JP4087954B2 - Slab heating method - Google Patents

Slab heating method Download PDF

Info

Publication number
JP4087954B2
JP4087954B2 JP21000598A JP21000598A JP4087954B2 JP 4087954 B2 JP4087954 B2 JP 4087954B2 JP 21000598 A JP21000598 A JP 21000598A JP 21000598 A JP21000598 A JP 21000598A JP 4087954 B2 JP4087954 B2 JP 4087954B2
Authority
JP
Japan
Prior art keywords
heating
slab
gas
oxide scale
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21000598A
Other languages
Japanese (ja)
Other versions
JP2000045026A (en
Inventor
雅光 槌永
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21000598A priority Critical patent/JP4087954B2/en
Publication of JP2000045026A publication Critical patent/JP2000045026A/en
Application granted granted Critical
Publication of JP4087954B2 publication Critical patent/JP4087954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スラブを熱間圧延温度に昇温する際に、スラブ表面に生成する酸化スケール性状を良好にして熱延スケール疵を少なくするスラブの加熱方法に関する技術である。
【0002】
【従来の技術】
ステンレス鋼は表面に塗装されることなく製品に供されるため、外観の綺麗な表面肌が要求される。ところが、ステンレス鋼の表面は、連続鋳造鋳片の不健全性、スラブ加熱炉での酸化スケール生成の不均一性などの問題から疵が発生しやすく、一般に製造するのが難しい。
【0003】
この熱間で発生した疵は、疵内部に酸化スケールを含有するため、製造の途中工程で修復されることもなく最終製品まで残存する。このような疵の対処方法は、軽度な場合には研磨工程や酸洗工程で救済する方法が採られ、重度な場合にはスクラップになる。このため、生産性や歩留を著しく低下する問題がある。
【0004】
従来から、このような熱間圧延で生じる疵に対処するため種々の方法がなされている。これらの中で熱延前のスラブ表面に生じる酸化スケールを改善するスラブの加熱法については、特開平9−279316号公報に、Cr濃度10〜27重量%のフェライト系ステンレス鋼について、1300℃以上の高温で酸素濃度1.0〜4.0vol%、露点50〜60℃の加熱を熱間圧延前に1回以上行い、スラブ表面の酸化スケールを良好にする方法が開示されている。
【0005】
また、特開平9−302415号公報では、Cr濃度17重量%以上のフェライト系ステンレス鋼について、均一な厚い酸化スケールを得るために加熱条件として、酸素濃度が2〜10vol%で露点が0〜70℃の燃焼ガス雰囲気中で、高温加熱を行い、均一な厚い酸化スケール化することと、加熱炉中のスラブだれによる変形を最低限にすることを両立させる方法として、前段高温加熱し後段低温加熱化する方法を開示しており、前段高温加熱には、1300℃以上で加熱している。
【0006】
【発明が解決しようとする課題】
これらの方法に見られるように、良好な酸化スケールをスラブ加熱時に生成させようとすると1300℃以上の高温加熱が必要となる。しかし、高温加熱化は燃料原単位が上昇し、コスト高になるばかりでなく、スラブ組織を粗大化させるため、引き続き熱延し、冷延し、焼鈍し、酸洗あるいは焼鈍のまま製品を製造する際に、冷延後に判明するローピングや製品板のリジングが著しく悪化する問題があった。特に、低炭素化し、耐食性を向上させた高純鋼の場合には組織が粗大化しやすい。
【0007】
また、TiやNbを添加したステンレス鋼では、限界温度以上に高温加熱すると、表層の酸化スケール直下にTiやNbの酸化物粒子を含む内部酸化層を生じ、製品表面まで残存し、製品板のマクロ的なムラが生じる問題も生じた。
【0008】
本発明は、スラブ表面に生じる酸化スケール性状を従来法に比べ低温加熱で改善し、熱延後の鋼帯表面に発生する熱延スケール疵を防止し、なおかつ、製品板でのリジング、ローピングや表面性状を良好にするスラブの加熱方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者等は、ステンレス熱延鋼帯の熱延前の加熱炉で生じる酸化スケール形態と熱延後のスケール疵の対応、酸化スケール形態の生成条件を明らかにし、実操業に適用する技術を見出し、これらの知見に基づいて本発明を完成させるに至った。
【0010】
すなわち本発明の要旨は、以下の通りである。
(1)熱間圧延におけるCr:7〜25重量%、C:0.05重量%以下を含むステンレス鋼、またはC:0.06重量%以下とした普通鋼のスラブ加熱に際し、気体燃料を燃焼させるために、酸素濃度を30〜70vol%に高めた酸素供給ガスを用いると共に、さらにH Oを吹き込むことを特徴とするスラブの加熱方法
【0011】
【発明の実施の形態】
熱延において出現する酸化スケール疵の発生原因について解析した結果、スケール疵を発生する時のスラブ加熱直後のスラブ表面は、図6(A)の断面模式図で示すように、酸化スケールがスラブ金属部1に深く進行している部分を持つ厚さ0.4〜1.5mm程度の瘤状スケール、いわゆる異常酸化ノジュール2と、酸化が殆ど起こらない10μm程度の薄い酸化スケール3の混在した凹凸の激しい表面を生成する。この異常酸化ノジュールは、剥離しやすい外側の酸化層と、密着性の良いCrを多く含有する内部酸化層から成る。熱延時にはこの密着性の良い酸化スケール層の上に金属が覆い被さるような形になり、除去しにくい疵となる。
【0012】
一方、図6(B)の断面模式図で示すような均一な1〜2mmの厚さの酸化スケール4が熱延加熱直後のスラブ表面に生成している場合には、酸化スケール層4の上に金属が覆い被さるような形態の疵は発生しなかった。
【0013】
この均一な厚さの酸化スケールを生成するための条件は、スラブのCr濃度と加熱温度の関係を示した図2における、従来加熱法の温度以上に加熱することが必要である。この従来加熱法は、燃料ガスとしてLNGを用い、空気を酸素源として燃焼させた場合の結果である。図2に示すように、均一な厚い酸化スケールを生成させるための条件は、Cr濃度の増加に伴い、より高温が必要になる。
【0014】
この均一な厚い酸化スケールの生成する温度を低温化させるため、燃焼方法を検討した結果、酸素供給ガスとして従来用いていた空気に代えて、酸素濃度を増やしたガスを用いることが効果的であることを見出した。
【0015】
図1に、19%Crステンレス鋼について、酸素供給ガス中の酸素濃度を変更し、LNGを燃焼させた時に生じた燃焼ガス中のH2 O濃度とスラブ表面に生成した酸化スケール状態の関係を、加熱温度1100℃,1200℃,1270℃の場合についてそれぞれ示す。異常酸化ノジュールの発生を抑え、良好な酸化スケールをスラブ表面に形成するには、酸素供給ガスの酸素濃度が21vol%の場合(空気)には1270℃が必要であるが、酸素濃度が増加すると、例えば30vol%では1200℃、40vol%では1100℃というように低温化が可能になる。
【0016】
同様にして、供給酸素ガス中の酸素濃度を変えた時の、スラブのCr濃度毎の異常酸化ノジュールの発生限界温度を求めた結果を図2に示す。酸素供給ガス中の酸素濃度を30vol%以上に増加させることで、均一な厚い酸化スケール生成に必要な加熱温度を低減することが可能になった。
【0017】
このように酸素供給ガス中の酸素濃度を増やすと均一な厚い酸化スケールの生成する限界温度が低減できるのは、酸素供給ガス中の酸素濃度が増えると、燃焼に必要な酸素供給ガスの量を少なくすることができ、その結果燃焼ガス中のH2 O濃度を著しく高めることができるためである。また、これはH2 Oはスラブ表面に生成する酸化スケールをポーラスにする作用が強いため、酸化スケールとメタルの界面に充分な酸化源が供給され、安定した酸化スケールの成長が続くためと考えられる。
【0018】
一方、この燃焼ガス中のH2 O濃度が少ない場合は、Crの酸化が勝るため緻密なCr2 3 を形成し、全体的には薄い酸化スケールを形成するが、表面の微少欠陥がある部分は酸化が進行し、瘤状の形態を示すものと考えられる。
【0019】
被加熱材としては、クロム系ステンレス鋼ではCr量が7〜25重量%、C量が0.05重量%以下の、高温加熱で粗粒化を生じやすいスラブについて、均一な厚い酸化スケールの生成と加熱温度の低減が可能である。
【0020】
また、オーステナイト系ステンレス鋼についても均一な厚い酸化スケールがより低温で生成できる。またCrを含まない普通鋼においても、スラブ鋳造時に生成した表面疵を酸化スケール生成量を増やして酸化スケールと共にスケールオフすることが通常のスラブ加熱温度で可能になる。特に、C量が0.06重量%以下の低炭・高純度鋼に対して、スラブ組織を粗大化せずに冷延焼鈍後のイヤリングの良好な製品を製造することができる。
【0021】
このような鋼のスラブを、LNG,LPG,COGなどの気体ガスを燃料として用い、酸素供給ガスと共に燃焼させて加熱する。
酸素供給ガス中の酸素濃度は、空気に純酸素ガスを混合させるか、窒素を部分的に分離することで変更することができる。そして酸素濃度を30vol%以上にすることで、均一な厚い酸化スケールの生成する限界温度を、空気を用いた場合より50〜70℃低減させることができる。また40vol%以上にすると100〜170℃の低減が可能である。また、50vol%以上にすると170〜200℃の著しい低減が可能である。
【0022】
さらに酸素供給ガス中の酸素濃度を増加させると、空気で燃焼させていた時に比べ、不燃性の窒素ガスの代わりに燃焼に直接関与する酸素ガスの濃度が増加するため、燃焼効率は良くなり、その結果燃焼ガス温度は高温化する。
【0023】
この温度を調節するために、燃料ガス、酸素供給ガスと共に第3のガスを吹き込む。この第3のガスとしてH2 Oを用いることで、燃焼ガスの露点をさらに増加させることができる。
【0024】
例として、図3にプロパンガス燃焼の場合において同じ燃焼温度になるような、酸素供給ガス中の酸素濃度と追加H2 O量との関係を示す。そして図3に示す量までH2 Oを添加することで、図4の「H2 O追加あり」に示すように、燃焼ガス中のH2 O濃度を21〜44vol%から40〜77vol%(酸素供給ガス中の酸素濃度30〜70vol%の場合)まで上昇させることができ、酸化スケールの形成をさらに良好に行うことができる。
【0025】
さらに酸素供給ガス中の酸素濃度を高くすることで、図5のように燃焼ガス中のN2 ガス濃度を低減させることができ、有害なNOxガスの低減も可能になる。
【0026】
【実施例】
(実施例1)
厚さ250mm、巾1000mm、長さ6000mmの表1に成分組成を示したフェライト系ステンレス鋼のスラブを熱延するために、表4に示す燃料ガス、酸素供給ガス、H2 Oを追加した酸素供給ガスを用いて燃焼させた燃焼雰囲気で、燃焼ガス組成、加熱温度を変更して加熱した。
【0027】
加熱終了後、熱延を開始し、3〜4mm厚の鋼板を得た。さらにショットブラストでメカニカルデスケーリングした後、300g/リッターのH2 SO4 溶液90℃で60〜120sec 酸洗し、酸化スケールの上にメタルが被さった熱延スケール疵の有無を評価した。さらに、冷延後のローピング、冷延焼鈍後のリジング、冷延・焼鈍・酸洗後の製品表面のマクロムラを評価した。
【0028】
また、一部のスラブについては、加熱終了後のスラブをそのまま炉外に取り出して表面に生成した酸化スケールを肉眼観察し、断面観察して酸化スケールの形態を確認した。また、組織観察して結晶の平均粒径を求めた。
【0029】
表4に示したように、本発明条件を適用すると、従来の酸素供給ガスを空気を用いていた場合に比べ、加熱温度を低温化しても異常酸化ノジュールの生成がなく、均一な厚い酸化スケールが成長し、熱延疵のない良好な熱延鋼帯を製造することができる。
【0030】
(実施例2)
厚さ200mm、巾1200mm、長さ5500mmの表2,3に成分組成を示したオーステナイト系ステンレス鋼や普通鋼のスラブを熱延するために、表5に示す燃料ガス、酸素供給ガス、H2 Oを追加した酸素供給ガスを用いて燃焼させた燃焼雰囲気で、燃焼ガス組成、加熱温度を変更して加熱した。
【0031】
加熱終了後、熱延を開始し、3〜4mm厚の鋼板を得た。さらにショットブラストでメカニカルデスケーリングした後、オーステナイト系ステンレス鋼については、150g/リッターのHNO3 と80g/リッターのHFを混合した溶液70℃でスプレーして20〜150sec 酸洗し、普通鋼については80g/リッターのHCl溶液80℃で20〜70sec 酸洗し、酸化スケールの上にメタルが被さった熱延スケール疵の有無を評価した。さらに、冷延・焼鈍・酸洗後の製品板のイヤリングを評価した。
【0032】
また、加熱終了後のスラブ表面は、加熱後炉外に取り出したスラブ表面の酸化スケールを肉眼観察し、断面観察して酸化スケールの形態を確認した。さらに、組織観察して結晶の平均粒径を求めた。
【0033】
表5に示したように、本発明条件を適用すると、従来の酸素供給ガスを空気を用いていた場合に比べ、加熱温度を低温化しても、異常酸化ノジュールや酸化スケールと地鉄との界面が30〜50μm以上の凹凸形態を示す酸化スケールの生成がなく、均一な厚い酸化スケールが成長し、熱延疵のない良好な熱延鋼帯を製造することができる。
【0034】
【表1】

Figure 0004087954
【0035】
【表2】
Figure 0004087954
【0036】
【表3】
Figure 0004087954
【0037】
【表4】
Figure 0004087954
【0038】
【表5】
Figure 0004087954
【0039】
【発明の効果】
本発明に示すようにスラブ加熱条件を制御することで、熱延のためのスラブ加熱時に、異常酸化ノジュールを生じずに均一な厚い酸化スケールを、従来より低い加熱温度で生じさせることができる。
【0040】
このため、熱延後の酸化スケールの上にメタルが被さった特異な熱延スケール疵の発生がなく、生産性を阻害するコイル表面の研削工程を省略したり、再酸洗の発生を防止できる。加えて加熱後のスラブ組織を粗大化することがなくなり、熱延後の鋼帯の結晶粒径を細粒化し、結晶方位もランダム化できるため、冷延後の鋼板表面に生成するローピングや焼鈍後の製品板のリジングも低減することができるので、その工業的価値は多大である。
【図面の簡単な説明】
【図1】スラブ加熱時における、加熱温度と、酸素供給ガス中の酸素濃度と、燃焼ガス中のH2 O濃度と、均一な厚い酸化スケールや異常酸化ノジュールの生成状況との関係を示す図表である。
【図2】スラブ加熱時における、Cr濃度と、加熱方法と、均一な厚い酸化スケールの生成温度の関係を示す図表である。
【図3】プロパンガスの燃料ガス量と酸素供給ガス中の酸素濃度に対して、燃焼ガス温度が空気で燃焼するのと同じ温度にするために必要な酸素供給ガスに追加するH2 O量の関係を示す図表である。
【図4】プロパンガス燃焼時の、酸素供給ガス中の酸素濃度と、酸素供給ガスに追加するH2 Oの有無と、燃焼ガス中のH2 O濃度の関係を示す図表である。
【図5】プロパンガス燃焼時の、酸素供給ガス中の酸素濃度と、燃焼ガス中の窒素濃度の関係を示す図表である。
【図6】(A)は異常酸化ノジュールを生成したスラブ表面の断面模式図であり、(B)は均一な厚い酸化スケールを生成したスラブ表面の断面模式図である。
【符号の説明】
1 スラブの金属部
2 異常酸化ノジュール
3 薄い保護性酸化皮膜
4 均一な厚い酸化スケール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for heating a slab in which, when the temperature of the slab is raised to a hot rolling temperature, the oxide scale property generated on the surface of the slab is improved to reduce hot rolled scale wrinkles.
[0002]
[Prior art]
Since stainless steel is used in products without being painted on the surface, it requires a clean surface. However, the surface of stainless steel is prone to wrinkles due to problems such as unsoundness of continuously cast slabs and unevenness of oxide scale generation in a slab heating furnace, and is generally difficult to manufacture.
[0003]
The soot generated in the heat contains oxide scale inside the soot, and thus remains in the final product without being repaired in the middle of the manufacturing process. As a method for dealing with such wrinkles, a method of relieving by a polishing process or a pickling process is adopted when it is mild, and it becomes scrap when it is severe. For this reason, there is a problem that productivity and yield are remarkably lowered.
[0004]
Conventionally, various methods have been used to cope with such wrinkles caused by hot rolling. Of these, a method for heating a slab that improves the oxide scale generated on the surface of the slab before hot rolling is disclosed in JP-A-9-279316, in which a ferritic stainless steel having a Cr concentration of 10 to 27% by weight is 1300 ° C. or higher. Has disclosed a method in which heating at an oxygen concentration of 1.0 to 4.0 vol% and a dew point of 50 to 60 ° C. is performed at least once before hot rolling to improve the slab surface oxide scale.
[0005]
In JP-A-9-302415, for ferritic stainless steel having a Cr concentration of 17% by weight or more, as a heating condition in order to obtain a uniform thick oxide scale, the oxygen concentration is 2 to 10 vol% and the dew point is 0 to 70. High-temperature heating in the former stage and low-temperature heating in the latter stage as a method to achieve both high-temperature heating in a combustion gas atmosphere at ℃, uniform thick oxide scale, and minimizing deformation due to slab dripping in the heating furnace A method for converting to a high temperature is disclosed, and for the pre-stage high temperature heating, heating is performed at 1300 ° C. or higher.
[0006]
[Problems to be solved by the invention]
As seen in these methods, high temperature heating of 1300 ° C. or higher is required to produce a good oxide scale during slab heating. However, high-temperature heating not only increases the fuel consumption rate and increases the cost, but also makes the slab structure coarse, so it continues to hot-roll, cold-roll, anneal, and produce products while pickling or annealing. In doing so, there has been a problem that roping and ridging of the product plate, which are found after cold rolling, are remarkably deteriorated. In particular, in the case of high purity steel with low carbon and improved corrosion resistance, the structure tends to be coarsened.
[0007]
In addition, in stainless steel added with Ti or Nb, when heated to a temperature higher than the limit temperature, an internal oxide layer containing oxide particles of Ti or Nb is formed immediately below the oxide scale on the surface layer and remains up to the product surface. There was also a problem of macro unevenness.
[0008]
The present invention improves the oxide scale property generated on the surface of the slab by low-temperature heating as compared with the conventional method, prevents hot-rolled scale wrinkles generated on the surface of the steel strip after hot rolling, and also prevents ridging, roping, It aims at providing the heating method of the slab which makes surface property favorable.
[0009]
[Means for Solving the Problems]
The present inventors clarified the correspondence between the oxide scale form generated in the furnace before hot rolling of the stainless hot-rolled steel strip and the scale soot after hot rolling, the conditions for generating the oxide scale form, and applied the technology applied to the actual operation. Based on the finding and these findings, the present invention has been completed.
[0010]
That is, the gist of the present invention is as follows.
(1) In hot rolling, Cr: 7 to 25% by weight, C: Stainless steel containing 0.05% by weight or less, or C: 0.06% by weight or less of normal steel slab heating , burning gaseous fuel to, the oxygen concentration with an oxygen feed gas was increased to 30 to 70 vol%, further heating method slab characterized by blowing H 2 O.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As a result of analyzing the cause of the generation of oxidized scale soot that appears in hot rolling, the slab surface immediately after slab heating at the time of generating scale soot has an oxide scale of slab metal as shown in the schematic cross-sectional view of FIG. Concavity and convexity mixed with a so-called abnormal oxidation nodule 2 having a thickness of about 0.4 to 1.5 mm and a thin oxidation scale 3 having a thickness of about 10 μm that hardly oxidizes. Produces an intense surface. This abnormal oxidation nodule is composed of an outer oxide layer that is easily peeled off and an inner oxide layer containing a large amount of Cr with good adhesion. At the time of hot rolling, a metal is covered on the oxide scale layer with good adhesion, and it is difficult to remove.
[0012]
On the other hand, when the uniform oxide scale 4 having a thickness of 1 to 2 mm as shown in the schematic cross-sectional view of FIG. 6B is formed on the surface of the slab immediately after hot rolling, There were no wrinkles in the form of metal covering.
[0013]
The conditions for generating this uniform thickness oxide scale require heating to a temperature higher than that of the conventional heating method in FIG. 2 showing the relationship between the Cr concentration of the slab and the heating temperature. This conventional heating method is a result when LNG is used as a fuel gas and combustion is performed using air as an oxygen source. As shown in FIG. 2, the conditions for generating a uniform thick oxide scale require higher temperatures as the Cr concentration increases.
[0014]
In order to lower the temperature at which this uniform thick oxide scale is generated, as a result of examining the combustion method, it is effective to use a gas with an increased oxygen concentration instead of the conventionally used air as the oxygen supply gas. I found out.
[0015]
FIG. 1 shows the relationship between the H 2 O concentration in the combustion gas generated when 19% Cr stainless steel is changed in oxygen supply gas and LNG is burned and the oxide scale state generated on the slab surface. , Heating temperatures of 1100 ° C., 1200 ° C., and 1270 ° C. are shown respectively. In order to suppress the generation of abnormal oxidation nodules and form a good oxide scale on the slab surface, when the oxygen concentration of the oxygen supply gas is 21 vol% (air), 1270 ° C. is necessary, but when the oxygen concentration increases For example, the temperature can be lowered to 1200 ° C. at 30 vol% and 1100 ° C. at 40 vol%.
[0016]
Similarly, FIG. 2 shows the result of determining the abnormal oxidation nodule generation limit temperature for each Cr concentration of the slab when the oxygen concentration in the supplied oxygen gas is changed. By increasing the oxygen concentration in the oxygen supply gas to 30 vol% or more, it has become possible to reduce the heating temperature necessary for producing a uniform thick oxide scale.
[0017]
Thus, increasing the oxygen concentration in the oxygen supply gas can reduce the limit temperature at which a uniform thick oxide scale is generated. The increase in the oxygen concentration in the oxygen supply gas increases the amount of oxygen supply gas required for combustion. This is because the H 2 O concentration in the combustion gas can be significantly increased. This is also because H 2 O has a strong action of making the oxide scale generated on the surface of the slab porous, so that a sufficient oxidation source is supplied to the interface between the oxide scale and the metal, and stable oxide scale growth continues. It is done.
[0018]
On the other hand, when the H 2 O concentration in the combustion gas is small, the oxidation of Cr is superior, so that dense Cr 2 O 3 is formed and a thin oxide scale is formed as a whole, but there are minute defects on the surface. It is considered that the portion is oxidized and shows a knob-like form.
[0019]
As a material to be heated, a chromium oxide stainless steel has a Cr content of 7 to 25% by weight and a C content of 0.05 % by weight or less, and generates a uniform thick oxide scale for a slab that is likely to be coarsened by heating at a high temperature. It is possible to reduce the heating temperature.
[0020]
Moreover, a uniform thick oxide scale can be produced at a lower temperature also for austenitic stainless steel. Further, even in ordinary steel not containing Cr, it is possible to increase the amount of oxide scale produced and to scale off the oxide with the oxide scale at the normal slab heating temperature. In particular, a low-carbon, high-purity steel having a C content of 0.06% by weight or less can be manufactured with a good earring after cold rolling annealing without coarsening the slab structure.
[0021]
Such a steel slab is heated by burning a gas gas such as LNG, LPG, COG or the like together with an oxygen supply gas.
The oxygen concentration in the oxygen supply gas can be changed by mixing pure oxygen gas into the air or by partially separating nitrogen. And by making oxygen concentration 30 vol% or more, the limit temperature which a uniform thick oxide scale produces | generates can be reduced 50-70 degreeC rather than the case where air is used. Moreover, if it is 40 vol% or more, the reduction | decrease of 100-170 degreeC is possible. Moreover, if it is 50 vol% or more, the remarkable reduction of 170-200 degreeC is possible.
[0022]
Furthermore, when the oxygen concentration in the oxygen supply gas is increased, the combustion efficiency is improved because the concentration of oxygen gas directly involved in combustion increases instead of incombustible nitrogen gas, compared to when it is burned with air. As a result, the combustion gas temperature rises.
[0023]
In order to adjust the temperature, a third gas is blown together with the fuel gas and the oxygen supply gas. By using H 2 O as the third gas, the dew point of the combustion gas can be further increased.
[0024]
As an example, FIG. 3 shows the relationship between the oxygen concentration in the oxygen supply gas and the amount of additional H 2 O so that the combustion temperature is the same in the case of propane gas combustion. Then, by adding H 2 O to the amount shown in FIG. 3, the H 2 O concentration in the combustion gas is changed from 21 to 44 vol% to 40 to 77 vol% (as shown in “H 2 O added”) in FIG. (When the oxygen concentration in the oxygen supply gas is 30 to 70 vol%), the oxide scale can be formed more satisfactorily.
[0025]
Further, by increasing the oxygen concentration in the oxygen supply gas, the concentration of N 2 gas in the combustion gas can be reduced as shown in FIG. 5, and harmful NOx gas can be reduced.
[0026]
【Example】
Example 1
In order to hot-roll a ferritic stainless steel slab whose composition is shown in Table 1 with a thickness of 250 mm, a width of 1000 mm, and a length of 6000 mm, oxygen added with fuel gas, oxygen supply gas, and H 2 O shown in Table 4 In the combustion atmosphere burned with the supply gas, the combustion gas composition and the heating temperature were changed and heated.
[0027]
After the heating, hot rolling was started to obtain a steel plate having a thickness of 3 to 4 mm. Furthermore, after mechanical descaling by shot blasting, pickling was performed at 90 ° C. for 60 to 120 seconds with a 300 g / liter H 2 SO 4 solution, and the presence or absence of hot-rolled scale wrinkles covered with metal on the oxide scale was evaluated. Further, roping after cold rolling, ridging after cold rolling annealing, and macro unevenness on the product surface after cold rolling / annealing / pickling were evaluated.
[0028]
For some slabs, the slab after heating was taken out of the furnace as it was, and the oxidized scale formed on the surface was observed with the naked eye, and the form of the oxidized scale was confirmed by cross-sectional observation. Further, the average grain size of the crystals was determined by observing the structure.
[0029]
As shown in Table 4, when the conditions of the present invention are applied, there is no generation of abnormal oxidation nodules even when the heating temperature is lowered compared with the case where air is used as a conventional oxygen supply gas, and a uniform thick oxide scale. It is possible to produce a good hot-rolled steel strip without hot-rolling.
[0030]
(Example 2)
In order to hot-roll slabs of austenitic stainless steel or ordinary steel whose composition is shown in Tables 2 and 3 having a thickness of 200 mm, a width of 1200 mm, and a length of 5500 mm, the fuel gas, oxygen supply gas, and H 2 shown in Table 5 are used. In a combustion atmosphere combusted using an oxygen supply gas to which O was added, the composition was heated by changing the combustion gas composition and the heating temperature.
[0031]
After the heating, hot rolling was started to obtain a steel plate having a thickness of 3 to 4 mm. Further, after mechanical descaling by shot blasting, for austenitic stainless steel, a solution of 150 g / liter HNO 3 and 80 g / liter HF mixed is sprayed at 70 ° C. and pickled for 20 to 150 seconds. Pickling was performed at 80 ° C. for 20 to 70 seconds with an 80 g / liter HCl solution, and the presence or absence of hot-rolled scale wrinkles covered with metal on the oxide scale was evaluated. Furthermore, the product plate earrings after cold rolling, annealing and pickling were evaluated.
[0032]
Moreover, the slab surface after completion | finish of heating observed the oxide scale of the slab surface taken out out of the furnace after the heating, and observed the cross section, and confirmed the form of the oxide scale. Furthermore, the average grain size of the crystal was determined by observing the structure.
[0033]
As shown in Table 5, when the conditions of the present invention are applied, the interface between abnormal oxidation nodules and oxide scales and ground iron is reduced even when the heating temperature is lowered as compared with the case where air is used as a conventional oxygen supply gas. However, there is no generation of an oxide scale having a concavo-convex shape of 30 to 50 μm or more, and a uniform thick oxide scale grows, and a good hot-rolled steel strip without hot rolling can be manufactured.
[0034]
[Table 1]
Figure 0004087954
[0035]
[Table 2]
Figure 0004087954
[0036]
[Table 3]
Figure 0004087954
[0037]
[Table 4]
Figure 0004087954
[0038]
[Table 5]
Figure 0004087954
[0039]
【The invention's effect】
By controlling the slab heating conditions as shown in the present invention, a uniform thick oxide scale can be generated at a lower heating temperature than in the prior art without causing abnormal oxidation nodules during slab heating for hot rolling.
[0040]
For this reason, there is no occurrence of a unique hot-rolled scale flaw that is covered with metal on the oxide scale after hot-rolling, and it is possible to omit the grinding process of the coil surface that impedes productivity and to prevent the occurrence of re-acid washing. . In addition, the slab structure after heating is no longer coarsened, and the crystal grain size of the steel strip after hot rolling can be refined and the crystal orientation can be randomized. Therefore, roping and annealing generated on the steel sheet surface after cold rolling Since the ridging of the subsequent product plate can also be reduced, its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a chart showing the relationship between heating temperature, oxygen concentration in oxygen supply gas, H 2 O concentration in combustion gas, and generation state of uniform thick oxide scale and abnormal oxidation nodules during slab heating. It is.
FIG. 2 is a chart showing the relationship among Cr concentration, heating method, and formation temperature of uniform thick oxide scale during slab heating.
FIG. 3 shows the amount of H 2 O added to the oxygen supply gas required to bring the combustion gas temperature to the same temperature as when burning with air with respect to the amount of propane gas and the oxygen concentration in the oxygen supply gas. It is a chart which shows the relationship.
FIG. 4 is a chart showing the relationship between the oxygen concentration in the oxygen supply gas, the presence or absence of H 2 O added to the oxygen supply gas, and the H 2 O concentration in the combustion gas during propane gas combustion.
FIG. 5 is a chart showing the relationship between the oxygen concentration in the oxygen supply gas and the nitrogen concentration in the combustion gas during propane gas combustion.
FIG. 6A is a schematic cross-sectional view of a slab surface where abnormal oxide nodules are generated, and FIG. 6B is a schematic cross-sectional view of a slab surface where uniform thick oxide scales are generated.
[Explanation of symbols]
1 Metal part of slab 2 Abnormal oxidation nodule 3 Thin protective oxide film 4 Uniform thick oxide scale

Claims (1)

熱間圧延におけるCr:7〜25重量%、C:0.05重量%以下を含むステンレス鋼、またはC:0.06重量%以下とした普通鋼のスラブ加熱に際し、気体燃料を燃焼させるために、酸素濃度を30〜70vol%に高めた酸素供給ガスを用いると共に、さらにH Oを吹き込むことを特徴とするスラブの加熱方法。In order to burn gaseous fuel during slab heating of stainless steel containing Cr: 7 to 25 wt%, C: 0.05 wt% or less, or C: 0.06 wt% or less in hot rolling A method for heating a slab characterized by using an oxygen supply gas having an oxygen concentration increased to 30 to 70 vol % and further blowing H 2 O.
JP21000598A 1998-07-24 1998-07-24 Slab heating method Expired - Fee Related JP4087954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21000598A JP4087954B2 (en) 1998-07-24 1998-07-24 Slab heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21000598A JP4087954B2 (en) 1998-07-24 1998-07-24 Slab heating method

Publications (2)

Publication Number Publication Date
JP2000045026A JP2000045026A (en) 2000-02-15
JP4087954B2 true JP4087954B2 (en) 2008-05-21

Family

ID=16582275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21000598A Expired - Fee Related JP4087954B2 (en) 1998-07-24 1998-07-24 Slab heating method

Country Status (1)

Country Link
JP (1) JP4087954B2 (en)

Also Published As

Publication number Publication date
JP2000045026A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP4905615B2 (en) Stainless steel strip manufacturing method and integrated rolling mill line
JP4087954B2 (en) Slab heating method
JPH0414171B2 (en)
JP3656925B2 (en) Slab heating method for ferritic stainless steel sheet with few hot rolled scales
JP3175919B2 (en) Bulk rolling method for martensitic stainless steel slabs
JPS5844133B2 (en) Continuous annealing method for cold rolled steel strip
JP2010065298A (en) Method for producing ferritic stainless steel sheet having excellent surface quality
JP2010229488A (en) Method for manufacturing polish-finished material of ferritic-stainless steel
JPH093543A (en) Production of hot rolled plate and cold rolled sheet of austenitic stainless steel
JP3882470B2 (en) Method for producing austenitic stainless steel sheet
JP3067943B2 (en) Manufacturing method of ferritic stainless steel
JP3857817B2 (en) Manufacturing method of stainless steel strip with excellent pickling performance by twin roll type continuous casting machine
KR100349140B1 (en) Method for reheating surface grinded austenitic stainless steel
JP4112670B2 (en) Manufacturing method of steel sheet with excellent surface properties
JPH07228958A (en) Production of pure titanium sheet for industry
JP4759818B2 (en) Method for producing hot rolled steel
JPH10306320A (en) Production of hot-rolled steel plate excellent in surface characteristic
JPH07286215A (en) Production of stainless steel sheet
JPH11239806A (en) Manufacture of ferritic stainless steel sheet excellent in surface property
JP3583268B2 (en) Stainless steel strip excellent in surface gloss and method for producing the same
JPH07173537A (en) Production of austenitic stainless hot rolled steel strip
JP2003119517A (en) Method for manufacturing steel material superior in surface property
JPH07204703A (en) Manufacture of hot rolled stainless steel sheet
KR20000038631A (en) Method for producing austenite stainless hot rolling steel plate through hot rolling direct transferring
JP2004010954A (en) Heating method for ordinary steel slab for obtaining hot rolled plate with few surface defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees