなる。そして、タイマー3が始動を開始すると、停止時間(10秒)の後にステップ11でポンプ5のモータが正回転(0.2秒)をする。このように、ポンプ5のモータを一定時間(10秒)だけ停止させる理由は、給水パイプ7の内面に附着した残留水を自重で内面に沿って落下させ、給水パイプ7の出口部に集結させるためである。その後に、ポンプ5のモータを一定時間(0.2秒)だけ正回転させる理由は、吸い込みパイプ8の空気を給水パイプ7へ送風して給水パイプ7の出口に集結した残留水を風圧で落下させ水切りを行うためである。
【0023】
給水タイマー3の満了がステップ12で確認されると、ステップ13でタイマー4が始動を開始する。タイマー4の設定時間は、ポンプ5の停止時間(本例では1秒)と逆回転時間(本例では1秒)からなる。そして、タイマー4が始動を開始すると、停止時間(1秒)の後に、ステップ14でポンプ5のモータが逆回転(1秒)をする。このように、ポンプ5のモータを一定時間(1秒)だけ逆回転させる理由は、前工程でポンプ5のモータを一定時間(0.2秒)だけ正回転したことによって、給水タンク6の水が吸い込みパイプ8内のA点(すなわち給水タンクの水面の位置)、からB点(すなわち給水ポンプ5の吸い込み側の位置)、に吸い上げられているのをポンプ5の逆回転により給水タンク6に回収するためである。
【0024】
給水タイマー4の満了がステップ15で確認され、停止(10秒)、正回転(0.2秒)、逆回転(1秒)を一サイクルとする給水パイプ7の水切り制御を終了する。しかし、給水パイプ7の詰まりや製氷皿2への給水不良を完璧に起こさせない程度まで給水パイプ7の内面に附着した残留水の水切り制御を行うにはこのサイクルを複数回繰返して行うことが必要となる。
【0025】
図2のステップ20からステップ25は前述したステップ10からステップ15までの水切り制御の工程と同じものである。従ってステップ10からステップ25まで行うことによって2サイクルの水切り制御を完了するものである。一サイクルの所要時間は12秒程度であり、このサイクルを複数回繰り返しても数十秒以内に水切り制御が完了できる。これによって、給水パイプ7の出口部の詰まりや製氷皿2への給水不良の発生を抑制することができる。
【0026】
上記した構成によれば、給水パイプ7の出口部の水切りができることによって、ポンプ5の逆回転時に給水パイプ7内の圧力は負圧にならないこと、あるいは、給水パイプ7の出口部に集結した残留水の自重による離脱で給水パイプ7内の圧力が負圧になることもないので、ポンプ5が停止時に給水タンク6から水を吸収しサイフォンの作用で製氷皿2へ不必要な給水が行われることもなくなる。
【0027】
また、ポンプの停止時に給水パイプの内面に附着した残留水を自重により給水パイプの出口部まで集結させることができ、次の正回転時には吸い込みパイプ内の空気を給水パイプ内に送風し、給水パイプの出口部に集結した残留水を風圧で落下させ、給水パイプの残留水の水切りができる効果がある。これにより、給水パイプの出口部の結氷による詰りが解消できると共に、給水パイプの出口部の水滴もなくなるので、この水滴により、出口部を半分ふさぐ状態で結氷して、再給水時に水の方向、角度が変化し、飛散して製氷皿への給水が出来なくなるという問題を解消できる。また、給水パイプの出口部の水切りができることにより、ポンプを逆回転させても給水パイプ内が負圧になることがなくなり、あるいは、給水性パイプの出口部に集結した多量の残量水が、その自重で給水パイプの出口部から離脱する際に給水パイプ内が瞬間的に負圧になるということもなくなり、ポンプの停止時に給水タンクから水をサイフォン作用で給水パイプ側へ不必要に吸引し、製氷皿に不必要に給水が行われるという問題を解消できる。
【0028】
さらに、ポンプを停止させ、給水パイプの出口部へ残留水を集める集結動作と、正回転させ、給水パイプの出口部に集結した残留水を風圧で落とす水切り動作と、逆回転させ、前工程で吸い込みパイプに吸い上げられた水を給水タンクへ戻させる戻し動作との3動作を一サイクルとする給水パイプの水切り制御を連続して複数回行うようにしたことによって、給水パイプの出口部の残留水の水切りをより確実に行うことができる。
【0029】
さらに、製氷装置の構造に於いては、冷蔵室には給水タンクとポンプとを配設し、冷蔵室の下部に形成した冷凍室には製氷皿を配設し、ポンプと製氷皿とを結ぶ給水パイプはポンプから冷蔵室の内箱背面に沿って下降させ、冷蔵室と冷凍室とを仕切る仕切断熱を貫通して製氷皿の上面に配設すると共に、給水パイプの寸法は内径7mm〜9mm、長さ600mm〜900mmとし、その形状は30°〜120°の曲げ部を3ヶ所以上有する形状である。この様な構成にすることによって、ポンプの停止、正回転、逆回転の3動作を一サイクルとした給水パイプの水切り制御に於いて、ポンプの停止時間(10秒間)内に給水パイプの内面に附着した残留水を給水パイプの出口部まで自重で集結させることができ、次のポンプの正回転時間(0.2秒)内に給水パイプの出口部の残留水を風圧で落下させることができ、加えてポンプの逆回転時間(1秒)内に上記正回転(0.2秒)で吸い込みパイプに吸い上げられた水を給水タンクへ戻すことができる。
【0030】
【発明の効果】
本発明によれば、製氷皿への給水不良のない製氷装置を提供できる。
【図面の簡単な説明】
【図1】本発明の製氷装置の冷蔵庫組込み時の主要縦断面説明図。
【図2】本発明の給水工程のフローチャート説明図。
【図3】従来の製氷装置の冷蔵庫組込み時の主要縦断面説明図。
【符号の説明】
1・・・製氷装置 2・・・製氷皿
3・・・反転装置 5・・・ポンプ
6・・・給水タンク 7・・・給水パイプ
8・・・吸い込みパイプ 9・・・冷凍室
10・・・冷蔵室 12・・・仕切断熱
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator having an ice making device having a water supply function.
[0002]
[Prior art]
In recent years, many refrigerators equipped with ice makers have been produced. A conventional ice making device for a refrigerator will be described. FIG. 3 is a longitudinal sectional view schematically showing an ice making device provided in a typical refrigerator according to the prior art. Reference numeral 101 denotes an ice making device incorporated in a refrigerator. The ice making device 101 includes an ice tray 102, a reversing device 103, an ice storage container 104, a pump 105, a water supply tank 106, a water supply pipe 107, and a suction pipe 108. Is done. Among the above-described components, the ice tray 102, the reversing device 103, and the ice storage container 104 are in the lower freezer compartment 109, and the pump 105 and the water supply tank 106 are arranged in the upper refrigerator compartment 110. The pump 105 is, for example, a gear pump, and water is sucked up directly from the water supply tank 106 through the suction pipe 108 simultaneously with the rotation of the gear. The water supply pipe 107 serves as a path for guiding water between the pump 105 and the ice tray 102. On the other hand, the suction pipe 108 guides water between the water supply tank 106 or the water in the water supply tank 106 and the pump 105. Here, the water supply pipe 107 has a configuration in which a nozzle 111 provided at the outlet end of the water supply pipe 107 is opened in the information on the ice tray 102 and water is poured from the nozzle 111 into the ice tray 102. On the other hand, the suction pipe 108 has its tip submerged in the water in the water supply tank 106.
[0003]
Of the components of the ice making device 101 described above, the ice making tray 102 is a tray for freezing water inside. The reversing device 103 has a built-in gear train, and functions to reverse the ice tray 102 to remove the ice in the tray from the ice tray 102. The ice storage container 104 is a container that is located under the ice tray 102 and stores ice that has fallen from the ice tray 102.
[0004]
The ice making operation of the ice making device configured as described above will be briefly described. First, the pump 105 is rotated forward so that water in the water supply tank 106 is sucked into the pipe 108, supplied to the water supply pipe 107, and poured into the ice tray 102 from the nozzle 111 provided at the tip of the water supply pipe. When the amount of water that the ice tray 102 is almost full of water is injected, the pump 105 stops, and then the pump 108 is rotated in reverse to return the water remaining in the water supply pipe 107 to the water supply tank. The reason why the motor of the pump 105 is reversely rotated for a certain time in this way is to collect the water remaining in the water supply pipe 107 into the water supply tank 106 via the pump 105. When ice making is completed in the ice tray 102, the reversing device 103 reverses the ice tray 102 to remove the ice from the ice tray 102 and drop it into the ice storage container 104 under the ice tray 102, and the series of ice making operations is completed. .
[0005]
The prior art as described above is disclosed in, for example, Japanese Patent Laid-Open No. 7-260305.
[0006]
[Problems to be solved by the invention]
In the above prior art, the water supply pipe on the water supply side of the pump described above has an ice making structure opened on the upper surface of the ice tray, and for the purpose of collecting the water remaining in the water supply pipe after water supply into the water supply tank through the pump, In the ice making device that performs the recovery control of the residual water in which the pump motor is reversely rotated for a certain time after the water supply to recover the residual water, the following problems have not been considered.
[0007]
That is, when the pipe inner diameter of the water supply pipe is thick, the pipe inner surface is rough, the pipe is inclined in the lateral direction, or the pipe length is long, the residual water in the water supply pipe remains to be collected. Even when the water recovery control is performed, the water flow developed in the entire radial direction in the water supply pipe is cut off halfway and attached to the inner surface of the water supply pipe, and residual water that cannot be recovered is generated. It takes time for the residual water to collect by its own weight up to the outlet of the water supply pipe after the recovery control. Furthermore, since the residual water collected at the outlet of the water supply pipe is hard to fall by its own weight due to surface tension alone, if the above problem is left unattended, it is not shown in the figure, but it is used to prevent the water supply pipe from freezing. If the heater is turned off, or if the push button for quick freezing is mistakenly pushed more than once, the temperature at the outlet will drop, and the residual water at the outlet of the water supply pipe will drop and the outlet of the water supply pipe will In the case of clogging or water drops, the water pipe is frozen with the outlet part of the water blocked, and this affects the direction and angle of the water at the outlet part of the water pipe when water is refilled. Can no longer supply water to the ice tray.
[0008]
Furthermore, in an attempt to solve the above problems, the water gathered at the outlet of the water supply pipe, the residual water that does not fall by its own weight due to the surface tension, rotates the pump forward, and the air from the suction pipe is blown to the water supply pipe to reduce the wind pressure. If the water is dropped, the water in the water supply tank is sucked in the meantime, and this water is sent again to the water supply pipe, and residual water is generated in the water supply pipe.
[0009]
Furthermore, when the residual water collected at the outlet of the water supply pipe freezes in the event of an abnormality and the water supply pipe is clogged, reverse rotation of the pump will cause negative pressure in the water supply pipe, so the water supply pipe will not stop even if the pump is stopped. When water is sucked from the water supply tank and the abnormal operation described above returns to normal operation, unnecessary water supply is performed to the ice tray by the action of the siphon.
[0010]
Alternatively, a large amount of residual water collected at the outlet of the water supply pipe is generated, and the pump stops because it loses momentary negative pressure in the water supply pipe when it leaves the outlet of the water supply pipe due to its own weight. However, the water supply pipe draws water from the water supply tank, and the siphon acts to supply unnecessary water to the ice tray.
[0011]
An object of the present invention is to provide an ice making device that does not cause poor water supply to an ice tray by performing draining control of a water supply pipe, paying attention to the above-described problems of the prior art.
[0012]
[Means for Solving the Problems]
A feature of the present invention for achieving the above-described object is that a water supply tank, a pump, an ice tray, and a pipe connecting these are arranged in the refrigerator, and the suction pipe on the suction side of the pump is a part of the water supply tank. is connected to an internal water supply pipe of the water supply side of the pump has an ice making structure being opened to an upper surface of the ice tray, after water supply to the ice tray by forward rotation of the pump, a predetermined time reverse rotation of the pump the residual water in the allowed by the water feed pipe at the ice making apparatus having a recovery control of the residual water collecting in the water feed tank, after the end opposite the rotation of the recovery control of the residual water, the water supply pipe is stopped the pump the residual water PCB attached to the inner surface is dropped by its own weight along the inner surface of the water feed pipe, the pump rotated forward air of the suction pipe and blown into the water feed pipe gathered to the outlet of the water feed pipe Residual water was dropped by wind pressure, and in the ice making device being characterized in that to wipe the draining control of the reverse rotation causes the water supply pump after stopping the pump.
[0013]
By doing so, after supplying water to the ice tray with the pump, the water supply pipe could not be drained by the residual water recovery control in which the pump was rotated backward for a certain time to collect the residual water in the water supply pipe in the water supply tank. Made it possible to drain water pipes.
[0014]
Further, the pump is stopped and the residual water attached to the inner surface of the water supply pipe is dropped by its own weight along the inner surface of the water supply pipe, and the pump is rotated forward to blow the air of the suction pipe to the water supply pipe. the residual water gathered in the outlet of the water supply pipe is dropped by wind pressure, and characterized in that to perform a plurality of times in succession the operation of the pump to the reverse rotation causes operation and cycle after stopping the pump To do.
[0015]
By doing so, draining of the outlet end of the water supply pipe is more reliably performed.
[0016]
Furthermore, a water supply tank and a pump are provided in the refrigerator compartment, an ice tray is provided in the freezer compartment formed in the lower part of the refrigerator compartment, and a water supply pipe connecting the pump and the ice tray is provided from the pump to the inside of the refrigerator compartment. It is lowered along the back of the box, penetrates the partition insulation that separates the refrigerator compartment and the freezer compartment, and is arranged at the top of the ice tray. The dimensions of the water supply pipe are 7 mm to 9 mm in inner diameter and 600 mm to 900 mm in length. The shape is characterized by having three or more bent portions of 30 ° to 120 °.
[0017]
In this way, the pump is stopped, the residual water attached to the inner surface of the water supply pipe is dropped by its own weight along the inner surface of the water supply pipe , the pump is rotated forward, and the air in the suction pipe is removed from the water supply pipe. and blown into is dropped by wind pressure the residual water which has gathered in the outlet of the water feed pipe, in the draining control the cycle of the reverse rotation causes operation after stopping the pump, the water supply to the pump stop time Residual water attached to the inner surface of the pipe can be collected by its own weight up to the outlet of the water supply pipe, and the residual water at the outlet of the water supply pipe can be dropped by wind pressure within the normal rotation time of the next pump. It is a thing.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory view of a main longitudinal section when the ice making device of the present invention is incorporated into a refrigerator. FIG. 2 is a flow chart explanatory diagram of the water supply process of the present invention. In FIG. 1, reference numeral 1 denotes an ice making device, which is incorporated in a refrigerator, and includes an ice tray 2, a reversing device 3, an ice storage container 4, a pump 5, a water supply tank 6, a water supply pipe 7, and a suction pipe. It is constituted by a pipe 8. Of the components of the ice making device 1 described above, the ice making tray 2, the reversing device 3, and the ice storage container 4 are provided in a freezer compartment 9 disposed in the lower stage of the refrigerator. The ice tray 2 is a tray that freezes water inside. The reversing device 3 has a built-in gear train, and functions to reverse the ice tray 2 to release ice. The ice storage container 4 is a container that is provided under the ice tray and stores ice that has fallen from the ice tray 2. Moreover, the pump 5, the water supply tank 6, and the suction pipe 8 are provided in the refrigerator compartment 10 arrange | positioned in the upper stage of the refrigerator. The pump 5 is a gear pump, and simultaneously with rotation, water is directly sucked from the water supply tank 6 through the suction pipe 8. The water supply tank 6 is a container in which water for supplying water is stored. The water supply pipe 7 descends along the inner box rear face 11 of the refrigerator, and is opened on the upper surface of the ice tray 2 through the partition heat insulation 12 that partitions the freezer compartment 9 and the refrigerator compartment 10. The outlet of the water supply pipe 7 has an outlet portion 13 formed by a nozzle or the like, and water is poured from the outlet portion 13 into the ice tray 2. The dimensions of the water supply pipe are 7 mm to 9 mm in inner diameter and 600 mm to 900 mm in length, and the shape has bent portions 7A, 7B and 7C of 30 ° to 120 ° at the upper, middle and lower portions of the water supply pipe 7, respectively. The suction pipe 8 is continuously connected to the suction side of the pump 5 without a gap, and the tip thereof is submerged in the water in the water supply tank 6.
[0019]
Next, the operation of ice making will be described. The water in the water supply tank 6 is sucked by the suction pipe 8 by rotating the pump 5 in the forward direction, is supplied to the water supply pipe 7, and is poured into the ice tray 2 from the outlet 13 of the water supply pipe 7. When the ice tray 2 is full, the pump 5 is stopped, and then the pump 5 is rotated in reverse to collect the water remaining in the water supply pipe 7 in the water supply tank 6. When ice making is completed in the ice tray 2, the ice tray 2 is inverted by the reversing device 3 to be deiced, dropped into the ice storage container 4 below the ice tray 2, and a series of ice making operations is completed. In this case, the dimensions of the water supply pipe 7 are, as described above, an inner diameter of 7 mm to 9 mm and a length of 600 mm to 900 mm, and the shape is a bent portion 7A of 30 ° to 120 ° at the upper, middle, and lower portions of the water supply pipe. , 7B and 7C, the water flow developed over the entire radial direction of the water supply pipe 7 even if the recovery control is performed to reversely rotate the pump 5 in order to recover the residual water in the water supply pipe 7 to the water supply tank 6. Will be cut off in the middle and attached to the inner surface of the water supply pipe 7 in the form of water droplets, and water droplets that cannot be recovered will be generated. Most of the residual water in the form of water drops is collected by its own weight at the outlet 13 of the water supply pipe 7, but it takes about 10 seconds to collect. If the residual water collected at the outlet 13 is left as it is, it forms ice and clogs the outlet 13. In the case of water droplets, the ice is frozen in a state where the outlet portion 13 is half blocked, and splashes at the outlet portion 13 at the time of re-watering, making it impossible to supply water to the ice tray. The reason why the residual water collected at the outlet portion 13 does not fall down is that the surface tension acts at the outlet portion 13 and it is difficult to fall under its own weight. Therefore, in the present invention, the pump 5 is rotated forward for a short time (in this example, about 0.2 seconds). By this forward rotation, the air of the suction pipe 8 is blown to the water supply pipe 7, the residual water collected at the outlet portion 13 of the water supply pipe 7 is dropped by wind pressure, and the residual water at the outlet portion 13 of the water supply pipe 7 is drained. Is. Here, when the pump 5 is rotated forward for 0.2 seconds, the water in the water supply tank 6 is sucked up to the suction pipe 8, and the position where the water is sucked up to the suction pipe 8 during this period is supplied from the water surface A point of the water supply tank 6. Up to the inlet B point of the pump 5. Therefore, it is necessary to return the water sucked up to the inlet B point of the feed water pump 5 to the feed water tank 6 in the next operation, and the feed water pump 5 is rotated reversely for 1 second. As described above, the water supply pipe 7 is controlled by draining control of the water supply pipe 7 in which the pump 5 is stopped for 10 seconds, followed by normal rotation for 0.2 seconds, and further reverse rotation for 1 second as one cycle. Most of the residual water attached to the inner surface of the water (80 to 90%) is collected at the outlet 13 of the water supply pipe 7, and the water collected at the outlet 13 of the water supply pipe 7 is dropped by the wind pressure of the water supply pump 5 to drain the water. It is what I did. However, in order to remove residual water attached to the inner surface of the water supply pipe 7 to such an extent that the water supply pipe 7 is not clogged or poorly supplied to the ice tray 2, the above-mentioned water draining control is repeated a plurality of times. Need to be done.
[0020]
Next, a water supply process is demonstrated in detail with the flowchart of FIG. In step 1, a water supply timer 1 of a control circuit (not shown) is started, and in step 2, the motor of the pump 5 starts normal rotation. By this forward rotation, water is directly sucked up from the water supply tank 6 through the suction pipe 8 and enters the pump 5. Then, water is discharged from the outlet 5 to the ice tray 2 through the water supply pipe 7 from the pump 5. When the water supply timer 1 expires (in this example, 5 seconds), the motor of the pump 5 stops and the discharge of water from the outlet portion 13 stops. At this time, the ice tray 2 is filled with water. The amount of water discharged to the ice tray 2 is controlled by controlling the motor speed of the pump 5 with the timer 1. Since the pump 5 uses a gear pump, a discharge water amount approximately proportional to the total number of revolutions of the pump 5 can be obtained. Therefore, a desired amount of water can be obtained by setting the rotation time of the motor of the pump 5 constant.
[0021]
When the expiration of the water supply timer 1 is confirmed in step 3, the timer 2 starts to be started in step 4. The set time of the timer 2 is composed of the stop time of the pump 5 (1 second in this example) and the reverse rotation time (3 seconds in this example), and is shorter than that of the previous timer 1. When the timer 2 starts to start, the motor of the pump 5 reversely rotates (3 seconds in this example) in step 5 after a stop time (1 second in this example). The reason why the motor of the pump 5 is reversely rotated for a certain time (3 seconds) in this way is to collect the water remaining in the water supply pipe 7 into the water supply tank 6 via the pump 5.
[0022]
When the expiration of the water supply timer 2 is confirmed in step 6, the timer 3 starts to start in step 10. The set time of the timer 3 includes a stop time (10 seconds) of the pump 5 and a normal rotation time (0.2 seconds). When the timer 3 starts to start, the motor of the pump 5 rotates forward (0.2 seconds) in step 11 after the stop time (10 seconds). Thus, the reason for stopping the motor of the pump 5 for a fixed time (10 seconds) is that the residual water attached to the inner surface of the water supply pipe 7 is dropped along the inner surface by its own weight and concentrated at the outlet of the water supply pipe 7. Because. Then, the reason why the motor of the pump 5 is rotated forward for a predetermined time (0.2 seconds) is that the air in the suction pipe 8 is blown to the water supply pipe 7 and the residual water collected at the outlet of the water supply pipe 7 is dropped by the wind pressure. This is for draining water.
[0023]
When the expiration of the water supply timer 3 is confirmed in step 12, the timer 4 starts to be started in step 13. The set time of the timer 4 includes a stop time (1 second in this example) of the pump 5 and a reverse rotation time (1 second in this example). When the timer 4 starts to start, the motor of the pump 5 reversely rotates (1 second) in step 14 after the stop time (1 second). As described above, the reason why the motor of the pump 5 is reversely rotated for a predetermined time (1 second) is that the water of the water supply tank 6 is rotated by rotating the motor of the pump 5 forward for a predetermined time (0.2 second) in the previous process. Is sucked from point A in the suction pipe 8 (that is, the position of the water surface of the water supply tank) to point B (that is, the position on the suction side of the water supply pump 5) to the water supply tank 6 by the reverse rotation of the pump 5. This is for recovery.
[0024]
Expiration of the water supply timer 4 is confirmed in step 15, and the draining control of the water supply pipe 7 with one cycle of stop (10 seconds), forward rotation (0.2 seconds), and reverse rotation (1 second) is completed. However, it is necessary to repeat this cycle a plurality of times in order to control the drainage of the residual water attached to the inner surface of the water supply pipe 7 to the extent that clogging of the water supply pipe 7 and poor water supply to the ice tray 2 are not caused. It becomes.
[0025]
Steps 20 to 25 in FIG. 2 are the same as the draining control steps from Step 10 to Step 15 described above. Therefore, by performing steps 10 to 25, the two-cycle draining control is completed. The time required for one cycle is about 12 seconds, and the draining control can be completed within several tens of seconds even if this cycle is repeated a plurality of times. As a result, the clogging of the outlet portion of the water supply pipe 7 and the occurrence of poor water supply to the ice tray 2 can be suppressed.
[0026]
According to the configuration described above, the drainage of the outlet portion of the water supply pipe 7 can be performed, so that the pressure in the water supply pipe 7 does not become negative during the reverse rotation of the pump 5, or the residual collected in the outlet portion of the water supply pipe 7. Since the pressure in the water supply pipe 7 does not become negative due to separation due to the weight of water, the pump 5 absorbs water from the water supply tank 6 when the pump 5 is stopped, and unnecessary water is supplied to the ice tray 2 by the action of the siphon. Nothing will happen.
[0027]
In addition, residual water attached to the inner surface of the water supply pipe when the pump is stopped can be concentrated by its own weight to the outlet of the water supply pipe. During the next forward rotation, the air in the suction pipe is blown into the water supply pipe, and the water supply pipe Residual water collected at the outlet of the pipe is dropped by wind pressure, and the residual water in the water supply pipe can be drained. As a result, clogging due to icing at the outlet of the water supply pipe can be eliminated, and water droplets at the outlet of the water supply pipe are also eliminated, so that the water is frozen in a state where the outlet is half blocked by this water droplet, The problem that the angle changes, scatters and water supply to the ice tray becomes impossible can be solved. In addition, since the drainage of the outlet of the water supply pipe can be performed, even if the pump is rotated in the reverse direction, the inside of the water supply pipe does not become negative pressure, or a large amount of remaining water gathered at the outlet of the water supply pipe When leaving the outlet of the water supply pipe due to its own weight, there is no longer any instantaneous negative pressure inside the water supply pipe, and when the pump is stopped, water is sucked unnecessarily from the water supply tank to the water supply pipe side by siphon action. The problem of unnecessary water supply to the ice tray can be solved.
[0028]
In addition, the pump is stopped, the collecting operation to collect residual water at the outlet of the water supply pipe, and the water draining operation to rotate the forward water and drop the residual water collected at the outlet of the water supply pipe by wind pressure, reverse rotation, and in the previous process Residual water at the outlet of the water supply pipe is controlled by performing water drainage control of the water supply pipe a plurality of times in succession, with three cycles of the return operation for returning the water sucked up by the suction pipe to the water supply tank as one cycle. It is possible to drain the water more reliably.
[0029]
Furthermore, in the structure of the ice making apparatus, a water supply tank and a pump are provided in the refrigerator compartment, an ice making tray is provided in the freezer compartment formed in the lower part of the refrigerator compartment, and the pump and the ice tray are connected. The water supply pipe is lowered from the pump along the back of the inner box of the refrigerating chamber, and is disposed on the top surface of the ice tray through the partition heat insulation partitioning the refrigerating chamber and the freezing chamber. The dimensions of the water supply pipe are 7 mm to 9 mm in inner diameter. The length is 600 mm to 900 mm, and the shape is a shape having three or more bent portions of 30 ° to 120 °. By adopting such a configuration, in the drainage control of the water supply pipe in which the three operations of pump stop, forward rotation, and reverse rotation are one cycle, the inner surface of the water supply pipe is within the pump stop time (10 seconds). The attached residual water can be collected by its own weight up to the outlet of the water supply pipe, and the residual water at the outlet of the water supply pipe can be dropped by the wind pressure within the normal rotation time (0.2 seconds) of the next pump. In addition, it is possible to return the water sucked up by the suction pipe in the forward rotation (0.2 seconds) within the reverse rotation time (1 second) of the pump to the water supply tank.
[0030]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the ice making apparatus which does not have the poor water supply to an ice tray can be provided.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view of a main longitudinal section when an ice making device of the present invention is incorporated in a refrigerator.
FIG. 2 is an explanatory flowchart of a water supply process of the present invention.
FIG. 3 is an explanatory view of main longitudinal sections when a conventional ice making device is incorporated in a refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ice making apparatus 2 ... Ice making plate 3 ... Inversion apparatus 5 ... Pump 6 ... Water supply tank 7 ... Water supply pipe 8 ... Suction pipe 9 ... Freezer compartment 10 ...・ Refrigerator room 12 ... partition insulation

Claims (3)

冷蔵庫内に給水タンクと、ポンプと、製氷皿と、これらを結ぶパイプと、前記給水タンクの内部と連通された前記ポンプの吸い込み側の吸い込みパイプと、前記製氷皿の上面に開口されている前記ポンプの給水側の給水パイプとを備え、前記ポンプを正回転させて前記製氷皿に給水後、前記ポンプを一定時間逆回転させて前記給水パイプに残留した水を前記給水タンクに回収する製氷装置において
前記ポンプの一定時間の逆回転後、前記ポンプ停止させて前記給水パイプの内面に附着した残留水を前記給水パイプの内面に沿って自重で落下させ
前記ポンプを正回転させて前記吸込みパイプの空気を前記給水パイプへ送風して前記給水パイプの出口に集結した残留水を風圧で落下させ、
前記ポンプを停止させてから前記逆回転させる製氷装置。
A water supply tank in a refrigerator, a pump, and the ice tray, a pipe connecting these, the the suction side of the suction pipe with the interior swiped the pump of the water supply tank, and is opened in the upper surface of the ice tray the and a water supply pipe of the water supply side of the pump, after the water supply to the ice tray and the pump rotated forward, you collect water remaining in the water supply pipe of the pump is reversely rotated a certain time the water tank ice in the device,
After the reverse rotation of the predetermined time of the pump, the residual water PCB attached to the pump is stopped on the inner surface of the water supply pipe is dropped by its own weight along the inner surface of the water supply pipe,
The pump is rotated forward to blow the air of the suction pipe to the water supply pipe and the residual water collected at the outlet of the water supply pipe is dropped by wind pressure,
An ice making device that rotates the pump reversely after stopping the pump .
前記ポンプ停止させて前記給水パイプの内面に附着した残留水を前記給水パイプの内面に沿って自重で落下させ前記ポンプを正回転させて前記吸込みパイプの空気を前記給水パイプへ送風して前記給水パイプの出口に集結した残留水を風圧で落下させ、前記ポンプを停止させてから前記逆回転させる動作をサイクルとする前記ポンプの動作を連続して複数回行うようにした請求項1記載の製氷装置。 The pump is stopped and the residual water attached to the inner surface of the water supply pipe is dropped by its own weight along the inner surface of the water supply pipe, and the pump is rotated forward to blow the air of the suction pipe to the water supply pipe. the residual water gathered in the outlet of the water supply pipe is dropped by wind pressure, claim 1 in succession an operation of the pump that the pump is stopped and cycle the reverse rotation causes operation after was performed a plurality of times The ice making device described. 前記給水パイプの寸法は内径7mm乃至9mm、長さ600mm乃至900mmとし、その形状は30°乃至120°の曲げ部を3カ所以上としたことを特徴とする請求項1記載の製氷装置。  2. The ice making apparatus according to claim 1, wherein the water supply pipe has an inner diameter of 7 mm to 9 mm and a length of 600 mm to 900 mm, and has three or more bent portions of 30 ° to 120 °.
JP00131698A 1998-01-07 1998-01-07 Ice making equipment Expired - Fee Related JP4095703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00131698A JP4095703B2 (en) 1998-01-07 1998-01-07 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00131698A JP4095703B2 (en) 1998-01-07 1998-01-07 Ice making equipment

Publications (2)

Publication Number Publication Date
JPH11201603A JPH11201603A (en) 1999-07-30
JP4095703B2 true JP4095703B2 (en) 2008-06-04

Family

ID=11498102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00131698A Expired - Fee Related JP4095703B2 (en) 1998-01-07 1998-01-07 Ice making equipment

Country Status (1)

Country Link
JP (1) JP4095703B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085612B1 (en) 2010-01-20 2011-11-22 엘지전자 주식회사 Refrigerator
JP6204650B2 (en) * 2012-10-30 2017-09-27 シャープ株式会社 Refrigerator with ice making equipment
CN110986441A (en) * 2019-11-29 2020-04-10 合肥美的电冰箱有限公司 Control method and control device for ice making device, ice making device and storage medium

Also Published As

Publication number Publication date
JPH11201603A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP5097459B2 (en) How to operate an ice machine
KR100982700B1 (en) Water purifier having ice-maker
KR200479462Y1 (en) Drum type ice maker
CN201041443Y (en) Water circulation utilization device for ice maker
JP5380311B2 (en) Ice machine
KR101001297B1 (en) Water purifier having ice-maker
CN101449119A (en) Flow-down ice maker
JP4095703B2 (en) Ice making equipment
JP4554923B2 (en) Ice machine
KR20050110213A (en) Ice maker
JP6934326B2 (en) Ice machine
JP2005016878A (en) Automatic ice making device
KR101647648B1 (en) Water purifier having ice-maker capable of supplying instant cold water
KR20050110209A (en) Ice maker
JP3412677B2 (en) How to operate an automatic ice maker
JPH11248321A (en) Operation control method for automatic ice maker
JPH07225070A (en) Icemaker and operating method therefor
JP6954808B2 (en) De-icing control method for ice makers
JP2000018781A (en) Auger type ice maker
JPH10311635A (en) Cleaning structure for ice making water tank
JPS6035016Y2 (en) Ice maker with filter cleaning device
KR20100083420A (en) Ice loading method of water purifier having ice-maker
KR100566404B1 (en) Apparatus for economizing water in refrigerator
JPH09269166A (en) Icemaker
JP2006090580A (en) Circulating ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees