JP4071138B2 - Powder production equipment - Google Patents

Powder production equipment Download PDF

Info

Publication number
JP4071138B2
JP4071138B2 JP2003085634A JP2003085634A JP4071138B2 JP 4071138 B2 JP4071138 B2 JP 4071138B2 JP 2003085634 A JP2003085634 A JP 2003085634A JP 2003085634 A JP2003085634 A JP 2003085634A JP 4071138 B2 JP4071138 B2 JP 4071138B2
Authority
JP
Japan
Prior art keywords
fine mist
powder
reservoir
fine
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003085634A
Other languages
Japanese (ja)
Other versions
JP2004290796A (en
Inventor
基之 柳本
雅男 上出
季孝 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2003085634A priority Critical patent/JP4071138B2/en
Publication of JP2004290796A publication Critical patent/JP2004290796A/en
Application granted granted Critical
Publication of JP4071138B2 publication Critical patent/JP4071138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、2次電池や半導体の材料の製造に適用される粉体製造装置に関するものである。
【0002】
【従来の技術】
従来、図3に示す粉体生成器50を備えた粉体製造装置が公知である。この粉体生成器50は、中空体で、微細ミスト導入部51と微細ミスト貯留部52と反応部53とに大別され、微細ミスト導入部51は、粉体生成器50の下部側方に設けられ、微細ミスト貯留部52の上方に筒状の反応部53が続いている。
【0003】
微細ミスト導入部51は、微細ミスト貯留部52の側方に固定され、微細ミスト貯留部52に向かって広がった漏斗形状を有する導入管61と、この導入管61の小径側端部に取り付けられ、粉体原料を含んだ溶液と高圧空気とを微細ミスト貯留部52に向けて噴霧する流体ノズル、例えば2流体ノズル62とから形成されている。
【0004】
微細ミスト貯留部52は、2流体ノズル62から噴霧された粉体原料を含んだ微細ミストを拡散させる容積を有し、上記微細ミストを一旦貯める空間を内部に有している。
反応部53では、微細ミスト貯留部52から供給された微細ミストから熱分解により微細な粉体が合成され、反応部53の上部から排ガスとともにこの粉体は続く粉体分離工程に導かれる。
【0005】
【発明が解決しようとする課題】
上述した粉体製造装置の場合、2流体ノズル62から噴霧された流体の高速流れの部分が周囲に比して高圧になる。このため、上記高速流れの部分から上記周囲に向かって低くなる圧力分布が生じ、図3において矢印Aで示すように、上記高速流れの周囲に2流体ノズル62に向かう逆流が生じる。この結果、噴霧ミストの拡散が阻害され、定格噴霧量が得られないという問題があった。
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、微細ミストの定格噴霧量の確保を可能とした粉体製造装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、第1発明は、噴霧された粉体原料を含む微細ミストを一次貯留する微細ミスト貯留部の上部に、この微細ミスト貯留部から供給された微細ミストを粉体処理する筒状の反応部が形成された粉体生成器を備えた粉体製造装置において、上記微細ミスト貯留部内の微細ミストを上記微細ミスト貯留部外を経て、再度上記微細ミスト貯留部内に戻す循環管路を設けた構成とした。
【0007】
第2発明は、第1発明の構成に加えて、上記循環管路が断熱材で覆われた、又は加熱装置を有する構成とした。
【0008】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1及び2は、本発明に係る粉体製造装置1を示し、この粉体製造装置1は、粉体生成器11と粉体収集部12と吸引機13とを備え、それぞれはダクト14及び15を介して連通している。
【0009】
粉体生成器11は、上述した粉体生成器50と同様、微細ミスト導入部51と微細ミスト貯留部52と反応部53とを備えており、これらの内、粉体生成器50と互いに共通する部分については、同一番号を付して説明を省略する。ただし、粉体生成器11には、微細ミスト貯留部52内の微細ミストを微細ミスト貯留部52外を経て、再度微細ミスト貯留部52内に戻す循環管路21が設けられている。
【0010】
そして、この循環管路21により微細ミストを循環させることにより、図3において矢印Aで示すような逆流が生じる領域が殆どなくなり、定格噴霧量が確保されるようになる。具体的には、2流体ノズル62に定格噴霧量が2L/H(高圧空気3kg/cm)のものを粉体生成器50に使用した場合、噴霧量が1〜1.5L/Hであったのに対して、上記定格噴霧量のものを粉体生成器11に使用すると定格噴霧量と同量の2L/Hが得られた。また、2流体ノズル62は1〜2mの噴霧距離を必要とし、粉体生成器50の場合、微細ミスト導入部51または微細ミスト貯留部52が大きくなり、長くなるのに対して、粉体生成器11の場合には、これらを小さくすることができ、全体的にコンパクトな形状のものにすることが可能となっている。
【0011】
反応部53は、内部で均一に燃焼するように軸心周りに均等に配設された複数のバーナ22と、バーナ22の下方の空間に冷却ガス、例えば冷却空気を供給するための冷却ガス供給手段23とを備えている。そして、バーナ22への燃料の流量を調節することにより、また冷却ガス供給手段23からの冷却ガスの流量を調節することにより反応部53内における温度調節が可能となっている。なお、冷却ガス供給手段23は必ずしも必要とするものではない。
【0012】
粉体収集部12は、内部に微粒子とガスとを分離するフィルター部材、例えばバグフィルター24を内蔵している。
吸引機13は、ダクト14、粉体収集部12内のバグフィルター24及びダクト15を介して粉体生成器11内を吸引し、バグフィルター24を通過したガスを外部に排出するように設けられている。従って、粉体生成器11内には、この吸引機13の作用により、微細ミスト導入部51から微細ミスト貯留部52、反応部53を経て、ダクト14に向かう流体の流れが形成される。
なお、循環管路21は、断熱材で覆われているか、又は加熱装置を有するのが望ましく、これにより循環する流体の温度低下を抑制することができ、その結果、反応部53内での温度管理が容易になる。
【0013】
次に、上記構成からなる粉体生成器11における粉体生成プロセスについて説明する。
2流体ノズル62には、図示しない圧送器により水酸化物、硝酸塩、硫酸塩、炭酸塩等の溶液が圧送され、2流体ノズル62の先端部で高速でぶつかり合い,微細化し、高圧空気とともに微細化した上記溶液が導入管61内に噴霧される。この際、2流体ノズル62近傍での流体速度は計算値では200m/secを超える。そして、微細ミストは2流体ノズル62から数m離れた位置で、定格ミストサイズとなる。例えば、定格噴霧量が2L/H、高圧空気3kg/cmで約1〜2m離れた位置で平均径10μm程度の微細ミストが生成される。
【0014】
さらに、この微細ミストは、導入管61から微細ミスト貯留部52内に流入し、流速が減じられて層流化するとともに、比較的大きな径の微細ミストは壁面に接触すると濡れて微細ミスト貯留部52でトラップされるのに対して、比較的小さい径の微細ミストは壁面に接触しても微細ミスト自身の表面張力が大きく濡れない。この結果、径の分布標準偏差が小さい微細ミストが残存することになり、この残存した微細ミストは、一部は循環管路21に流入し、残りの部分が微細ミスト貯留部52からダクト14に向かって吸引され、反応部53に至る。この循環管路21への流体の流れは、2流体ノズル62の先端部近傍での流体の流れを阻害することはない。
なお、この循環管路21は複数設けられてもよく、導入管61への帰還部は、図示するように2流体ノズル62に後方位置が好ましいが、導入管61の速部であってもよい。
【0015】
微細ミストが微細ミスト貯留部52から反応部53のバーナ22の箇所に至ると、瞬時に熱分解、溶融、合成が起こり、目的とする粉体処理が行われる。
例えば、マンガン酸リチウムを硝酸塩溶液を用いて作成する場合は、急激な温度勾配の雰囲気下では、マンガン酸リチウムは所望形状の微粉体にならないことがある。このため、反応部53での昇温速度を厳密に管理する必要がある。粉体生成器11では、図示しない温度制御装置により上述したバーナ22の燃料流量或いは冷却ガス供給手段23からの冷却ガス流量を調節して、最適な温度分布を形成することが可能となっている。
【0016】
このようにして熱分解させて得られた粉体は、径がナノメートルオーダの超微粒粉体となり、排ガスとともに粉体生成器11からダクト14を経由して粉体収集部12に至る過程で粉体収集部12の耐熱温度以下に冷却される。そして、固の粉体は排ガスとともに粉体収集部12に導かれ、バグフィルター24により排ガスと分離され、粉体は粉体収集部12内に収集され、バグフィルター24を通過した排ガスはダクト15を介して吸引機13により外部に排出される。
【0017】
なお、粉体生成器11内の圧力は大気圧より低くてもよく、大気圧でもよく、大気圧よりも高くてもよい。さらに、粉体生成器11内の雰囲気ガスの種類については、何等限定するものでなく、種々の雰囲気ガスが適用される。
また、本発明は、反応部53のバーナ22に代えて、電極を配設し、電極間でプラズマを発生させ、微細ミストを熱分解させるようにしてもよい。
さらに、本発明は、微細ミスト導入部51の数についても限定するものでない。
その他、本発明は、2流体ノズル62に限定するものでなく、複数のノズルを用いて微細ミスト導入部51へ微細ミストを噴出するようにしてもよい。
【0018】
【発明の効果】
以上の説明より明らかなように、第1発明によれば、微細ミスト貯留部内の微細ミストを上記微細ミスト貯留部外を経て、再度上記微細ミスト貯留部内に戻す循環管路を設けた構成としてある。
このように循環管路を設けることにより、噴霧された微細ミストを含む流体を循環させることができ、噴霧された流体の高速流れの周囲で逆流が生じる領域が殆どなくなり、定格噴霧量が確保されるようになり、この結果微細ミスト導入部或いは微細ミスト貯留部も小さくし、コンパクトなものにすることができるという効果を奏する。
【0019】
第2発明によれば、第1発明の構成に加えて、上記循環管路が断熱材で覆われた、又は加熱装置を有する構成としてある。
このため、循環管路内を循環する流体の温度低下を抑制でき、反応部での温度管理が容易になるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係る粉体製造装置の全体構成の概略を示す図である。
【図2】 図1に示す粉体製造装置のII−II線断面図である。
【図3】 従来の粉体製造装置の概略を示す図である。
【符号の説明】
1 粉体製造装置
11 粉体生成器
12 粉体収集部
13 吸引機
14,15 ダクト
21 循環管路
22 バーナ
23 冷却ガス供給手段
24 バグフィルター
50 粉体生成器
51 微細ミスト導入部
52 微細ミスト貯留部
53 反応部
61 導入管
62 2流体ノズル
A 矢印
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder production apparatus applied to the production of, for example, secondary batteries and semiconductor materials.
[0002]
[Prior art]
Conventionally, a powder manufacturing apparatus including a powder generator 50 shown in FIG. 3 is known. The powder generator 50 is a hollow body, and is roughly divided into a fine mist introduction part 51, a fine mist storage part 52, and a reaction part 53. The fine mist introduction part 51 is located on the lower side of the powder generator 50. A cylindrical reaction part 53 is provided above the fine mist storage part 52.
[0003]
The fine mist introduction part 51 is fixed to the side of the fine mist storage part 52, and is attached to an introduction pipe 61 having a funnel shape spreading toward the fine mist storage part 52, and a small diameter side end of the introduction pipe 61. In addition, a fluid nozzle that sprays the solution containing the powder raw material and high-pressure air toward the fine mist reservoir 52, for example, a two-fluid nozzle 62 is formed.
[0004]
The fine mist reservoir 52 has a volume for diffusing fine mist containing the powder raw material sprayed from the two-fluid nozzle 62 and has a space for temporarily storing the fine mist therein.
In the reaction unit 53, fine powder is synthesized by thermal decomposition from the fine mist supplied from the fine mist storage unit 52, and this powder is introduced from the upper part of the reaction unit 53 together with the exhaust gas into a subsequent powder separation step.
[0005]
[Problems to be solved by the invention]
In the case of the powder manufacturing apparatus described above, the portion of the high-speed flow of the fluid sprayed from the two-fluid nozzle 62 has a higher pressure than the surroundings. Therefore, a pressure distribution that decreases from the portion of the high-speed flow toward the periphery is generated, and a reverse flow toward the two-fluid nozzle 62 is generated around the high-speed flow as indicated by an arrow A in FIG. As a result, there is a problem that the spraying mist is inhibited from being diffused and the rated spray amount cannot be obtained.
The present invention has been made to eliminate such a conventional problem, and an object of the present invention is to provide a powder production apparatus capable of ensuring the rated spray amount of fine mist.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the first invention is a powder processing of the fine mist supplied from the fine mist reservoir above the fine mist reservoir that primarily stores fine mist containing the sprayed powder raw material. In a powder manufacturing apparatus including a powder generator in which a cylindrical reaction part is formed, circulation is performed to return the fine mist in the fine mist reservoir to the fine mist reservoir again through the fine mist reservoir. It was set as the structure which provided the pipe line.
[0007]
In the second invention, in addition to the structure of the first invention, the circulation pipe is covered with a heat insulating material or has a heating device.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a powder production apparatus 1 according to the present invention. This powder production apparatus 1 includes a powder generator 11, a powder collection unit 12, and a suction machine 13, each of which includes a duct 14 and 15 to communicate with each other.
[0009]
Similar to the powder generator 50 described above, the powder generator 11 includes a fine mist introduction part 51, a fine mist storage part 52, and a reaction part 53, and among these, the powder generator 50 is common to the powder generator 50. About the part to perform, the same number is attached and explanation is omitted. However, the powder generator 11 is provided with a circulation line 21 that returns the fine mist in the fine mist reservoir 52 through the fine mist reservoir 52 and back into the fine mist reservoir 52 again.
[0010]
Then, by circulating the fine mist through the circulation pipe 21, there is almost no region where a reverse flow as shown by an arrow A in FIG. 3 occurs, and the rated spray amount is secured. Specifically, when a two-fluid nozzle 62 having a rated spray amount of 2 L / H (high pressure air 3 kg / cm 2 ) is used for the powder generator 50, the spray amount is 1 to 1.5 L / H. On the other hand, when the above-mentioned rated spray amount was used for the powder generator 11, 2 L / H of the same amount as the rated spray amount was obtained. The two-fluid nozzle 62 requires a spraying distance of 1 to 2 m. In the case of the powder generator 50, the fine mist introduction part 51 or the fine mist storage part 52 becomes large and long, whereas the powder production. In the case of the container 11, these can be made small and it can be made into the thing of a compact shape as a whole.
[0011]
The reaction unit 53 includes a plurality of burners 22 arranged uniformly around the axis so as to uniformly burn inside, and a cooling gas supply for supplying cooling gas, for example, cooling air, to a space below the burner 22. Means 23. The temperature in the reaction section 53 can be adjusted by adjusting the flow rate of the fuel to the burner 22 and by adjusting the flow rate of the cooling gas from the cooling gas supply means 23. The cooling gas supply means 23 is not necessarily required.
[0012]
The powder collecting unit 12 includes a filter member for separating fine particles and gas, for example, a bag filter 24 therein.
The suction machine 13 is provided so as to suck the powder generator 11 through the duct 14, the bag filter 24 in the powder collecting unit 12, and the duct 15, and to discharge the gas that has passed through the bag filter 24 to the outside. ing. Therefore, in the powder generator 11, a fluid flow toward the duct 14 is formed from the fine mist introduction part 51 through the fine mist storage part 52 and the reaction part 53 by the action of the suction device 13.
Note that the circulation pipe 21 is preferably covered with a heat insulating material or has a heating device, which can suppress the temperature drop of the circulating fluid, and as a result, the temperature in the reaction unit 53. Management becomes easy.
[0013]
Next, the powder production process in the powder production | generation apparatus 11 which consists of the said structure is demonstrated.
The two-fluid nozzle 62 is pumped with a solution of hydroxide, nitrate, sulfate, carbonate, etc., by a pressure feeder (not shown), and collides with the tip of the two-fluid nozzle 62 at high speed, and refines it together with high-pressure air. The converted solution is sprayed into the introduction tube 61. At this time, the fluid velocity in the vicinity of the two-fluid nozzle 62 exceeds 200 m / sec in the calculated value. The fine mist reaches the rated mist size at a position several m away from the two-fluid nozzle 62. For example, fine mist having an average diameter of about 10 μm is generated at a position where the rated spray amount is 2 L / H and high-pressure air is 3 kg / cm 2 and is about 1 to 2 m away.
[0014]
Further, the fine mist flows from the introduction pipe 61 into the fine mist reservoir 52, and the flow velocity is reduced and laminarized. The fine mist having a relatively large diameter comes into contact with the wall surface and gets wet. On the other hand, the fine mist having a relatively small diameter does not get wet due to the surface tension of the fine mist itself even if it comes into contact with the wall surface. As a result, a fine mist with a small standard deviation of the diameter remains, a part of the remaining fine mist flows into the circulation pipe 21, and the remaining part enters the duct 14 from the fine mist reservoir 52. It is sucked toward the reaction part 53. The fluid flow to the circulation pipe 21 does not hinder the fluid flow in the vicinity of the tip of the two-fluid nozzle 62.
A plurality of the circulation pipes 21 may be provided, and the return part to the introduction pipe 61 is preferably at the rear position with respect to the two-fluid nozzle 62 as shown in the figure, but may be a speed part of the introduction pipe 61. .
[0015]
When the fine mist reaches the location of the burner 22 of the reaction part 53 from the fine mist storage part 52, thermal decomposition, melting, and synthesis occur instantaneously, and the intended powder processing is performed.
For example, when lithium manganate is prepared using a nitrate solution, the lithium manganate may not be a fine powder having a desired shape under an atmosphere of a rapid temperature gradient. For this reason, it is necessary to strictly manage the temperature increase rate in the reaction unit 53. In the powder generator 11, an optimum temperature distribution can be formed by adjusting the fuel flow rate of the burner 22 or the cooling gas flow rate from the cooling gas supply means 23 by a temperature control device (not shown). .
[0016]
The powder obtained by pyrolysis in this way becomes an ultrafine powder having a diameter of the order of nanometers, and in the process from the powder generator 11 through the duct 14 to the powder collecting unit 12 together with the exhaust gas. It is cooled below the heat resistance temperature of the powder collecting unit 12. The solid powder is guided to the powder collecting unit 12 together with the exhaust gas, separated from the exhaust gas by the bag filter 24, the powder is collected in the powder collecting unit 12, and the exhaust gas that has passed through the bag filter 24 passes through the duct 15. And is discharged to the outside by the suction machine 13.
[0017]
Note that the pressure in the powder generator 11 may be lower than atmospheric pressure, may be atmospheric pressure, or higher than atmospheric pressure. Further, the type of atmospheric gas in the powder generator 11 is not limited at all, and various atmospheric gases are applied.
Further, in the present invention, instead of the burner 22 of the reaction unit 53, electrodes may be provided, plasma may be generated between the electrodes, and the fine mist may be thermally decomposed.
Furthermore, the present invention does not limit the number of fine mist introducing portions 51.
In addition, the present invention is not limited to the two-fluid nozzle 62, and the fine mist may be ejected to the fine mist introduction part 51 using a plurality of nozzles.
[0018]
【The invention's effect】
As is clear from the above description, according to the first aspect of the invention, there is provided a circulation pipe that returns the fine mist in the fine mist reservoir through the outside of the fine mist reservoir and returns to the fine mist reservoir again. .
By providing the circulation pipe in this way, the fluid containing the sprayed fine mist can be circulated, and there is almost no region where the backflow occurs around the high-speed flow of the sprayed fluid, and the rated spray amount is secured. As a result, the fine mist introduction part or the fine mist storage part can also be made small and compact.
[0019]
According to the second invention, in addition to the structure of the first invention, the circulation pipe line is covered with a heat insulating material or has a heating device.
For this reason, the temperature drop of the fluid circulating in the circulation pipe line can be suppressed, and the temperature management in the reaction part is facilitated.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of the overall configuration of a powder production apparatus according to the present invention.
2 is a cross-sectional view of the powder production apparatus shown in FIG. 1 taken along line II-II.
FIG. 3 is a diagram showing an outline of a conventional powder production apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Powder manufacturing apparatus 11 Powder generator 12 Powder collection part 13 Suction machine 14,15 Duct 21 Circulation line 22 Burner 23 Cooling gas supply means 24 Bag filter 50 Powder generator 51 Fine mist introduction part 52 Fine mist storage Section 53 Reaction section 61 Introduction pipe 62 Two-fluid nozzle A Arrow

Claims (2)

噴霧された粉体原料を含む微細ミストを一次貯留する微細ミスト貯留部の上部に、この微細ミスト貯留部から供給された微細ミストを粉体処理する筒状の反応部が形成された粉体生成器を備えた粉体製造装置において、上記微細ミスト貯留部内の微細ミストを上記微細ミスト貯留部外を経て、再度上記微細ミスト貯留部内に戻す循環管路を設けたことを特徴とする粉体製造装置。Powder generation in which a cylindrical reaction part is formed on the upper part of the fine mist storage part that primarily stores fine mist containing the sprayed powder raw material, and the fine mist supplied from the fine mist storage part is processed into powder. In the powder manufacturing apparatus provided with the vessel, the powder manufacturing is characterized in that a circulation pipe is provided for returning the fine mist in the fine mist reservoir through the outside of the fine mist reservoir and back into the fine mist reservoir. apparatus. 上記循環管路が断熱材で覆われた、又は加熱装置を有することを特徴とする請求項1に記載の粉体製造装置。The powder manufacturing apparatus according to claim 1, wherein the circulation pipe is covered with a heat insulating material or has a heating device.
JP2003085634A 2003-03-26 2003-03-26 Powder production equipment Expired - Lifetime JP4071138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085634A JP4071138B2 (en) 2003-03-26 2003-03-26 Powder production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085634A JP4071138B2 (en) 2003-03-26 2003-03-26 Powder production equipment

Publications (2)

Publication Number Publication Date
JP2004290796A JP2004290796A (en) 2004-10-21
JP4071138B2 true JP4071138B2 (en) 2008-04-02

Family

ID=33400510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085634A Expired - Lifetime JP4071138B2 (en) 2003-03-26 2003-03-26 Powder production equipment

Country Status (1)

Country Link
JP (1) JP4071138B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002659A1 (en) * 2005-01-19 2006-07-27 Merck Patent Gmbh Process for the preparation of mixed oxides by spray pyrolysis
JP2007083113A (en) * 2005-09-20 2007-04-05 Chugai Ro Co Ltd Powder production apparatus
JP4555199B2 (en) * 2005-09-20 2010-09-29 中外炉工業株式会社 Powder production equipment
JP6763740B2 (en) * 2016-10-18 2020-09-30 太平洋セメント株式会社 Spray thermal decomposition device

Also Published As

Publication number Publication date
JP2004290796A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
CN205414417U (en) Device of plasma atomizing preparation high performance powder for vibration material disk
CN109808049A (en) A kind of method that high-temperature gas aerosolization prepares spherical powder
WO2018000756A1 (en) Cottonless ultrasonic atomizer and e-cigarette
CN102672351B (en) For the splash removal device of laser-beam welding machine
CN105081337B (en) Method and device for preparing fine spherical metal powder through high-frequency supersonic plasma gas
JP2005218937A (en) Method and apparatus for manufacturing fine particles
US9073099B2 (en) Installation providing a treatment jet for cleaning and/or degreasing manufactured parts
CN113145854A (en) Vacuum electrode induction melting double-flow gas atomization metal powder device
US20080099934A1 (en) Nebulization Fan
JP4071138B2 (en) Powder production equipment
JP4668751B2 (en) Powder manufacturing method
EP1906106A1 (en) Nebulization fan
JP4698127B2 (en) Powder production equipment
CN215585307U (en) Battery fire extinguishing system
CN102597279A (en) Method and apparatus for condensing metal and other vapours
JP4709342B2 (en) Slash generation process and slash generation device
JP2011025140A (en) Apparatus and method for treating emission gas accompanied powder
CN215144703U (en) Vacuum electrode induction melting double-flow gas atomization metal powder device
CN114082969A (en) Plasma remelting system and process for thermal spraying of ultrafine powder
JP7289584B1 (en) Large-capacity ultra-atomized spray-drying apparatus and large-capacity ultra-atomized spray-drying method
JP3140597B2 (en) Snow dry ice making machine
JPS6365004A (en) Apparatus for producing fine particle by high-pressure gas spraying
CN110917015A (en) Fog generating device
EP2693020A2 (en) Atomizer
JPS61291406A (en) Method for producing ultra-fine particle of oxide and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4071138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term