JP4069205B2 - Method for manufacturing magnetic recording medium - Google Patents

Method for manufacturing magnetic recording medium Download PDF

Info

Publication number
JP4069205B2
JP4069205B2 JP2004096591A JP2004096591A JP4069205B2 JP 4069205 B2 JP4069205 B2 JP 4069205B2 JP 2004096591 A JP2004096591 A JP 2004096591A JP 2004096591 A JP2004096591 A JP 2004096591A JP 4069205 B2 JP4069205 B2 JP 4069205B2
Authority
JP
Japan
Prior art keywords
thin film
fept
magnetic
recording medium
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004096591A
Other languages
Japanese (ja)
Other versions
JP2005285207A (en
Inventor
敏之 嶋
弘毅 高梨
有紀子 高橋
和博 宝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004096591A priority Critical patent/JP4069205B2/en
Publication of JP2005285207A publication Critical patent/JP2005285207A/en
Application granted granted Critical
Publication of JP4069205B2 publication Critical patent/JP4069205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

この出願の発明は、磁場を印加した箇所に所定の保磁力にて磁気的に情報を記録する磁気記録媒体の製造方法に関するものである。さらに詳しくは、この出願の発明は、書き込みが容易で、一旦書き込めば外部磁場による擾乱により容易に消去されない高い保磁力を有する磁気記録媒体の製造方法に関するものである。
The invention of this application relates to a method of manufacturing a magnetic recording medium in which information is magnetically recorded at a location where a magnetic field is applied with a predetermined coercive force. More specifically, the invention of this application relates to a method of manufacturing a magnetic recording medium having a high coercive force that is easy to write and is not easily erased by disturbance due to an external magnetic field once written.

情報化社会の発展にともない大量の情報を処理・記憶することのできる超高密度磁気記録媒体の開発が切望されている。記録媒体の高密度化には10nm以下の強磁性微粒子を非磁性マトリックス中に均一に分散させる必要がある。しかし、現行のCoCr基媒体では、微粒子のサイズが10nm以下になると熱擾乱により磁化反転が起こる。一方、L10構造を有するFePt規則相はCoCr基合金よりも1桁大きい7×107erg/ccもの大きな異方性を有するため、ナノサイズの超微細粒子であっても熱擾乱により磁化反転を起こさない。このため次世代の超高密度磁気記録媒体として期待されている。本発明者らは、この材料で結晶配向させた孤立単磁区粒子を分散させることにより、簡便なプロセスで40kOe以上の高い保磁力を持つ高配向磁性薄膜の製造方法(特許文献1)を提案している。また、この材料で単磁区粒子を作製することによって、保磁力が120kOeにも達すると理論的に考えられており、実験的には約70kOeの大きな保磁力が実現されている。
特開2003−289005号公報
With the development of the information society, the development of ultra-high density magnetic recording media that can process and store large amounts of information is eagerly desired. To increase the density of the recording medium, it is necessary to uniformly disperse ferromagnetic fine particles of 10 nm or less in the nonmagnetic matrix. However, in the current CoCr-based medium, magnetization reversal occurs due to thermal disturbance when the size of the fine particles is 10 nm or less. On the other hand, the FePt ordered phase having the L1 0 structure has a large anisotropy of 7 × 10 7 erg / cc, which is an order of magnitude larger than that of the CoCr-based alloy, so that even nano-sized ultrafine particles cause magnetization reversal due to thermal disturbance. Absent. Therefore, it is expected as a next-generation ultra high density magnetic recording medium. The present inventors have proposed a method for producing a highly oriented magnetic thin film having a high coercive force of 40 kOe or more (Patent Document 1) by a simple process by dispersing isolated single domain particles crystallized with this material. ing. Further, it is theoretically considered that the single magnetic domain particles are made of this material, and the coercive force reaches 120 kOe, and a large coercive force of about 70 kOe is experimentally realized.
JP 2003-289005 A

しかしながら、高保磁力を有する上記のような単磁区微粒子の媒体を記録媒体に応用した場合、情報の書き込み(磁化の反転)に対して50kOe以上の大きな磁場が必要となる。現在のところ、このような大きな磁場を発生させることのできる書き込み用磁気ヘッドの開発はされていない。また、別の記録方式として、記録媒体をレーザー光などで局所的に加熱することにより、キュリー温度付近まで磁性体の温度を上昇させ、保磁力が小さくなったところで書き込みを行う熱アシスト型磁気記録などの光磁気記録の技術が提案されている。しかし、この技術は現在開発中であり、未だ実用化には至っていない。   However, when a single-domain fine particle medium having a high coercive force as described above is applied to a recording medium, a large magnetic field of 50 kOe or more is required for information writing (magnetization reversal). At present, no writing magnetic head capable of generating such a large magnetic field has been developed. As another recording method, heat-assisted magnetic recording is performed when the temperature of the magnetic material is increased to near the Curie temperature by locally heating the recording medium with laser light, etc., and writing is performed when the coercive force is reduced. The magneto-optical recording technology has been proposed. However, this technology is currently under development and has not yet been put into practical use.

そこで、この出願の発明は、以上の通りの背景から、新たな記録ヘッドや記録方式を必要とすることなく、現行の記録ヘッドで書き込みができる、書き込み容易な、外部磁場による擾乱に極めて安定な高保磁力を有するFePt磁性薄膜を備えた磁気記録媒体の製造方法を提供することを課題としている。
In view of the above, the invention of this application is capable of writing with the current recording head without requiring a new recording head or recording method, and is extremely stable against disturbance due to an external magnetic field. It is an object of the present invention to provide a method for manufacturing a magnetic recording medium including a FePt magnetic thin film having a high coercive force.

第1には、基板上に不連続な島状となって位置する厚さ20〜40nmのFePt磁性薄膜がL10構造を有すると共に、4KOe〜10KOeの磁場を印加することにより40KOe以上の保磁力を有することを特徴とする磁気記録媒体の製造方法を提供する。
First, a 20-40 nm thick FePt magnetic thin film located in a discontinuous island shape on the substrate has an L10 structure, and a coercive force of 40 KOe or more is applied by applying a magnetic field of 4 KOe to 10 KOe. A method for manufacturing a magnetic recording medium is provided.

第2には、基板上に成膜されるFePt磁性薄膜の膜厚が、25nm〜40nmであることを特徴とする磁気記録媒体の製造方法を提供する。
Second, the present invention provides a method for producing a magnetic recording medium , wherein the film thickness of the FePt magnetic thin film formed on the substrate is 25 nm to 40 nm.

第3には、FePt磁性薄膜におけるFePt相の合金組成がFe1−xPtx(0.4<x<0.6)であることを特徴とする磁気記録媒体の製造方法を提供する。
Thirdly, the present invention provides a method for producing a magnetic recording medium , wherein the FePt phase alloy composition in the FePt magnetic thin film is Fe1-xPtx (0.4 <x <0.6).

第4には、FePt磁性薄膜を成膜する基板が、MgO(001)、NaCl(001)、GaAs(001)、およびSi(001)のうちのいずれから選択されることを特徴とする磁気記録媒体の製造方法を提供する。
Fourth, the magnetic recording is characterized in that the substrate on which the FePt magnetic thin film is formed is selected from any of MgO (001), NaCl (001), GaAs (001), and Si (001). A method for manufacturing a medium is provided.

第5には、FePt磁性薄膜を成膜する基板がガラス製であり、FePt磁性薄膜の下地層としてMgO、ZnO、Cr、Ptのうちのいずれから選択されることを特徴とする磁気記録媒体の製造方法を提供する。 Fifth, the substrate on which the FePt magnetic thin film is formed is made of glass, and the underlayer of the FePt magnetic thin film is selected from MgO, ZnO, Cr, and Pt . A manufacturing method is provided.

この出願の第1の発明によれば、新たな記録ヘッドや記録方式を必要とすることなく、現行の記録ヘッドで書き込みができる、書き込み容易な、外部磁場による擾乱に極めて安定な高保磁力を有するFePt磁性薄膜を備えた磁気記録媒体を得ることができる。   According to the first invention of this application, it is possible to write with the current recording head without requiring a new recording head or recording system, and it has a high coercive force that is easy to write and extremely stable against disturbance by an external magnetic field. A magnetic recording medium provided with an FePt magnetic thin film can be obtained.

第2の発明によれば、上記第1の発明の効果とともに、磁気的に孤立した微粒子構造のFePt磁性薄膜とすることができ、微粒子内に磁壁を導入することができる。   According to the second invention, in addition to the effects of the first invention, a magnetically isolated fine particle structure FePt magnetic thin film can be obtained, and a domain wall can be introduced into the fine particles.

第3の発明によれば、上記第2の発明の効果とともに、磁気記録媒体用の合金として重要な、FePt相が安定に存在できる特定の構成のものが実現される。   According to the third aspect of the invention, in addition to the effects of the second aspect of the invention, a specific configuration that is important as an alloy for a magnetic recording medium and in which the FePt phase can exist stably is realized.

第4、第5の発明によれば、上記第3の発明の効果とともに、格子のミスフィットが小さい基板上にエピタキシャル成長させることにより、より高い規則度およびより大きい膜面垂直方向に一軸磁気異方性を有するL10構造のFePt磁性薄膜を備えた磁気記録媒
体とすることができる。
According to the fourth and fifth inventions, in addition to the effects of the third invention, by epitaxial growth on a substrate having a small lattice misfit, a higher degree of order and a larger uniaxial magnetic anisotropy in the direction perpendicular to the film surface are achieved. It may be a magnetic recording medium having a FePt magnetic thin film of L1 0 structure having sex.

この出願の発明は、上記のとおりの特徴をもつものであるが、以下、さらに詳しく発明の実施の形態について説明する。   The invention of this application has the characteristics as described above, and the embodiments of the invention will be described in more detail below.

この出願の発明は、表面温度が650℃〜850℃である基板上に、スパッタ法によりFePt磁性薄膜を成膜し、前記FePt磁性薄膜に4KOe〜10KOeの磁場を印加して40KOe以上の保磁力を有するFePt磁性薄膜を備えた磁気記録媒体の製造方法である。   In the invention of this application, a FePt magnetic thin film is formed on a substrate having a surface temperature of 650 ° C. to 850 ° C. by a sputtering method, and a magnetic field of 4 KOe to 10 KOe is applied to the FePt magnetic thin film so as to have a coercive force of 40 KOe or more. This is a method for manufacturing a magnetic recording medium comprising a FePt magnetic thin film having the following.

この出願の発明では、薄膜が(1)核生成→(2)島状→(3)連続状という初期成長過程を経て成長することに着目し、基板温度を上昇させて原子拡散の活発な温度領域において、基板上にFePt磁性薄膜をスパッタ成膜するものである。工業的に広く用いられているスパッタ法や蒸着法などの気相急冷法などによりFePt磁性薄膜を成膜すると、磁気異方性の小さい不規則相であるfcc合金相のFePt磁性薄膜が形成されることになる。完全に規則化したFePt微粒子を島状に成長させるためには、スパッタ成膜時の基板の表面温度を650℃〜850℃にする必要がある。これによって、L10構造を有
するFePt磁性薄膜とすることができ、FePt微粒子は島状となって形成される。
In the invention of this application, focusing on the fact that the thin film grows through an initial growth process of (1) nucleation → (2) island shape → (3) continuous state, the substrate temperature is raised to increase the temperature of active atomic diffusion. In the region, an FePt magnetic thin film is formed on the substrate by sputtering. When an FePt magnetic thin film is formed by a vapor phase quenching method such as sputtering or vapor deposition widely used in industry, an FePt magnetic thin film of fcc alloy phase, which is an irregular phase with small magnetic anisotropy, is formed. Will be. In order to grow perfectly ordered FePt fine particles in an island shape, the surface temperature of the substrate at the time of sputtering film formation needs to be 650 ° C. to 850 ° C. Thus, an FePt magnetic thin film having an L1 0 structure can be obtained, and FePt fine particles are formed in an island shape.

また、基板とエピタキシャル成長させることにより、膜面に垂直方向に一軸磁気異方性を有するL10構造を持つFePt磁性薄膜が得られる。 Further, by the substrate and the epitaxial growth, FePt magnetic thin film is obtained having the L1 0 structure having uniaxial magnetic anisotropy in the direction perpendicular to the film plane.

このFePt磁性薄膜を、4KOe〜10KOeの低磁場で印加すると、FePt微粒子の磁壁移動により容易に磁化反転がおこる。一旦磁化反転が起こると、40KOe以上の保磁力を備えることになり、印加磁場の方向を逆向きにしても磁化反転が起こりにくく
なる。このため、このFePt磁性薄膜を磁気記録層とした磁気記録媒体は、書き込みが容易で、外部磁場による擾乱に極めて安定な、高保磁力を有するFePt磁性薄膜を備えた磁気記録媒体を得ることになる。
When this FePt magnetic thin film is applied in a low magnetic field of 4 KOe to 10 KOe, magnetization reversal easily occurs due to the domain wall movement of FePt fine particles. Once magnetization reversal occurs, a coercive force of 40 KOe or more is provided, and magnetization reversal hardly occurs even when the direction of the applied magnetic field is reversed. For this reason, a magnetic recording medium using the FePt magnetic thin film as a magnetic recording layer is easy to write and is extremely stable against disturbance caused by an external magnetic field, and a magnetic recording medium having a FePt magnetic thin film having a high coercive force is obtained. .

低磁場印加で高保磁力を示すFePt磁性薄膜を得るには、島状のFePt微粒子中に磁壁を導入する必要があるため、FePt磁性薄膜の膜厚を25nm〜40nmとなるようにスパッタ成膜されることが好ましい。   In order to obtain a FePt magnetic thin film exhibiting a high coercive force when a low magnetic field is applied, it is necessary to introduce a domain wall into the island-shaped FePt fine particles. Therefore, the FePt magnetic thin film is formed by sputtering so that the film thickness is 25 nm to 40 nm. It is preferable.

スパッタリングそのもののプロセスについては公知のものをはじめとして各種の装置や条件を適宜に採用することができる。ターゲットとしても、たとえば合金を構成する各々の純金属を用いた同時スパッタリングでもよく、組成が予備的に調整された合金ターゲットを用いてもよい。   As for the process of sputtering itself, various apparatuses and conditions including known ones can be appropriately employed. As the target, for example, simultaneous sputtering using pure metals constituting the alloy may be used, or an alloy target whose composition is preliminarily adjusted may be used.

基板上に成膜されるFePt磁性薄膜のFePt相の合金組成は、Fe1-xPtx(0.4<x<0.6)となるように成膜を行うことが好ましい。合金組成比をこの範囲に設定したとき、成膜されるFePt磁性薄膜は、高い一軸磁気異方性定数を示し、極めて高い保磁力が得られる。 It is preferable to form the film so that the FePt phase alloy composition of the FePt magnetic thin film formed on the substrate is Fe 1−x Pt x (0.4 <x <0.6). When the alloy composition ratio is set within this range, the formed FePt magnetic thin film exhibits a high uniaxial magnetic anisotropy constant and an extremely high coercive force is obtained.

さらに、この出願の発明は、基板の結晶配向の制御を行うことで、基板上に成膜される合金薄膜に磁気異方性を付与する。すなわち、エピタキシャル成長可能な、格子のミスフィットが小さい基板として、NaCl(001)、GaAs(001)、および、Si(001)のうちのいずれかから選択することで、磁化容易軸をより高い規則度で垂直方向に配向させることが可能となる。また、基板がガラス製の場合には、FePt磁性薄膜の下地層としてMgO、ZnO、Cr、Ptのうちのいずれから選択することで、磁化容易軸を垂直方向に配向させることも可能となる。   Furthermore, the invention of this application gives magnetic anisotropy to the alloy thin film formed on the substrate by controlling the crystal orientation of the substrate. That is, by selecting one of NaCl (001), GaAs (001), and Si (001) as a substrate that can be epitaxially grown and has a small lattice misfit, the easy magnetization axis has a higher degree of order. It becomes possible to orient in the vertical direction. Further, when the substrate is made of glass, the easy axis can be oriented in the vertical direction by selecting any of MgO, ZnO, Cr, and Pt as the underlayer of the FePt magnetic thin film.

以上より、この出願の発明は、低磁場で一旦磁化反転すると容易に磁化反転が起こりにくくなり、外部磁場による擾乱に極めて安定な高保磁力を有するFePt磁性薄膜を備えた磁気記録媒体を製造することができる。この磁気記録媒体は、新たな記録ヘッドや記録方式を必要とすることなく、現行の記録ヘッドで書き込みができ、一旦書き込めば外部磁場による擾乱により容易に消去されることはない。   As described above, the invention of this application is to manufacture a magnetic recording medium including a FePt magnetic thin film having a high coercive force which is difficult to cause magnetization reversal once it is easily reversed by a low magnetic field and is extremely stable against disturbance due to an external magnetic field. Can do. This magnetic recording medium can be written with an existing recording head without requiring a new recording head or recording method, and once written, it is not easily erased by disturbance due to an external magnetic field.

この出願の発明は、以上の特徴を持つものであるが、以下に実施例を示し、さらに具体的に説明する。   The invention of this application has the above-described features, and will be described more specifically with reference to examples.

<実施例1>
MgO(001)単結晶基板上に、高純度(99.99%)のFeとPtの共ターゲットを用いて、マルチDCスパッタ装置において、FePt磁性薄膜を成膜し、磁気記録媒体を得た。基板温度は780℃とし、FePt磁性薄膜の膜厚を25nmとした。真空圧は〜6.0×10-7Paに排気し、0.1PaのArガスを導入した。
<Example 1>
On a MgO (001) single crystal substrate, a FePt magnetic thin film was formed in a multi-DC sputtering apparatus using a high purity (99.99%) Fe and Pt co-target to obtain a magnetic recording medium. The substrate temperature was 780 ° C., and the film thickness of the FePt magnetic thin film was 25 nm. The vacuum pressure was evacuated to ˜6.0 × 10 −7 Pa, and 0.1 Pa Ar gas was introduced.

図1には、FePt磁性薄膜の面内の電子顕微鏡像(TEM)を示す。FePtの微粒子の形状が島状になっていることが確認され、個々の島はお互いに孤立していることから、これらは磁気的にも孤立した粒子であると考えられる。平均粒子サイズは約200nm程度であることが観察された。制限視野電子回折像からは、FePtはMgO単結晶基板上にエピタキシャル成長をしており、なおかつc軸が面直に向いていることがわかる。   FIG. 1 shows an in-plane electron microscope image (TEM) of the FePt magnetic thin film. Since the shape of the FePt fine particles is confirmed to be island-like, and the individual islands are isolated from each other, these are considered to be magnetically isolated particles. The average particle size was observed to be around 200 nm. From the limited-field electron diffraction image, it can be seen that FePt is epitaxially grown on the MgO single crystal substrate and that the c-axis is in a plane.

図2には、FePt磁性薄膜の断面の電子顕微鏡像(TEM)を示す。この図から、ほとんどのFePtの微粒子は約25nmと同じ高さを示し、粒子の形状はテーブル状、す
なわちメサ形状を示していることがわかる。
FIG. 2 shows an electron microscope image (TEM) of a cross section of the FePt magnetic thin film. From this figure, it can be seen that most of the FePt fine particles have the same height as about 25 nm, and the shape of the particles shows a table shape, that is, a mesa shape.

図3には、FePt磁性薄膜の断面の高分解能電子顕微鏡像(HREM)を示す。L10構造の[001]方向、すなわち膜面垂直方向にFeおよびPtが交互に積層したコント
ラストが観察される。また、双晶や結晶粒界などの構造欠陥はみられず、粒子の表面は原子オーダーで平坦であることがわかる。
FIG. 3 shows a high-resolution electron microscope image (HREM) of the cross section of the FePt magnetic thin film. A contrast is observed in which Fe and Pt are alternately stacked in the [001] direction of the L1 0 structure, that is, in the direction perpendicular to the film surface. In addition, structural defects such as twins and grain boundaries are not observed, and it can be seen that the surface of the particles is flat on the atomic order.

図4(a)(b)から図8(a)(b)には、FePt磁性薄膜の磁化曲線を示す。FePt磁性薄膜に最初に印加する磁場を+2kOe(図4(a)(b))、+3kOe(図5(a)(b))、+4kOe(図6(a)(b))、+5kOe(図7(a)(b))、+6kOe(図8(a)(b))と徐々に増加させ、その後、逆方向に磁場を印加したものである。各図(a)は全体図であり、(b)は、(a)の低磁場部分の拡大図である。最初に印加する磁場が+2kOe(図4(a)(b))、+3kOe(図5(a)(b))のときは、−数kOeの磁場において磁場が容易に反転することがわかる。+4kOe(図6(a)(b))の印加磁場では、プラスに方向に磁化されたFePt粒子が容易に反転しなくなり、保磁力が50kOeを示すようになる。さらに印加磁場を、+5kOe(図7(a)(b))、+6kOe(図8(a)(b))と増加させると、ほとんどのFePt粒子が磁化されるようになることがわかる。ここで、一度磁化したFePt粒子はSQUIDの印加磁場である55kOeでは反転せず、結果として非対称な磁化曲線を示す(図8(a)(b))。   4A and 4B to FIG. 8A and FIG. 8B show the magnetization curves of the FePt magnetic thin film. The magnetic field first applied to the FePt magnetic thin film is +2 kOe (FIGS. 4A and 4B), +3 kOe (FIGS. 5A and 5B), +4 kOe (FIGS. 6A and 6B), and +5 kOe (FIG. 7). (A) (b)) and +6 kOe (FIGS. 8A and 8B) are gradually increased, and then a magnetic field is applied in the opposite direction. Each figure (a) is a general view, and (b) is an enlarged view of the low magnetic field part of (a). It can be seen that when the magnetic field applied first is +2 kOe (FIGS. 4A and 4B) and +3 kOe (FIGS. 5A and 5B), the magnetic field is easily reversed in a magnetic field of −several kOe. With the applied magnetic field of +4 kOe (FIGS. 6A and 6B), the FePt particles magnetized in the positive direction are not easily reversed, and the coercive force becomes 50 kOe. Furthermore, it can be seen that when the applied magnetic field is increased to +5 kOe (FIGS. 7A and 7B) and +6 kOe (FIGS. 8A and 8B), most of the FePt particles become magnetized. Here, the once magnetized FePt particles are not reversed at 55 kOe, which is the applied magnetic field of SQUID, and as a result, show asymmetric magnetization curves (FIGS. 8A and 8B).

図9には、FePt磁性薄膜の最初に印加した磁場に対して得られる保磁力を示す。試料は同一のものである。この図から、+3kOeまでの印加磁場では、保磁力は数kOe程度しか得られないが、+4kOe以上の印加磁場では、ほぼ50kOeに達しており、磁気記録媒体に一旦書き込みすると容易に消去されないことを示している。   FIG. 9 shows the coercivity obtained with respect to the first applied magnetic field of the FePt magnetic thin film. The sample is the same. It can be seen from this figure that a coercive force of only about several kOe can be obtained with an applied magnetic field up to +3 kOe. Show.

<実施例2>
実施例1と同様にして、780℃のMgO(001)単結晶基板上に膜厚10nm〜40nmのFePt磁性薄膜を成膜し、磁気記録媒体を得た。
<Example 2>
In the same manner as in Example 1, an FePt magnetic thin film having a film thickness of 10 nm to 40 nm was formed on a 780 ° C. MgO (001) single crystal substrate to obtain a magnetic recording medium.

図10は、膜厚10nm,20nm,30nm,40nmのFePt磁性薄膜の磁化曲線を示す。この図から、各膜厚でのFePt磁性薄膜の保磁力は50kOe程度と非常に大きく、磁気記録媒体に一旦書き込みすると容易に消去されないことを示している。   FIG. 10 shows magnetization curves of FePt magnetic thin films having thicknesses of 10 nm, 20 nm, 30 nm, and 40 nm. From this figure, it is shown that the coercive force of the FePt magnetic thin film at each film thickness is as large as about 50 kOe and is not easily erased once written on the magnetic recording medium.

図11は、膜厚25nm,30nm,40nmのFePt磁性薄膜の初磁化曲線を示す。この図から、低い磁場で書き込みができることがわかる。   FIG. 11 shows initial magnetization curves of FePt magnetic thin films having film thicknesses of 25 nm, 30 nm, and 40 nm. From this figure, it can be seen that writing can be performed with a low magnetic field.

この出願の発明は以上の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   The invention of this application is not limited to the above examples, and it goes without saying that various aspects are possible in detail.

基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜の面内の電子顕微鏡像(TEM)である。It is an in-plane electron microscope image (TEM) of a 25 nm-thickness FePt magnetic thin film produced on a MgO single crystal substrate at a substrate temperature of 780 ° C. 基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜の断面の電子顕微鏡像(TEM)である。It is an electron microscope image (TEM) of the cross section of a 25 nm-thickness FePt magnetic thin film produced on a MgO single crystal substrate at a substrate temperature of 780 ° C. 基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜の断面の高分解能電子顕微鏡像(HREM)である。It is a high-resolution electron microscope image (HREM) of the cross section of the film thickness 25nm FePt magnetic thin film produced on the MgO single-crystal board | substrate with the substrate temperature being 780 degreeC. (a)基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜に、最初に印加する磁場を+2kOeとしたときの磁化曲線の全体図である。(b)(a)の低磁場部分を拡大した図である。(A) It is a whole figure of the magnetization curve when the substrate temperature is set to 780 degreeC and the magnetic field initially applied to the film thickness of 25 nm FePt magnetic thin film produced on the MgO single crystal substrate is set to +2 kOe. (B) It is the figure which expanded the low magnetic field part of (a). (a)基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜に、最初に印加する磁場を+3kOeとしたときの磁化曲線の全体図である。(b)(a)の低磁場部分を拡大した図である。(A) It is a whole figure of a magnetization curve when the substrate temperature is set to 780 degreeC and the magnetic field applied initially is set to + 3kOe to the film thickness 25nmFePt magnetic thin film produced on the MgO single crystal substrate. (B) It is the figure which expanded the low magnetic field part of (a). (a)基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜に、最初に印加する磁場を+4kOeとしたときの磁化曲線の全体図である。(b)(a)の低磁場部分を拡大した図である。(A) It is a whole figure of a magnetization curve when the substrate temperature is set to 780 degreeC and the magnetic field initially applied to a 25 nm-thickness FePt magnetic thin film produced on the MgO single crystal substrate is set to +4 kOe. (B) It is the figure which expanded the low magnetic field part of (a). (a)基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜に、最初に印加する磁場を+5kOeとしたときの磁化曲線の全体図である。(b)(a)の低磁場部分を拡大した図である。(A) It is a whole figure of a magnetization curve when a substrate temperature is set to 780 degreeC and the magnetic field applied initially is set to +5 kOe to the film thickness 25nmFePt magnetic thin film produced on the MgO single crystal substrate. (B) It is the figure which expanded the low magnetic field part of (a). (a)基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜に、最初に印加する磁場を+6kOeとしたときの磁化曲線の全体図である。(b)(a)の低磁場部分を拡大した図である。(A) It is a whole figure of a magnetization curve when the substrate temperature is set to 780 degreeC and the magnetic field initially applied to a 25 nm-thickness FePt magnetic thin film produced on the MgO single crystal substrate is set to +6 kOe. (B) It is the figure which expanded the low magnetic field part of (a). 基板温度を780℃としてMgO単結晶基板上に作製された膜厚25nmFePt磁性薄膜の最初に印加した磁場に対して得られる保磁力を示した図である。It is the figure which showed the coercive force obtained with respect to the magnetic field applied initially of the film thickness 25nmFePt magnetic thin film produced on the MgO single-crystal board | substrate with the substrate temperature of 780 degreeC. 基板温度を780℃としてMgO単結晶基板上に作製された膜厚10〜40nmのFePt磁性薄膜の磁化曲線である。It is a magnetization curve of a 10-40 nm-thick FePt magnetic thin film produced on a MgO single crystal substrate at a substrate temperature of 780 ° C. 基板温度を780℃としてMgO単結晶基板上に作製された膜厚25〜40nmのFePt磁性薄膜の初磁化曲線である。It is an initial magnetization curve of a FePt magnetic thin film with a film thickness of 25 to 40 nm produced on a MgO single crystal substrate at a substrate temperature of 780 ° C.

Claims (5)

記録した情報を容易に上書き、又は、消去することができない磁気記録媒体の製造方法であって、表面温度が650℃〜850℃である基板上にスパッタによりL1構造を有し、一旦記録のため4KOe〜10KOeの磁場を印加したあとは磁場印加領域が40KOe以上の保磁力を有する領域となるFePt磁性薄膜を成膜し、当該磁性薄膜に記録のための4KOe〜10KOeの磁場を印加することを特徴とする磁気記録媒体の製造方法 Easily overwrite the recorded information, or a method of manufacturing a magnetic recording medium which can not be erased, the surface temperature has an L1 0 structure by sputtering on the substrate is 650 ° C. to 850 ° C., once the recording the magnetic field applying region after applying a magnetic field of 4KOe~10KOe is deposited FePt magnetic thin film to be the region having a higher coercive force 40 kOe, a magnetic field is applied in 4KOe~10KOe for recording on the magnetic thin film for A method for manufacturing a magnetic recording medium. 基板上に成膜されるFePt磁性薄膜の膜厚が、25nm〜40nmであることを特徴とする請求項1に記載の記録した情報を容易に上書き、又は、消去することができない磁気記録媒体の製造方法2. The magnetic recording medium according to claim 1, wherein the thickness of the FePt magnetic thin film formed on the substrate is 25 nm to 40 nm, and the recorded information cannot be easily overwritten or erased . Manufacturing method . FePt磁性薄膜におけるFePt相の合金組成がFe1−xPtx(0.4<x<0.6)であることを特徴とする請求項1または2に記載の記録した情報を容易に上書き、又は、消去することができない磁気記録媒体の製造方法3. The recorded information according to claim 1 or 2 is easily overwritten or erased, wherein the FePt phase alloy composition in the FePt magnetic thin film is Fe1-xPtx (0.4 <x <0.6). Method of manufacturing a magnetic recording medium that cannot be performed . FePt磁性薄膜を成膜する基板が、MgO(001)、NaCl(001)、GaAs(001)、およびSi(001)のうちのいずれから選択されることを特徴とする請求項1ないし3のいずれかに記載の記録した情報を容易に上書き、又は、消去することができない磁気記録媒体の製造方法4. The substrate according to claim 1, wherein the substrate on which the FePt magnetic thin film is formed is selected from MgO (001), NaCl (001), GaAs (001), and Si (001). A method of manufacturing a magnetic recording medium in which the recorded information described in the above cannot be easily overwritten or erased . FePt磁性薄膜を成膜する基板がガラス製であり、FePt磁性薄膜の下地層としてMgO、ZnO、Cr、Ptのうちのいずれから選択されることを特徴とする請求項1ないし3のいずれかに記載の記録した情報を容易に上書き、又は、消去することができない磁気記録媒体の製造方法The substrate on which the FePt magnetic thin film is formed is made of glass, and the base layer of the FePt magnetic thin film is selected from any one of MgO, ZnO, Cr, and Pt. A method for manufacturing a magnetic recording medium , in which the recorded information cannot be easily overwritten or erased .
JP2004096591A 2004-03-29 2004-03-29 Method for manufacturing magnetic recording medium Expired - Lifetime JP4069205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096591A JP4069205B2 (en) 2004-03-29 2004-03-29 Method for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096591A JP4069205B2 (en) 2004-03-29 2004-03-29 Method for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2005285207A JP2005285207A (en) 2005-10-13
JP4069205B2 true JP4069205B2 (en) 2008-04-02

Family

ID=35183421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096591A Expired - Lifetime JP4069205B2 (en) 2004-03-29 2004-03-29 Method for manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4069205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672854B2 (en) 2013-09-30 2017-06-06 Seagate Technology Llc Magnetic stack including MgO-Ti(ON) interlayer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810360B2 (en) 2006-08-31 2011-11-09 石福金属興業株式会社 Magnetic thin film
JP2008197089A (en) * 2007-01-17 2008-08-28 Fujikura Ltd Magnetic sensor element and method for manufacturing the same
US8147994B2 (en) 2009-02-26 2012-04-03 Tdk Corporation Layered structure having FePt system magnetic layer and magnetoresistive effect element using the same
US9207292B2 (en) 2011-02-02 2015-12-08 Infineon Technologies Ag Magnetoresistive device and method for manufacturing the same
WO2015111384A1 (en) 2014-01-23 2015-07-30 富士電機株式会社 Perpendicular magnetic recording medium
CN105874536B (en) 2014-08-12 2018-08-31 富士电机株式会社 Magnetic recording media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672854B2 (en) 2013-09-30 2017-06-06 Seagate Technology Llc Magnetic stack including MgO-Ti(ON) interlayer
US10453487B2 (en) 2013-09-30 2019-10-22 Seagate Technology Llc Magnetic stack including MgO—Ti(ON) interlayer

Also Published As

Publication number Publication date
JP2005285207A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR100470151B1 (en) HIGH-DENSITY MAGNETIC RECORDING MEDIA USING FePtC FILM AND MANUFACTURING METHOD THEREOF
JP3010156B2 (en) Method for manufacturing information recording medium comprising ordered alloy thin film
JP6083163B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5783330B2 (en) Perpendicular magnetic recording medium
JP3981732B2 (en) FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same
KR20030038707A (en) Magnetic recording medium and magnetic recording apparatus
US20060280973A1 (en) Tunable magnetic recording medium and its fabricating method
JP2009059431A (en) Magnetic recording medium and magnetic recording and reproducing apparatus
JP4641524B2 (en) Magnetic recording medium and method for manufacturing the same
JP2004362746A (en) Magnetic recording medium, magnetic storage device, and method of producing magnetic recording medium
JP2007172815A (en) Perpendicular magnetic recording disk provided with super thin nucleation film for improving corrosion resistance and manufacturing method of the same
Varaprasad et al. Microstructure control of L1 0-ordered FePt granular film for heat-assisted magnetic recording (HAMR) media
JP4069205B2 (en) Method for manufacturing magnetic recording medium
JP2005196959A (en) Perpendicular magnetic recording medium
TW200917240A (en) Perpendicular magnetic recording film and method of fabricating the same
WO2015174083A1 (en) Method for manufacturing perpendicular magnetic recording medium
JP4621899B2 (en) Magnetic media
TW201124265A (en) Discontinuous islanded ferromagnetic thin film with a perpendicular magnetic anisotropy
JP3730820B2 (en) Substrate with substrate, magnetic recording medium, and magnetic recording apparatus
JP4590600B2 (en) Magnetizable magnetic thin film structure and manufacturing method thereof
JPH08180360A (en) Perpendicular magnetic recording medium and magnetic recorder
JPH11134634A (en) Perpendicular magnetic record medium and its production
JP2004273046A (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording disk
TWI616872B (en) Heat assisted magnetic recording medium
JP2003289005A (en) Manufacturing method for highly oriented magnetic thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350