JP4075378B2 - Driving device and vehicle using the same - Google Patents

Driving device and vehicle using the same Download PDF

Info

Publication number
JP4075378B2
JP4075378B2 JP2001515154A JP2001515154A JP4075378B2 JP 4075378 B2 JP4075378 B2 JP 4075378B2 JP 2001515154 A JP2001515154 A JP 2001515154A JP 2001515154 A JP2001515154 A JP 2001515154A JP 4075378 B2 JP4075378 B2 JP 4075378B2
Authority
JP
Japan
Prior art keywords
motor
gear
planetary gear
engine
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001515154A
Other languages
Japanese (ja)
Inventor
倫之 羽二生
良三 正木
雅彦 天野
泰三 宮崎
泰男 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP4075378B2 publication Critical patent/JP4075378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2012Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with four sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2064Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using at least one positive clutch, e.g. dog clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A drive device for switching between the operating conditions, i.e., a power running and a power generation of a motor (A12) and a motor (B13) according to the traveling conditions, by switching a planetary gear to be connected to the motor (A12) from a planetary gear (15) to a planetary gear (17) by a connection switching device (18); a hybrid vehicle comprising an engine, motors, and a generator all connected to a planetary gear, wherein the motors and the generator can be downsized without reducing an electrical speed change range in which a vehicle driving force is varied continuously steplessly by controlling the motors and the generator.

Description

技術分野
本発明はエンジンとモータジェネレータと差動機構とから構成される駆動装置と、それを用いた車両に関する。
背景技術
エンジンの低燃費化を図る駆動システムとして、モータジェネレータの駆動力を利用するハイブリッド車がある。
ハイブリッド車のうち、2つのモータジェネレータと1つの遊星歯車を用いたシステムが提案されている。例えば、特開平7−135701号公報では、エンジンの駆動力を遊星歯車に入力し、遊星歯車の出力軸から得られた駆動力により車両を駆動するように発電機で制御される方式が記載されている。遊星歯車を構成する3つのギアのうち、エンジン軸に接続するギアを停止するように残りのギアの速度を制御してモータジェネレータのみの走行を実現している。また、高速走行は発電機の軸を電気的に固定し、エンジンの駆動力を遊星歯車の残りのギアを介して伝達している。
しかし、上記の方法では車両が前進時に発電・駆動自在なモータジェネレータを、一方を発電機、他方をモータとしてしか用いていない。
また、駆動用のモータジェネレータを車両駆動軸上に配しているため、モータジェネレータに要求されるトルクが大きくなり、必然的にモータジェネレータが大型化する。
しかも大きなトルクを発生するために大電流を供給するため、電気的損失が増す。
発明の開示
本発明の第1の目的は、発電・駆動双方の機能を有効に活用することによりモータジェネレータを小型化し、軽量コンパクトな駆動システムを提供することである。
本発明の第2の目的は、モータジェネレータに要求されるトルクを小さくし、モータジェネレータの低損失領域を拡大させることにより高効率な駆動システムを提供することである。
上記第1の目的は、入力軸と出力軸の回転数の差を制御する差動機構を備え、モータジェネレータが接続される差動機構を切換える機構を有する駆動装置により達成される。
上記第2の目的は、モータジェネレータにより入力軸と出力軸の回転数の差を制御する範囲を狭くすることにより達成される。
発明を実施するための最良の形態
以下本発明の実施の形態を説明する。
第1図は本発明による駆動装置を搭載した車両の一実施の形態である。エンジン11は内燃機関であり、内燃機関とは燃焼ガスが作動流体であるものを指し、レシプロエンジン、ロータリーエンジン、ガスタービン、およびジェットエンジンなどが含まれる。今回は一例としてレシプロエンジンを用いて説明する。モータA12およびモータB13は電気エネルギーを与えることにより運動エネルギーを放出し、運動エネルギーを与えると電気エネルギーに変換する。エンジン11の駆動力はモータA12およびモータB13により制御され、車両駆動軸14に伝達する。
差動機構15、16、および17は複数の歯車から構成される遊星歯車であり、遊星歯車15は中心からサンギア15s、プラネタリーギア15p、およびリングギア15rからなる。
差動機構15では、サンギア15sにはモータA12の出力軸接続部が、プラネタリギア15pには車両駆動軸14が、リングギア15rにはエンジン11の出力軸が接続している。
差動機構16では、サンギア16sにはモータB13の出力軸が、プラネタリギア16pにはエンジン11の出力軸が、リングギア16rには車両駆動軸14が接続している。
差動機構17では、サンギア17sにはモータA12の出力軸接続部が、プラネタリギア17pにはエンジン11の出力軸が、リングギア17rには車両駆動軸14が接続している。
接続切換装置18はアクチュエータ19により作動し、走行条件に応じてモータA12の出力軸を差動機構15あるいは差動機構17のサンギアに接続する。
接続切換装置18は一般的には多板クラッチや電磁クラッチなどが用いられるが、切換動作時以外にエネルギーを要しないドッグクラッチが望ましい。また、アクチュエータ19にはエンジンが発生する油圧を用いた駆動装置、あるいは車載バッテリからの電力により駆動するリニアモータなどを用いる。
第1図の構成による駆動装置の構造的特徴を以下に述べる。
差動機構15と差動機構17はプラネタリギアとリングギアの出力軸を共有しており、構成する歯車列を少なくしている。
各遊星歯車では、サンギアに接続するモータの回転数を停止することにより、変速ギアとして機能する。遊星歯車15ではエンジン11の回転数を倍増するローギア相当の変速比を有し、遊星歯車16ではエンジン11の回転数を等倍するサードギア相当の変速比を有し、遊星歯車17ではエンジン11の回転数を半減するハイギア相当の変速比を有するようにエンジンとモータの出力軸の接続配置をしている。モータA12、モータB13は協調制御により各遊星歯車のギア比の間を無段変速する。
差動機構15の変速比と差動機構16の変速比との比と、差動機構16の変速比と差動機構17の変速比との比とを等しくすることにより、差動機構16の変速比前後におけるモータの最大出力を等しくすることができる。例えば差動機構15の変速比を2.0、差動機構16の変速比を1.0、差動機構17の変速比を0.5として差動機構15と差動機構16との変速比の比と差動機構16と差動機構17との変速比の比を等しくする。また、遊星歯車のサンギアにモータを配しているため、モータを小型化できる。
第2図に本発明による駆動装置を搭載した車両の動特性を示す。
第2図では、エンジン11、モータA12、モータB13、および車両の回転数とトルクの概念を示している。
本発明の駆動装置を搭載した車両は4つの走行モードを有する。
走行モードは、モータのみで走行するモータモード、エンジン始動後は、本発明の駆動装置が有する最も低い変速比を有する遊星歯車15を介してエンジンの駆動力を伝達するローギアモード、さらに車両速度が上がり高速となると本発明の駆動装置が有する最も高い変速比を有する遊星歯車17を介してエンジンの駆動力を伝達するハイギアモード、ローギアモードとハイギアモードの間はモータA12およびモータB13の協調制御による無段変速を行う電気変速モードである。
便宜上、電気変速モードに関し、接続切換装置18による接続動作前までを電気変速モード1段目、接続動作後を電気変速モード2段目と称する。
以下、電気変速モードについて説明する。
遊星歯車15のサンギア15sにモータA12の出力軸が接続している電気変速モード1段目の場合について説明する。モータA12は車両速度が上昇するとともに回転数も増加し、トルクは車両速度の上昇とともに減少する。モータB13は車両速度の上昇とともに回転数は減少し、トルクは増大する。この間、モータA12は力行状態であり、モータB13は発電状態である。
モータA12が最高回転数付近になると、接続切換装置18によりモータA12の出力軸は遊星歯車17のサンギア17sに接続される。このとき、モータA12はフリーラン状態であるため、微弱なエネルギーで接続切換が可能である。遊星歯車17では車両速度が上昇するに連れてモータA12の回転数は減少する関係となる。
遊星歯車17のサンギア17sにモータA12の出力軸が接続している電気変速モード2段目の場合について説明する。モータB13の回転は電気変速モード1段目とは逆方向に回転し、車両速度の上昇とともに増速する。また、モータB13のトルクは車両速度の上昇とともに減少する。モータA12のトルクは電気変速モード1段目とは逆方向となる。
第2図において、電気変速モードでは、モータA12は力行時の出力が正、モータB13は発電時が正であるとした。モータA12の場合、回転数およびトルクが正ならば力行状態となり、モータB13の場合、回転数およびトルクが正ならば発電状態となる。以上より、電気変速モード2段目では、モータA12は発電状態となり、モータB13は力行状態となる。
第2図を用いて第1図の構成による駆動装置の動特性に関する特徴を説明する。
第1にモータを小型化できる。
モータを用いた電気的な無段変速機構はエンジンの最良燃費点での駆動力を一方のモータで一部を発電して他方のモータに電力を供給し、他方のモータは車両の動作点に適するように回転数およびトルクを調整する。そのため、無段変速範囲が広いほどモータに要求されるトルクは大きくなる。本発明の駆動装置では、遊星歯車を3つ用いることにより無段変速範囲を2つに区分し、両モータの発電側・力行側のトルクを用いているため、区分しないシステムに比べモータに要求するトルクを半分にできる。モータの体格はトルクの大きさと相関があり、電気的無段変速範囲を分割し、要求トルクを小さくした本システムではモータの体格を約半分にすることができる。
第2に低損失電気変速が可能である。
モータに要求されるトルクが小さいため、供給する電流を小さくできる。
供給する電流が小さくなることにより、システム全体の電気的損失を小さくできる。
第3にショックを伴わずに微弱なエネルギーで接続切換動作が可能である。
接続切換装置18によりモータA12の出力軸が動かされるとき、モータB13は回転数がゼロ付近で、最大トルクを発生し、エンジンの回転数がサードギア相当の変速比で伝達するように制御されている。また、遊星歯車15ではモータA12がフリーラン状態であるため、トルクバランスが保てず、車両駆動軸に伝達するトルクが生じていた。そのため、モータA12の出力軸を切換えても車両駆動軸に伝達するショックは発生しない。さらに、遊星歯車15にトルクが発生していないため、モータA12の出力軸の切換に伴うエネルギーは小さくて済む。
第3図はモータA12の出力軸接続切換えに関する説明である。ステップ21では、運転者の意図および走行状況により変速比が所定の値を超えると接続切換指令が発せられる。
ステップ22ではモータB13の状況、特に回転数を確認しステップ23に移行する。
ステップ23ではステップ22で検出したモータB13の回転数を判定する。連続的に変速比を変える場合では、モータB13の速度はゼロであり、急加速などのために変速比を急変させる場合では、モータB13の回転数はゼロではなく、モータB13ならびにモータA12はトルクを発生していることとなる。
モータBの回転数がゼロではない場合はステップ24へ移行する。モータA12がトルクを発生している場合、モータA12の出力軸を切換える際にトルク変動によるショックが発生する。このショックを回避するため、エンジン11、モータA12、ならびにモータB13のトルクを抜いてから、接続切換動作を始める。
ステップ25では、アクチュエータ19により接続切換装置18を遊星歯車15のサンギア15sから切り離す。その際、モータA12はトルクを発生していないためアクチュエータ19に要求される動力は微弱で済む。ステップ26ではモータA12の状況、特に回転数を確認しステップ27に移行する。
ステップ27ではステップ26で検出したモータA12の回転数が接続先である遊星歯車17のサンギア17sの回転数に等しいかを判定する。接続切換装置18がドッグクラッチの場合、接続する部品同士が同じ回転数である必要がある。
モータA12の回転数が遊星歯車17のサンギア17sと等しくない場合はステップ28へ移行する。ステップ27では、モータA12を速度制御し、サンギア17sの回転数と等しくする。このとき、モータA12は無負荷状態であるため、速度制御に要するエネルギーは微弱である。
ステップ29では回転数の等しいモータA12の出力軸とサンギア17sを接続させる。この際、モータA12はトルクを発生していないため、運転者を不快にするようなショックは発生しない。
ステップ30では両モータの運転状態を切換える。モータA12が遊星歯車17に接続すると、モータB13を電気変速モード1段目とは逆方向に回転させる。モータB13が逆方向に回転すると車両速度は上昇する。モータA12は車両速度が上昇するにつれて回転数は減少する。そのため、電気変速モード2段目ではモータA12が発電、モータB13が力行となる。
第4図は本発明による駆動装置を搭載した車両の一実施の形態である。エンジン41の駆動力はモータA42およびモータB43により制御され、車両駆動軸44に伝達する。
差動機構45、46、および47は複数の歯車から構成される遊星歯車であり、遊星歯車45は中心からサンギア45s、プラネタリーギア45p、およびリングギア45rからなる。
差動機構45では、サンギア45sにはモータA42の出力軸接続部が、プラネタリギア45pには車両駆動軸44が、リングギア45rにはエンジン41の出力軸が接続している。
差動機構46では、サンギア46sにはモータB43の出力軸が、プラネタリギア46pにはエンジン41の出力軸が、リングギア46rには車両駆動軸44が接続している。
差動機構47では、サンギア47sには車両駆動軸44が、プラネタリギア47pにはエンジン41の出力軸が、リングギア47rにはモータA42の出力軸接続部が接続している。
接続切換装置48は走行条件に応じてモータA42の出力軸を差動機構45あるいは差動機構47のサンギアに接続する。
差動機構47では、車両駆動軸がサンギア47sと接続し、エンジン41の出力軸がプラネタリギア47pと接続しているため、遊星歯車の成立条件から減速比が広く設定できる。
第5図は本発明による駆動装置を搭載した車両の一実施の形態である。エンジン71の駆動力はモータA72およびモータB73により制御され、車両駆動軸74に伝達する。
拘束装置79および80はモータA72ならびにモータB73の出力軸上に配置され、機械的に出力軸の回転を拘束し、固定する。一般的には摩擦ブレーキなどが用いられる。また、拘束装置79および80はドッグクラッチを用いることも可能である。ドッグクラッチの場合、モータが回転している間はモータ出力軸上で連れ回りしているが、モータ出力軸を固定するときはモータが速度制御して回転数を0にし、ボディと接続する固定端と接続することによりモータ出力軸を固定する。
拘束装置79および80はモータA72もしくはモータB73が回転数をゼロとしてエンジン71の駆動力を機械的伝達経路のみで伝えるさいに生じる電流損失を無くすために用いられる。
拘束装置81は遊星歯車76のプラネタリギア76pの回転を拘束する装置であり、一般的には摩擦ブレーキやワンウェイクラッチなどが用いられる。同様に、ドッグクラッチを用いることも可能である。
また、拘束装置82は遊星歯車77のプラネタリギア77pと遊星歯車75のリングギア75rの回転を拘束する装置であり、一般的には摩擦ブレーキやワンウェイクラッチなどが用いられる。同様に、ドッグクラッチを用いることも可能である。
拘束装置81および82はエンジン71の出力軸の回転も拘束する機能を持ち、モータのみで走行する場合にエンジン71の出力軸を固定するために用いられる。
モータ走行時に、拘束装置81および82のいずれか一方を用いる場合は遊星歯車75、76、および77の変速比の関係から、固定に要するトルクが小さいほうを選択する。
例えば、モータ走行時は常にモータA72は遊星歯車75と接続するとすれば、拘束装置81のみを装備すれば良い。
第6図は本発明による駆動装置を搭載した車両の一実施の形態である。エンジン51の駆動力はモータA52およびモータB53により制御され、車両駆動軸54に伝達する。
差動機構55、56、および57は複数の歯車から構成される遊星歯車であり、遊星歯車55は中心からサンギア55s、プラネタリーギア55p、およびリングギア55rからなる。
遊星歯車57では、サンギア57sにはモータA52の出力軸が、プラネタリギア57pにはエンジン51の出力軸接続部が、リングギア57rには車両駆動軸54が接続している。
接続切換装置58は走行条件に応じてエンジン51の出力軸を遊星歯車55のリングギアあるいは遊星歯車57のプラネタリギアに接続する。
モータA52の出力軸をリングギア57rに接続し、車両駆動軸54をサンギア57sに接続しているため、車両速度が向上しても、モータの回転数を低く押さえることができ、トルクアシストが容易にできる。
第7図は本発明による駆動装置を搭載した車両の一実施の形態である。エンジン61の駆動力はモータA62およびモータB63により制御され、車両駆動軸64に伝達する。
接続切換装置68は機械的な摩擦クラッチであり、走行条件に応じてエンジン61の出力軸を差動機構65のリングギアあるいは差動機構67のプラネタリギアに接続する。動力には油圧などを用いる。
接続切換装置68が摩擦クラッチであるため、接続切換装置68を制御することにより変速時のショックを抑制することが容易である。
第8図は本発明の駆動装置を搭載した車両の一実施の形態である。
遊星歯車165および遊星歯車167の出力軸が独立であるため、変速比の選択範囲を広げることができる。また、遊星歯車165と遊星歯車167に同じものを用いることが可能である。
第9図は本発明の駆動装置を搭載した車両の一実施の形態である。
遊星歯車175および遊星歯車177の出力軸が車両駆動軸174に対し独立であるため、変速比の選択範囲が広がる。
第10図は本発明の駆動装置を搭載した車両の一実施の形態である。遊星歯車175および遊星歯車177のエンジンからの入力軸が独立であるため、変速比の選択範囲が広がる。
第11図は本発明の駆動装置を搭載した車両の一実施の形態である。
エンジン軸上に接続切換装置198を配置したため、接続切換装置198のメンテナンスが楽である。また、接続切換装置がモータ軸よりもエンジン側にあるため、切換ショックは車両駆動軸まで伝わらない。
第12図は本発明の駆動装置を搭載した車両の一実施の形態である。
エンジン91の回転数を増速させるため遊星歯車97の同軸上に遊星歯車99を配置する。遊星歯車99はサンギア99sが固定されているため、プラネタリギア99pに伝わるエンジン91の回転数は増速され、リングギア99rを介して遊星歯車97のプラネタリギア97pに伝わる。
第13図は本発明の駆動装置を搭載した車両の一実施の形態である。
エンジン111の駆動力はモータA112およびモータB113により制御され、車両駆動軸114に伝達する。
遊星歯車115、117、…、115+2n(nは整数)を構成する各歯車はエンジン111の出力軸、車両駆動軸114、ならびにモータA112と歯合する期間を有する。また、遊星歯車116、118、…、115+2n+1を構成する各歯車はエンジン111の出力軸、車両駆動軸114、ならびにモータB113と歯合する期間を有する。
システムを構成する遊星歯車の数が3個以上の場合、すなわち(n□1)のとき、モータA112ならびにモータB113の力行、発電の運転状態はn回切換る。
モータA112ならびにモータB113の運転状態が切換る回数が多いほど、モータA112ならびにモータB113に要求されるモータの出力は小さくなる。
第14図は本発明の駆動装置を搭載した車両の一実施の形態である。モータA92の出力軸上に複数個の差動機構を配し、モータA92が車両の速度の制御を担い、モータB93が駆動トルクを制御する。モータB93は車両駆動軸94上の任意の歯車と自在に接続でき、走行状況に応じ、最適な接続歯車を選択するため、小型化できる。
第15図は本発明の駆動装置を搭載した車両の一実施の形態である。モータA142の出力軸上に複数個の差動機構を配し、モータA92が車両の速度の制御を担い、モータB143が駆動トルクを制御する。モータB143は独立した平歯車を介して車両駆動軸144と接続しているため、モータの小型化と機械的伝達経路の簡略化ができる。
第16図は本発明の駆動装置を搭載した車両の一実施の形態である。モータA152の出力軸上に複数個の差動機構を配し、モータA152が車両の速度の制御を担い、モータB153が駆動トルクを制御する。モータB153の駆動力は歯車と差動機構とを介して車両出力軸154に伝わるため、モータB153に要求されるトルクは小さくてすみ、モータB153を小型化できる。
第17図は本発明の駆動装置を搭載した車両の一実施形態である。
遊星歯車215、216、および217は同軸上に配置され、モータA212およびモータB213も同じ軸上に配置される。エンジン側にモータB213が配置されている。この配置により、駆動システムの幅方向を短縮できる。また、遊星歯車216および217は内包されるため、ギアノイズの抑制ができる。
第18図は本発明の駆動装置を搭載した車両の一実施形態である。
遊星歯車230を機械的変速段として用いて、エンジン221の回転数を増速させて遊星歯車227のプラネタリギアに伝達することが可能となり、無段変速範囲を広げることができる。
第19図は本発明の駆動装置を搭載した車両の一実施形態である。
接続切替装置250およびアクチュエータ251はステータ243とロータ242からなるモータAのコアバック内に収められ、遊星歯車247、248、および249はステータ245とロータ244からなるモータBのモータA側のコアバック内に収められ、機械的変速段として用いられる遊星歯車252はモータBのエンジン側のコアバック内に収められる。
遊星歯車および接続切替装置をコアバック内に収めることにより、駆動システムの長さ方向を短縮することができる。また、遊星歯車252をモータBのエンジン側に配しているため、遊星歯車252の回転により冷却効果が得られる。
第20図は本発明の駆動装置を搭載した車両の一実施形態である。
ラビニオ式遊星歯車265を用いることにより、広い無段変速範囲を実現する。ラビニオ式遊星歯車は1つの差動機構と1の遊星歯車からなる差動機構であり、遊星歯車2つと置換できる構造である。第20図の実施形態は3つの遊星歯車を有するシステムと等価である。
拘束装置269はモータA262の出力軸がラビニオ式遊星歯車265のリングギアに接続する際にラビニオ式遊星歯車265のサンギアの回転を抑制する。同様に、拘束装置270はモータA262の出力軸がラビニオ式遊星歯車265のサンギアに接続する際にラビニオ式遊星歯車265のリングギアの回転を抑制する。
以上が本発明の一実施例であり、駆動装置を搭載した車両について説明した。さらに、自動車のみならず、船舶、鉄道車両など他の輸送機関などにも本発明を適用できることは言うまでもない。
産業上の利用可能性
本発明によれば、車両の駆動力を連続的に制御するモータを小型化することができ、また、モータが発生するトルクが小さいため電流を供給するさいに生じる電気的損失を抑制できるため、低燃費でスムーズな動特性を有するハイブリッド車両を提供できる。
【図面の簡単な説明】
第1図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第2図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第3図は、本発明の一実施例に係るハイブリッド車の動作原理の概念図を示す。
第4図は、本発明の一実施例に係るハイブリッド車の接続切換装置の動作フローチャートを示す。
第5図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第6図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第7図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第8図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第9図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第10図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第11図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第12図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第13図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第14図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第15図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第16図は、本発明の一実施例に係るハイブリッド車のシステム構成を示す。
第17図は本発明の駆動装置を搭載した車両の一実施形態である。
第18図は本発明の駆動装置を搭載した車両の一実施形態である。
第19図は本発明の駆動装置を搭載した車両の一実施形態である。
第20図は本発明の駆動装置を搭載した車両の一実施形態である。
TECHNICAL FIELD The present invention relates to a drive device including an engine, a motor generator, and a differential mechanism, and a vehicle using the drive device.
BACKGROUND ART There is a hybrid vehicle that uses the driving force of a motor generator as a driving system for reducing fuel consumption of an engine.
Among hybrid vehicles, a system using two motor generators and one planetary gear has been proposed. For example, Japanese Patent Application Laid-Open No. 7-135701 describes a method in which a driving force of an engine is input to a planetary gear and controlled by a generator so that the vehicle is driven by the driving force obtained from the output shaft of the planetary gear. ing. Of the three gears constituting the planetary gear, the speed of the remaining gears is controlled so as to stop the gear connected to the engine shaft, so that only the motor generator is run. In high-speed running, the generator shaft is electrically fixed, and the driving force of the engine is transmitted through the remaining planetary gears.
However, the above method uses only a motor generator that can generate and drive power when the vehicle moves forward, one as a generator and the other as a motor.
Further, since the driving motor generator is arranged on the vehicle drive shaft, the torque required for the motor generator increases, and the motor generator inevitably increases in size.
In addition, since a large current is supplied to generate a large torque, electrical loss increases.
DISCLOSURE OF THE INVENTION A first object of the present invention is to provide a lightweight and compact drive system by miniaturizing a motor generator by effectively utilizing both power generation and drive functions.
The second object of the present invention is to provide a highly efficient drive system by reducing the torque required for the motor generator and expanding the low loss region of the motor generator.
The first object is achieved by a drive device that includes a differential mechanism that controls the difference in rotational speed between the input shaft and the output shaft, and has a mechanism that switches the differential mechanism to which the motor generator is connected.
The second object is achieved by narrowing the range in which the difference between the rotational speeds of the input shaft and the output shaft is controlled by the motor generator.
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
FIG. 1 shows an embodiment of a vehicle equipped with a drive device according to the present invention. The engine 11 is an internal combustion engine. The internal combustion engine refers to an engine in which combustion gas is a working fluid, and includes a reciprocating engine, a rotary engine, a gas turbine, and a jet engine. This time, it explains using a reciprocating engine as an example. The motor A12 and the motor B13 release kinetic energy by applying electric energy, and convert it into electric energy when applying kinetic energy. The driving force of the engine 11 is controlled by the motor A12 and the motor B13 and transmitted to the vehicle drive shaft 14.
The differential mechanisms 15, 16, and 17 are planetary gears composed of a plurality of gears. The planetary gear 15 includes a sun gear 15s, a planetary gear 15p, and a ring gear 15r from the center.
In the differential mechanism 15, the output shaft connecting portion of the motor A12 is connected to the sun gear 15s, the vehicle drive shaft 14 is connected to the planetary gear 15p, and the output shaft of the engine 11 is connected to the ring gear 15r.
In the differential mechanism 16, the output shaft of the motor B13 is connected to the sun gear 16s, the output shaft of the engine 11 is connected to the planetary gear 16p, and the vehicle drive shaft 14 is connected to the ring gear 16r.
In the differential mechanism 17, the output shaft connecting portion of the motor A12 is connected to the sun gear 17s, the output shaft of the engine 11 is connected to the planetary gear 17p, and the vehicle drive shaft 14 is connected to the ring gear 17r.
The connection switching device 18 is actuated by an actuator 19 to connect the output shaft of the motor A12 to the differential mechanism 15 or the sun gear of the differential mechanism 17 according to traveling conditions.
The connection switching device 18 is generally a multi-plate clutch, an electromagnetic clutch, or the like, but a dog clutch that does not require energy other than during the switching operation is desirable. The actuator 19 uses a drive device using hydraulic pressure generated by the engine or a linear motor driven by electric power from the vehicle battery.
The structural features of the drive apparatus having the configuration shown in FIG. 1 will be described below.
The differential mechanism 15 and the differential mechanism 17 share the output shafts of the planetary gear and the ring gear, and the number of gear trains is reduced.
Each planetary gear functions as a transmission gear by stopping the rotation speed of the motor connected to the sun gear. The planetary gear 15 has a gear ratio equivalent to a low gear that doubles the rotational speed of the engine 11, the planetary gear 16 has a gear ratio equivalent to a third gear that doubles the rotational speed of the engine 11, and the planetary gear 17 has a gear ratio equivalent to that of the engine 11. The engine and motor output shafts are connected and arranged so as to have a gear ratio equivalent to a high gear that halves the rotational speed. The motor A12 and the motor B13 perform stepless transmission between the gear ratios of the planetary gears by cooperative control.
By making the ratio of the gear ratio of the differential mechanism 15 and the gear ratio of the differential mechanism 16 equal to the ratio of the gear ratio of the differential mechanism 16 and the gear ratio of the differential mechanism 17, The maximum output of the motor before and after the gear ratio can be made equal. For example, the gear ratio of the differential mechanism 15 is 2.0, the gear ratio of the differential mechanism 16 is 1.0, and the gear ratio of the differential mechanism 17 is 0.5. And the ratio of the transmission gear ratio between the differential mechanism 16 and the differential mechanism 17 are made equal. Moreover, since the motor is arranged in the sun gear of the planetary gear, the motor can be reduced in size.
FIG. 2 shows the dynamic characteristics of a vehicle equipped with a drive device according to the present invention.
In FIG. 2, the concept of the rotation speed and torque of the engine 11, the motor A12, the motor B13, and the vehicle is shown.
A vehicle equipped with the drive device of the present invention has four travel modes.
The travel mode includes a motor mode in which the motor travels only, a low gear mode in which the driving force of the engine is transmitted via the planetary gear 15 having the lowest gear ratio that the drive device of the present invention has after the engine is started, and the vehicle speed is In the high gear mode in which the driving force of the engine is transmitted via the planetary gear 17 having the highest gear ratio that the drive device of the present invention has when the speed increases and the speed is high, the cooperative control of the motor A12 and the motor B13 is performed between the low gear mode and the high gear mode. This is an electric transmission mode in which a continuously variable transmission is performed.
For convenience, regarding the electric transmission mode, the electric transmission mode before the connection operation by the connection switching device 18 is referred to as the first electric transmission mode, and after the connection operation is referred to as the electric transmission mode second stage.
Hereinafter, the electric transmission mode will be described.
The case of the first stage of the electric transmission mode in which the output shaft of the motor A12 is connected to the sun gear 15s of the planetary gear 15 will be described. The motor A12 increases in speed as the vehicle speed increases, and the torque decreases as the vehicle speed increases. As the vehicle speed increases, the rotation speed of the motor B13 decreases and the torque increases. During this time, the motor A12 is in a power running state and the motor B13 is in a power generation state.
When the motor A12 is near the maximum rotation speed, the connection switching device 18 connects the output shaft of the motor A12 to the sun gear 17s of the planetary gear 17. At this time, since the motor A12 is in a free-run state, connection switching can be performed with weak energy. In the planetary gear 17, the number of rotations of the motor A12 decreases as the vehicle speed increases.
The case of the second stage of the electric speed change mode in which the output shaft of the motor A12 is connected to the sun gear 17s of the planetary gear 17 will be described. The rotation of the motor B13 rotates in the direction opposite to that in the first stage of the electric transmission mode, and increases as the vehicle speed increases. Further, the torque of the motor B13 decreases as the vehicle speed increases. The torque of the motor A12 is in the opposite direction to the first stage of the electric speed change mode.
In FIG. 2, in the electric transmission mode, it is assumed that the motor A12 has a positive output during power running and the motor B13 has a positive output during power generation. In the case of the motor A12, if the rotational speed and torque are positive, the power running state is obtained. In the case of the motor B13, if the rotational speed and torque are positive, the power generation state is obtained. From the above, in the second stage of the electric speed change mode, the motor A12 is in the power generation state and the motor B13 is in the power running state.
The characteristic regarding the dynamic characteristic of the drive device by the structure of FIG. 1 is demonstrated using FIG.
First, the motor can be reduced in size.
The electric continuously variable transmission mechanism using a motor generates a part of the driving force at the best fuel consumption point of the engine with one motor and supplies the other motor with the other motor. Adjust the rotation speed and torque as appropriate. Therefore, the torque required for the motor increases as the continuously variable transmission range increases. In the drive device of the present invention, the continuously variable speed range is divided into two by using three planetary gears, and the power generation side and power running side torques of both motors are used. Torque to be halved. The physique of the motor correlates with the magnitude of the torque, and the physique of the motor can be halved in this system in which the electric continuously variable transmission range is divided and the required torque is reduced.
Secondly, a low-loss electric shift is possible.
Since the torque required for the motor is small, the supplied current can be reduced.
By reducing the supplied current, the electrical loss of the entire system can be reduced.
Thirdly, connection switching can be performed with weak energy without shock.
When the output shaft of the motor A12 is moved by the connection switching device 18, the motor B13 is controlled so as to generate the maximum torque when the rotational speed is near zero and transmit the rotational speed of the engine at a gear ratio equivalent to the third gear. . In the planetary gear 15, since the motor A12 is in a free-run state, torque balance cannot be maintained, and torque transmitted to the vehicle drive shaft is generated. Therefore, no shock is transmitted to the vehicle drive shaft even when the output shaft of the motor A12 is switched. Further, since no torque is generated in the planetary gear 15, the energy required for switching the output shaft of the motor A12 can be small.
FIG. 3 is a diagram regarding the output shaft connection switching of the motor A12. In step 21, a connection switching command is issued when the gear ratio exceeds a predetermined value depending on the driver's intention and driving conditions.
In step 22, the status of the motor B13, particularly the rotational speed, is confirmed, and the process proceeds to step 23.
In step 23, the rotational speed of the motor B13 detected in step 22 is determined. When the speed ratio is continuously changed, the speed of the motor B13 is zero, and when the speed ratio is suddenly changed due to sudden acceleration or the like, the rotational speed of the motor B13 is not zero, and the motor B13 and the motor A12 have torque. Will be generated.
When the rotation speed of the motor B is not zero, the routine proceeds to step 24. When the motor A12 generates torque, a shock due to torque fluctuation occurs when the output shaft of the motor A12 is switched. In order to avoid this shock, the connection switching operation is started after the torque of the engine 11, the motor A12, and the motor B13 is removed.
In step 25, the connection switching device 18 is disconnected from the sun gear 15 s of the planetary gear 15 by the actuator 19. At this time, since the motor A12 does not generate torque, the power required for the actuator 19 is weak. In step 26, the status of the motor A12, particularly the rotational speed, is confirmed, and the routine proceeds to step 27.
In step 27, it is determined whether the rotational speed of the motor A12 detected in step 26 is equal to the rotational speed of the sun gear 17s of the planetary gear 17 that is the connection destination. When the connection switching device 18 is a dog clutch, the parts to be connected need to have the same rotational speed.
If the rotational speed of the motor A12 is not equal to the sun gear 17s of the planetary gear 17, the routine proceeds to step 28. In step 27, the speed of the motor A12 is controlled to be equal to the rotational speed of the sun gear 17s. At this time, since the motor A12 is in a no-load state, the energy required for speed control is weak.
In step 29, the output shaft of the motor A12 having the same rotation speed is connected to the sun gear 17s. At this time, since the motor A12 does not generate torque, a shock that makes the driver uncomfortable does not occur.
In step 30, the operating state of both motors is switched. When the motor A12 is connected to the planetary gear 17, the motor B13 is rotated in the direction opposite to the first stage of the electric speed change mode. When the motor B13 rotates in the reverse direction, the vehicle speed increases. The rotation speed of the motor A12 decreases as the vehicle speed increases. Therefore, in the second stage of the electric speed change mode, the motor A12 generates power and the motor B13 performs power running.
FIG. 4 shows an embodiment of a vehicle equipped with a drive device according to the present invention. The driving force of the engine 41 is controlled by the motor A 42 and the motor B 43 and transmitted to the vehicle drive shaft 44.
The differential mechanisms 45, 46, and 47 are planetary gears composed of a plurality of gears. The planetary gear 45 includes a sun gear 45s, a planetary gear 45p, and a ring gear 45r from the center.
In the differential mechanism 45, the output shaft connecting portion of the motor A42 is connected to the sun gear 45s, the vehicle drive shaft 44 is connected to the planetary gear 45p, and the output shaft of the engine 41 is connected to the ring gear 45r.
In the differential mechanism 46, the output shaft of the motor B43 is connected to the sun gear 46s, the output shaft of the engine 41 is connected to the planetary gear 46p, and the vehicle drive shaft 44 is connected to the ring gear 46r.
In the differential mechanism 47, the vehicle drive shaft 44 is connected to the sun gear 47s, the output shaft of the engine 41 is connected to the planetary gear 47p, and the output shaft connecting portion of the motor A42 is connected to the ring gear 47r.
The connection switching device 48 connects the output shaft of the motor A 42 to the differential mechanism 45 or the sun gear of the differential mechanism 47 according to the running conditions.
In the differential mechanism 47, since the vehicle drive shaft is connected to the sun gear 47s and the output shaft of the engine 41 is connected to the planetary gear 47p, the reduction ratio can be set widely from the conditions for establishing the planetary gear.
FIG. 5 shows an embodiment of a vehicle equipped with a drive device according to the present invention. The driving force of the engine 71 is controlled by the motor A 72 and the motor B 73 and transmitted to the vehicle drive shaft 74.
The restraining devices 79 and 80 are disposed on the output shafts of the motor A72 and the motor B73, and mechanically restrain and fix the rotation of the output shaft. Generally, a friction brake or the like is used. The restraining devices 79 and 80 can also use dog clutches. In the case of a dog clutch, while the motor is rotating, it is rotated on the motor output shaft. However, when the motor output shaft is fixed, the motor controls the speed so that the number of rotations is zero and the motor is connected to the body. The motor output shaft is fixed by connecting to the end.
The restraining devices 79 and 80 are used to eliminate current loss that occurs when the motor A 72 or the motor B 73 transmits the driving force of the engine 71 only through the mechanical transmission path with the rotational speed set to zero.
The restraining device 81 is a device that restrains the rotation of the planetary gear 76p of the planetary gear 76, and generally a friction brake, a one-way clutch or the like is used. Similarly, a dog clutch can be used.
The restraining device 82 is a device that restrains the rotation of the planetary gear 77p of the planetary gear 77 and the ring gear 75r of the planetary gear 75, and generally a friction brake, a one-way clutch or the like is used. Similarly, a dog clutch can be used.
The restraining devices 81 and 82 have a function of restraining the rotation of the output shaft of the engine 71, and are used to fix the output shaft of the engine 71 when traveling only by the motor.
When either one of the restraining devices 81 and 82 is used during motor traveling, the smaller torque required for fixing is selected from the relationship of the gear ratios of the planetary gears 75, 76, and 77.
For example, if the motor A72 is always connected to the planetary gear 75 when the motor is running, only the restraining device 81 may be provided.
FIG. 6 shows an embodiment of a vehicle equipped with a drive device according to the present invention. The driving force of the engine 51 is controlled by the motor A52 and the motor B53 and is transmitted to the vehicle drive shaft 54.
The differential mechanisms 55, 56, and 57 are planetary gears composed of a plurality of gears. The planetary gear 55 includes a sun gear 55s, a planetary gear 55p, and a ring gear 55r from the center.
In the planetary gear 57, the output shaft of the motor A52 is connected to the sun gear 57s, the output shaft connecting portion of the engine 51 is connected to the planetary gear 57p, and the vehicle drive shaft 54 is connected to the ring gear 57r.
The connection switching device 58 connects the output shaft of the engine 51 to the ring gear of the planetary gear 55 or the planetary gear of the planetary gear 57 according to traveling conditions.
Since the output shaft of the motor A52 is connected to the ring gear 57r and the vehicle drive shaft 54 is connected to the sun gear 57s, the motor speed can be kept low even if the vehicle speed is improved, and torque assist is easy. Can be.
FIG. 7 shows an embodiment of a vehicle equipped with a drive device according to the present invention. The driving force of the engine 61 is controlled by the motor A 62 and the motor B 63 and transmitted to the vehicle drive shaft 64.
The connection switching device 68 is a mechanical friction clutch, and connects the output shaft of the engine 61 to the ring gear of the differential mechanism 65 or the planetary gear of the differential mechanism 67 according to traveling conditions. Hydraulic power is used for power.
Since the connection switching device 68 is a friction clutch, it is easy to suppress a shock during shifting by controlling the connection switching device 68.
FIG. 8 shows an embodiment of a vehicle equipped with the drive device of the present invention.
Since the output shafts of the planetary gear 165 and the planetary gear 167 are independent, the selection range of the gear ratio can be expanded. The same planetary gear 165 and planetary gear 167 can be used.
FIG. 9 shows an embodiment of a vehicle equipped with the drive device of the present invention.
Since the output shafts of the planetary gear 175 and the planetary gear 177 are independent of the vehicle drive shaft 174, the selection range of the gear ratio is expanded.
FIG. 10 shows an embodiment of a vehicle equipped with the drive device of the present invention. Since the input shafts of the planetary gear 175 and the planetary gear 177 from the engine are independent, the selection range of the gear ratio is expanded.
FIG. 11 shows an embodiment of a vehicle equipped with the drive device of the present invention.
Since the connection switching device 198 is disposed on the engine shaft, maintenance of the connection switching device 198 is easy. Further, since the connection switching device is on the engine side with respect to the motor shaft, the switching shock is not transmitted to the vehicle drive shaft.
FIG. 12 shows an embodiment of a vehicle equipped with the drive device of the present invention.
In order to increase the rotational speed of the engine 91, a planetary gear 99 is arranged on the same axis as the planetary gear 97. Since the sun gear 99s is fixed to the planetary gear 99, the rotational speed of the engine 91 transmitted to the planetary gear 99p is increased and transmitted to the planetary gear 97p of the planetary gear 97 via the ring gear 99r.
FIG. 13 shows an embodiment of a vehicle equipped with the drive device of the present invention.
The driving force of the engine 111 is controlled by the motor A 112 and the motor B 113 and transmitted to the vehicle drive shaft 114.
Each of the gears constituting the planetary gears 115, 117,..., 115 + 2n (n is an integer) has a period of meshing with the output shaft of the engine 111, the vehicle drive shaft 114, and the motor A112. Each of the gears constituting the planetary gears 116, 118,..., 115 + 2n + 1 has a period for meshing with the output shaft of the engine 111, the vehicle drive shaft 114, and the motor B113.
When the number of planetary gears constituting the system is three or more, that is, (n □ 1), the power running and power generation operating states of the motor A 112 and the motor B 113 are switched n times.
The greater the number of times the operating state of the motor A112 and the motor B113 is switched, the smaller the motor output required for the motor A112 and the motor B113.
FIG. 14 shows an embodiment of a vehicle equipped with the drive device of the present invention. A plurality of differential mechanisms are arranged on the output shaft of the motor A92, the motor A92 controls the speed of the vehicle, and the motor B93 controls the driving torque. The motor B93 can be freely connected to an arbitrary gear on the vehicle drive shaft 94, and the optimum connection gear is selected according to the traveling state, so that the size can be reduced.
FIG. 15 shows an embodiment of a vehicle equipped with the drive device of the present invention. A plurality of differential mechanisms are arranged on the output shaft of the motor A 142, the motor A 92 controls the speed of the vehicle, and the motor B 143 controls the driving torque. Since the motor B 143 is connected to the vehicle drive shaft 144 via an independent spur gear, the motor can be downsized and the mechanical transmission path can be simplified.
FIG. 16 shows an embodiment of a vehicle equipped with the drive device of the present invention. A plurality of differential mechanisms are arranged on the output shaft of the motor A152, the motor A152 controls the speed of the vehicle, and the motor B153 controls the driving torque. Since the driving force of the motor B153 is transmitted to the vehicle output shaft 154 via the gear and the differential mechanism, the torque required for the motor B153 is small, and the motor B153 can be downsized.
FIG. 17 shows an embodiment of a vehicle equipped with the drive device of the present invention.
The planetary gears 215, 216, and 217 are arranged on the same axis, and the motor A 212 and the motor B 213 are also arranged on the same axis. A motor B 213 is disposed on the engine side. With this arrangement, the width direction of the drive system can be shortened. Further, since the planetary gears 216 and 217 are included, gear noise can be suppressed.
FIG. 18 shows an embodiment of a vehicle equipped with the drive device of the present invention.
Using the planetary gear 230 as a mechanical gear stage, the rotational speed of the engine 221 can be increased and transmitted to the planetary gear of the planetary gear 227, and the continuously variable transmission range can be expanded.
FIG. 19 shows an embodiment of a vehicle equipped with the drive device of the present invention.
The connection switching device 250 and the actuator 251 are housed in the core back of the motor A composed of the stator 243 and the rotor 242, and the planetary gears 247, 248 and 249 are the core back on the motor A side of the motor B composed of the stator 245 and the rotor 244. The planetary gear 252 that is housed inside and used as a mechanical gear stage is housed in a core back on the engine side of the motor B.
By accommodating the planetary gear and the connection switching device in the core back, the length direction of the drive system can be shortened. Further, since the planetary gear 252 is arranged on the engine side of the motor B, a cooling effect is obtained by the rotation of the planetary gear 252.
FIG. 20 shows an embodiment of a vehicle equipped with the drive device of the present invention.
By using the Ravigneaux planetary gear 265, a wide continuously variable transmission range is realized. The Ravigneaux type planetary gear is a differential mechanism composed of one differential mechanism and one planetary gear, and can be replaced with two planetary gears. The embodiment of FIG. 20 is equivalent to a system having three planetary gears.
The restraining device 269 suppresses the rotation of the sun gear of the Ravigneaux planetary gear 265 when the output shaft of the motor A 262 is connected to the ring gear of the Ravigneaux planetary gear 265. Similarly, the restraining device 270 suppresses the rotation of the ring gear of the Ravigneaux planetary gear 265 when the output shaft of the motor A 262 is connected to the sun gear of the Ravigneaux planetary gear 265.
The above is one embodiment of the present invention, and a vehicle equipped with a drive device has been described. Furthermore, it goes without saying that the present invention can be applied not only to automobiles but also to other transportation facilities such as ships and railway vehicles.
INDUSTRIAL APPLICABILITY According to the present invention, the motor that continuously controls the driving force of the vehicle can be reduced in size, and the electric power generated when supplying current because the torque generated by the motor is small. Since the loss can be suppressed, a hybrid vehicle having low fuel consumption and smooth dynamic characteristics can be provided.
[Brief description of the drawings]
FIG. 1 shows a system configuration of a hybrid vehicle according to an embodiment of the present invention.
FIG. 2 shows a system configuration of a hybrid vehicle according to an embodiment of the present invention.
FIG. 3 shows a conceptual diagram of the operating principle of a hybrid vehicle according to one embodiment of the present invention.
FIG. 4 shows an operational flowchart of the hybrid vehicle connection switching apparatus according to one embodiment of the present invention.
FIG. 5 shows a system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 6 shows a system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 7 shows a system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 8 shows a system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 9 shows a system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 10 shows a system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 11 shows a system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 12 shows the system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 13 shows the system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 14 shows a system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 15 shows the system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 16 shows the system configuration of a hybrid vehicle according to one embodiment of the present invention.
FIG. 17 shows an embodiment of a vehicle equipped with the drive device of the present invention.
FIG. 18 shows an embodiment of a vehicle equipped with the drive device of the present invention.
FIG. 19 shows an embodiment of a vehicle equipped with the drive device of the present invention.
FIG. 20 shows an embodiment of a vehicle equipped with the drive device of the present invention.

Claims (4)

車両の駆動力を発生するエンジンと、
発電駆動自在な第1および第2のモータジェネレータと、
第1,第2、および第3の差動機構を備え、
前記第1および第3の差動機構は前記エンジンの出力軸と、車両駆動軸とに接続し、前記第1のモータジェネレータは前記第1および第3の差動機構のいずれかと接続する期間を有し、
前記第2の差動機構は前記エンジンの出力軸,前記第2のモータジェネレータの入出力軸、および車両駆動軸と接続する駆動装置であって、
前記差動機構は前記モータジェネレータとの接続軸を固定することにより定まるエンジンの回転数に対する車両駆動軸の回転数を規定する固有の変速比を有し、
前記第1の差動機構は前記第1のモータジェネレータと接続する軸を固定することにより定まる第1の変速比と、
前記第2の差動機構は前記第2のモータジェネレータと接続する軸を固定することにより定まる第2の変速比と、
前記第3の差動機構は前記第3のモータジェネレータと接続する軸を固定することにより定まる第3の変速比とが、
前記第1の変速比,前記第2の変速比,前記第3の変速比の順に小さくなる駆動装置。
An engine that generates the driving force of the vehicle;
First and second motor generators capable of generating and driving;
Comprising first, second and third differential mechanisms;
The first and third differential mechanisms are connected to an output shaft of the engine and a vehicle drive shaft, and the first motor generator is connected to any one of the first and third differential mechanisms. Have
The second differential mechanism is a drive device connected to an output shaft of the engine, an input / output shaft of the second motor generator, and a vehicle drive shaft,
The differential mechanism has a specific gear ratio that defines the rotational speed of the vehicle drive shaft with respect to the rotational speed of the engine determined by fixing the connecting shaft with the motor generator;
The first differential mechanism has a first gear ratio determined by fixing a shaft connected to the first motor generator;
The second differential mechanism has a second gear ratio determined by fixing a shaft connected to the second motor generator;
The third differential mechanism has a third gear ratio determined by fixing a shaft connected to the third motor generator.
A driving device that decreases in the order of the first gear ratio, the second gear ratio, and the third gear ratio.
請求項1記載の駆動装置であって、
車両の変速比が前記第1の差動機構の変速比以下、かつ、前記第2の差動機構の変速比以上での前記第1および第2のモータジェネレータそれぞれの運転状態と、前記第2の差動機構の変速比以下、かつ、前記第3の差動機構の変速比以上での前記第1および第2のモータジェネレータそれぞれの運転状態とが異なることを特徴とする駆動装置。
The drive device according to claim 1,
The driving states of the first and second motor generators when the gear ratio of the vehicle is equal to or less than the gear ratio of the first differential mechanism and equal to or greater than the gear ratio of the second differential mechanism, and the second The driving device is characterized in that operating states of the first and second motor generators are different from each other at a speed ratio of the first differential mechanism or less and at a speed ratio of the third differential mechanism or more.
請求項1記載の駆動装置であって、
前記第1のモータジェネレータは接続する差動機構を換え、自らのトルクの方向を変えるトルク方向切換装置を有することを特徴とする駆動装置。
The drive device according to claim 1,
The first motor generator has a torque direction switching device that changes a direction of its own torque by changing a differential mechanism to be connected.
請求項1記載の駆動装置であって、
前記第1のモータジェネレータは接続する差動機構を換え、前記第2のモータジェネレータの回転方向を変える回転方向切換装置を有することを特徴とする駆動装置。
The drive device according to claim 1,
The first motor generator includes a rotation direction switching device that changes a rotation direction of the second motor generator by changing a differential mechanism to be connected.
JP2001515154A 1999-08-04 1999-08-04 Driving device and vehicle using the same Expired - Fee Related JP4075378B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004207 WO2001010665A1 (en) 1999-08-04 1999-08-04 Drive device and vehicle using the device

Publications (1)

Publication Number Publication Date
JP4075378B2 true JP4075378B2 (en) 2008-04-16

Family

ID=14236393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001515154A Expired - Fee Related JP4075378B2 (en) 1999-08-04 1999-08-04 Driving device and vehicle using the same

Country Status (2)

Country Link
JP (1) JP4075378B2 (en)
WO (1) WO2001010665A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626151B2 (en) * 2002-06-17 2005-03-02 日産自動車株式会社 Hybrid transmission
JP3722127B2 (en) 2003-02-05 2005-11-30 日産自動車株式会社 Electromagnetic suspension device for vehicle
FR2907381B1 (en) * 2006-10-23 2008-12-19 Renault Sas INFINITELY VARIABLE HYBRID TRANSMISSION AND MOTOR POWER DRIVER GROUP HAVING THREE EPICYCLOIDAL TRAINS ON TWO LINES.
JP6097494B2 (en) * 2012-06-11 2017-03-15 東洋電機製造株式会社 Electric vehicle drive system
JP6102956B2 (en) * 2015-01-22 2017-03-29 マツダ株式会社 Vehicle drive device
WO2018079843A1 (en) * 2016-10-31 2018-05-03 アイシン・エィ・ダブリュ株式会社 Vehicle drive transmission apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650142B2 (en) * 1984-01-25 1994-06-29 曙ブレーキ工業株式会社 Vehicle drive control device
JP3045650B2 (en) * 1994-11-04 2000-05-29 株式会社エクォス・リサーチ Transmission for vehicles
US5558175A (en) * 1994-12-13 1996-09-24 General Motors Corporation Hybrid power transmission
JP3373082B2 (en) * 1995-05-25 2003-02-04 株式会社エクォス・リサーチ Hybrid vehicle
JPH10949A (en) * 1996-06-18 1998-01-06 Aqueous Res:Kk Hybrid type vehicle
JP3601193B2 (en) * 1996-07-01 2004-12-15 株式会社エクォス・リサーチ Hybrid vehicle
JP3702567B2 (en) * 1997-02-20 2005-10-05 アイシン・エィ・ダブリュ株式会社 Shift control device for vehicle drive device

Also Published As

Publication number Publication date
WO2001010665A1 (en) 2001-02-15

Similar Documents

Publication Publication Date Title
EP1657094B1 (en) Hybrid drive device and automobile with device mounted thereon
US7000717B2 (en) Output power split hybrid electric drive system
EP2156975B1 (en) Hybrid driving unit and vehicle carrying the same
EP2351661B1 (en) Hybrid power driving system and gear position operation method thereof
JP5725197B2 (en) Hybrid vehicle drive device
TWI584974B (en) Engine running at fixed speed incorporated controllable tnrasmission power system
US5730676A (en) Three-mode, input-split hybrid transmission
US20030100395A1 (en) Powertrain for hybrid electric vehicles
AU2018241662A1 (en) Hybrid power and pure electric transmission device for power system and operation method therefor
EP3057818B1 (en) Electrically variable transmission
JP2002204504A5 (en)
JP2010285140A (en) On-vehicle power transmission device and driving device for vehicle
EP2554447A1 (en) Drive control device for hybrid vehicle
Yang et al. Integrated electro-mechanical transmission systems in hybrid electric vehicles
JP4075378B2 (en) Driving device and vehicle using the same
CN109986952A (en) Hybrid electric drive system and vehicle
CN109591570A (en) Hybrid electric drive system and vehicle
CN109986947A (en) Hybrid electric drive system and vehicle
JP5337744B2 (en) Power transmission device and hybrid drive device
KR20100003805A (en) Hybrid power train of vehicle
CN109591576A (en) Hybrid electric drive system and vehicle
JP3684837B2 (en) Transmission and vehicle using the same
US20240198782A1 (en) Vehicle
JPH11334397A (en) Driving device for automobile
CN109591571A (en) Hybrid electric drive system and vehicle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees