JPH08180360A - Perpendicular magnetic recording medium and magnetic recorder - Google Patents

Perpendicular magnetic recording medium and magnetic recorder

Info

Publication number
JPH08180360A
JPH08180360A JP31795194A JP31795194A JPH08180360A JP H08180360 A JPH08180360 A JP H08180360A JP 31795194 A JP31795194 A JP 31795194A JP 31795194 A JP31795194 A JP 31795194A JP H08180360 A JPH08180360 A JP H08180360A
Authority
JP
Japan
Prior art keywords
film
alloy
recording medium
magnetic recording
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31795194A
Other languages
Japanese (ja)
Other versions
JP3345199B2 (en
Inventor
Atsushi Nakamura
敦 中村
Masaaki Futamoto
正昭 二本
Yoshiyuki Hirayama
義幸 平山
Takanobu Takayama
孝信 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31795194A priority Critical patent/JP3345199B2/en
Publication of JPH08180360A publication Critical patent/JPH08180360A/en
Application granted granted Critical
Publication of JP3345199B2 publication Critical patent/JP3345199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a medium excellent in crystal orienting property and having high perpendicular magnetic anisotropy by forming an under film with a Co-Ru alloy. CONSTITUTION: A Co-Ru alloy forms a solid soln. over the entire compsn. range at ordinary temp. and the crystal structure is a hexagonal close-packed structure. An under film 12 of the Co-Ru alloy is formed on a nonmagnetic substrate 11 such as a glass substrate or an NiP coated Al alloy substrate. In the film 12, (0001) faces become parallel to the substrate and c-axes are liable to orient perpendicularly. A perpendicularly magnetized film 13 of a Co-based alloy and a protective film 14 are then formed on the film 12 to obtain the objective perpendicular magnetic recording medium. The proper concn. of Ru is >=40at.% because a compsn. having >=40at.% concn. of Ru gives <=0 deg.C Curie temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度磁気記録に適す
る磁性膜を備えた垂直磁気記録媒体及びそれを用いた磁
気記録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium provided with a magnetic film suitable for high density magnetic recording and a magnetic recording apparatus using the same.

【0002】[0002]

【従来の技術】情報化社会の発展を背景に、大量の情報
を蓄積し、高速に入出力することのできる磁気記録装置
への要求はますます高まっている。より多くの情報をコ
ンパクトに記録するために、従来から用いられている面
内磁気記録方式に代わって、さらに記録密度を向上でき
る新たな記録方式として、垂直磁気記録方式が注目を集
めてきた。
2. Description of the Related Art With the development of information-oriented society, there is an increasing demand for a magnetic recording device capable of accumulating a large amount of information and inputting / outputting at high speed. In order to compactly record more information, the perpendicular magnetic recording method has attracted attention as a new recording method that can further improve the recording density in place of the in-plane magnetic recording method that has been conventionally used.

【0003】垂直磁気記録は、記録媒体の表面に対して
垂直方向に形成した磁化を記録単位とする記録方式で、
磁化反転部分で反磁界の影響が小さくなるため、高密度
記録に適していると考えられる。これはアイイーイーイ
ー トランザクションズ オン マグネティクス(IEEE
Transactions on Magnetics),MAG−13(1977)1
272頁の論文に記述されている。この垂直磁気記録に
用いる記録媒体は、媒体表面に垂直な方向に磁化容易軸
を持ち、かつ大きな磁気異方性を持つ必要がある。この
ため、基板上に垂直磁化膜を形成した薄膜媒体の研究開
発が行われてきた。
Perpendicular magnetic recording is a recording system in which the magnetization formed in the direction perpendicular to the surface of the recording medium is used as a recording unit.
Since the influence of the demagnetizing field is small in the magnetization reversal portion, it is considered suitable for high density recording. This is IEE Transactions on Magnetics (IEEE
Transactions on Magnetics), MAG-13 (1977) 1
It is described in the article on page 272. The recording medium used for this perpendicular magnetic recording must have an easy axis of magnetization in the direction perpendicular to the medium surface and have a large magnetic anisotropy. For this reason, research and development have been conducted on thin film media in which a perpendicularly magnetized film is formed on a substrate.

【0004】垂直磁気記録媒体の記録膜には、磁気異方
性の大きいCo合金を用いることが、従来から検討され
てきた。CoCr合金等のCo合金は、六方最密充填構
造を持ち、そのc軸を磁化容易軸とする一軸磁気異方性
を示す。ガラスなどの非晶質基板の表面に、Co合金の
薄膜を形成すると、原子の最稠密面である(0001)面
が基板面に平行になりやすく、[0001]配向した多
結晶薄膜が得られる。この膜は、垂直磁気異方性を示す
が、垂直磁気記録媒体として用いるには、さらに大きな
磁気異方性を持たせることが必要であった。
It has been conventionally studied to use a Co alloy having a large magnetic anisotropy for the recording film of the perpendicular magnetic recording medium. Co alloys such as CoCr alloys have a hexagonal close-packed structure and exhibit uniaxial magnetic anisotropy with the c-axis as the easy axis of magnetization. When a Co alloy thin film is formed on the surface of an amorphous substrate such as glass, the (0001) plane, which is the closest packed atom plane, tends to be parallel to the substrate surface, and a [0001] oriented polycrystalline thin film is obtained. . Although this film exhibits perpendicular magnetic anisotropy, it was necessary to have a larger magnetic anisotropy in order to use it as a perpendicular magnetic recording medium.

【0005】そこで、基板上に下地膜を設けて、Co合
金磁性膜のc軸配向性を向上させる試みがなされてき
た。Ti等の六方最密充填構造を持つ薄膜は、[000
1]配向しやすいため、これを下地膜として用い、Co
合金磁性膜の配向性を改善できることが報告されてい
る。Ti下地膜を用いた垂直磁気記録媒体に関しては、
IEEE Transactions on Magnetics,MAG−19(19
83)1644頁に記載の論文に記述されている。
Therefore, attempts have been made to improve the c-axis orientation of the Co alloy magnetic film by providing a base film on the substrate. A thin film having a hexagonal close-packed structure such as Ti is [000
1] Since it is easily oriented, it is used as a base film and Co
It has been reported that the orientation of the alloy magnetic film can be improved. Regarding a perpendicular magnetic recording medium using a Ti underlayer,
IEEE Transactions on Magnetics, MAG-19 (19
83) p. 1644.

【0006】ところが、このようなTi下地膜上に形成
したCo合金磁性膜のc軸の分散の大きさも、十分小さ
いとはいえなかった。この原因は、TiとCo合金の格
子定数の差が15%と大きいため、Co合金の初期成長
時に配向性が乱れるためであると考えられる。そこで、
Co合金磁性膜のc軸配向性をさらに向上させるための
新たな下地膜の開発が望まれていた。
However, the magnitude of the c-axis dispersion of the Co alloy magnetic film formed on the Ti underlayer has not been sufficiently small. It is considered that this is because the difference between the lattice constants of Ti and Co alloy is as large as 15%, and the orientation is disturbed during the initial growth of Co alloy. Therefore,
It has been desired to develop a new undercoating film for further improving the c-axis orientation of the Co alloy magnetic film.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、従来
の下地膜上に形成したCo合金膜に比べて、さらに結晶
配向性に優れ、垂直磁気異方性の大きな、垂直磁気記録
媒体を提供すること、及びそれを用いた磁気記録装置を
提供することにある。
An object of the present invention is to provide a perpendicular magnetic recording medium which is more excellent in crystal orientation and has a large perpendicular magnetic anisotropy as compared with a conventional Co alloy film formed on a base film. It is to provide and a magnetic recording device using the same.

【0008】[0008]

【課題を解決するための手段】本発明の垂直磁気記録媒
体は、図1に示すように、非磁性基板11と,基板上に
形成された下地膜12と,下地膜上に形成されたCoを
主成分とする合金の垂直磁化膜13と,垂直磁化膜上に
形成された保護膜14とからなる垂直磁気記録媒体であ
って、下地膜の材料がCoとRuの合金であることを特
徴とする。
As shown in FIG. 1, a perpendicular magnetic recording medium of the present invention comprises a non-magnetic substrate 11, a base film 12 formed on the substrate, and a Co film formed on the base film. A perpendicular magnetic recording medium comprising a perpendicularly magnetized film 13 of an alloy containing as a main component and a protective film 14 formed on the perpendicularly magnetized film, wherein the material of the underlayer is an alloy of Co and Ru. And

【0009】本発明の垂直磁気記録媒体の第二の特徴
は、図2に示すように、非磁性基板21と,基板上に形
成された第一の下地膜22と,第一の下地膜上に形成さ
れた第二の下地膜23と,第二の下地膜上に形成された
Coを主成分とする合金の垂直磁化膜24と,垂直磁化
膜上に形成された保護膜25とからなる垂直磁気記録媒
体であって、第一の下地膜がTiまたはRuのいずれか
からなり、第二の下地膜がCoとRuの合金からなるこ
とにある。
The second feature of the perpendicular magnetic recording medium of the present invention is, as shown in FIG. 2, a non-magnetic substrate 21, a first underlayer film 22 formed on the substrate, and a first underlayer film. A second underlayer film 23 formed on the second underlayer film, a perpendicular magnetization film 24 of an alloy containing Co as a main component formed on the second underlayer film, and a protective film 25 formed on the perpendicular magnetization film. In the perpendicular magnetic recording medium, the first underlayer film is made of either Ti or Ru, and the second underlayer film is made of an alloy of Co and Ru.

【0010】本発明の第二の構成の垂直磁気記録媒体で
は、(1)CoとRuの合金からなる下地膜が、Ruの
濃度の異なる二層の膜からなり、垂直磁化膜の直下に位
置する層のRu濃度が、この層の直下に位置する層のR
u濃度よりも小さいこと、(2)CoとRuの合金から
なる下地膜で、Ruの濃度が、基板に近い側から垂直磁
化膜側に向かって、連続的に低下していること、のいず
れかを満足する構成としてもよい。
In the perpendicular magnetic recording medium having the second structure of the present invention, (1) the underlayer film made of an alloy of Co and Ru is composed of two layers having different Ru concentrations, and is located immediately below the perpendicular magnetization film. The Ru concentration of the layer
It is smaller than the u concentration, or (2) the Ru film concentration is continuously decreased from the side close to the substrate to the side of the perpendicular magnetization film in the base film made of an alloy of Co and Ru. It may be configured to satisfy that.

【0011】本発明の第一,第二の構成の垂直磁気記録
媒体では、CoとRuの合金からなる下地膜は、Ruの
濃度が40at%Ru以上であることに特徴がある。
The perpendicular magnetic recording medium of the first and second configurations of the present invention is characterized in that the underlying film made of an alloy of Co and Ru has a Ru concentration of 40 at% Ru or more.

【0012】また本発明の第一,第二の構成の垂直磁気
記録媒体では、垂直磁化膜13及び24と,下地膜1
2,22、及び23がいずれも[0001]優先方位配
向をしていることに特徴がある。
Further, in the perpendicular magnetic recording medium of the first and second configurations of the present invention, the perpendicular magnetization films 13 and 24 and the base film 1 are used.
Each of 2, 22, and 23 is characterized by having a [0001] preferential azimuth orientation.

【0013】さらに本発明の第一,第二の構成の垂直磁
気記録媒体では、基板11及び21の表面に微細な起伏
を設けた構成としてもよい。
Further, the perpendicular magnetic recording medium of the first and second configurations of the present invention may have a configuration in which fine undulations are provided on the surfaces of the substrates 11 and 21.

【0014】本発明の磁気記録装置は、上記で説明した
第一,第二の構成による垂直磁気記録媒体,垂直磁気記
録媒体を保持するための保持具,垂直磁気記録媒体に情
報を記録,再生するための磁気ヘッド,磁気ヘッドと垂
直磁気記録媒体の相対位置を移動させるための移動手
段、及びこれら各部を制御するための制御手段から構成
される。
The magnetic recording apparatus of the present invention has the perpendicular magnetic recording medium having the above-described first and second configurations, a holder for holding the perpendicular magnetic recording medium, and information recording / reproducing on / from the perpendicular magnetic recording medium. A magnetic head for moving the magnetic head, a moving means for moving the relative position of the magnetic head and the perpendicular magnetic recording medium, and a control means for controlling each of these parts.

【0015】[0015]

【作用】上記の構成に用いるCoRu合金は、常温で全
組成範囲にわたって固溶体をつくることが知られてい
る。結晶構造はCo及びRuと同じく六方最密充填構造
である。ガラス基板やNiPをコーティングしたAl合
金基板のような非晶質の表面を持つ基板上にこの合金の
薄膜を形成すると、(0001)面が基板に平行にな
り、c軸が垂直配向しやすい。このため、垂直磁気記録
媒体の記録膜として用いるCo合金磁性膜のc軸垂直配
向性を向上させるための下地膜として用いることができ
る。Ruの濃度が40at%以上の組成域では、キュリ
ー温度が0℃以下になるため、この合金は強磁性を示さ
なくなる。非磁性の下地膜として用いる場合、Ruの濃
度が40at%Ru以上の範囲で用いるのが適切であ
る。
It is known that the CoRu alloy used in the above structure forms a solid solution over the entire composition range at room temperature. The crystal structure is a hexagonal close-packed structure like Co and Ru. When a thin film of this alloy is formed on a substrate having an amorphous surface such as a glass substrate or a NiP-coated Al alloy substrate, the (0001) plane becomes parallel to the substrate, and the c-axis is easily oriented vertically. Therefore, it can be used as a base film for improving the c-axis vertical orientation of the Co alloy magnetic film used as the recording film of the perpendicular magnetic recording medium. In the composition range where the Ru concentration is 40 at% or higher, the Curie temperature is 0 ° C. or lower, so that this alloy does not exhibit ferromagnetism. When used as a non-magnetic underlayer, it is suitable to use Ru in a concentration of 40 at% Ru or more.

【0016】CoRu合金の格子定数は、合金の組成に
比例して連続的に変化する。Co及びRuのa軸の格子
定数はそれぞれ0.251nm,0.270nmである。
Co−40at%Ruの格子定数は0.259 nmであ
る。したがって、Co−40at%Ruの合金を下地膜
に用いれば、Co合金磁性膜(a軸の格子定数が約0.
25nm)との格子定数の差は、CoRu合金を基準に
して−3%と小さくなる。したがって、この合金を下地
膜として用いると、Co合金の初期成長時の配向の乱れ
を防止し、c軸垂直配向性の高い垂直磁化膜を作製する
ことができる。
The lattice constant of CoRu alloy continuously changes in proportion to the composition of the alloy. The a-axis lattice constants of Co and Ru are 0.251 nm and 0.270 nm, respectively.
The lattice constant of Co-40 at% Ru is 0.259 nm. Therefore, if an alloy of Co-40at% Ru is used for the underlayer film, the Co alloy magnetic film (the lattice constant of the a-axis is about 0.
25 nm) and the difference in lattice constant are as small as -3% based on the CoRu alloy. Therefore, when this alloy is used as the base film, the disorder of the orientation of the Co alloy during the initial growth can be prevented, and the perpendicular magnetization film having a high c-axis perpendicular orientation can be manufactured.

【0017】Ru及びTiは、c軸垂直配向しやすい
が、Co合金磁性膜とのa軸の格子定数の差は、Ruを
下地膜に用いる場合は、−7%、Tiを用いる場合は、
−15%となり、CoRu合金の場合に比べていずれも
大きい。そこでTiあるいはRuの下地膜を形成した
後、その表面にCoRu合金下地膜を形成することによ
り、格子定数差を緩和し、Co合金の格子定数に近い格
子定数を持つ下地膜を作製することができる。
Ru and Ti are likely to be vertically oriented on the c-axis, but the difference in the lattice constant of the a-axis from the Co alloy magnetic film is -7% when Ru is used as the underlayer, and when Ti is used,
-15%, which is larger than that of CoRu alloy. Therefore, by forming a Ti or Ru underlayer and then forming a CoRu alloy underlayer on the surface thereof, it is possible to alleviate the difference in lattice constant and produce an underlayer having a lattice constant close to that of Co alloy. it can.

【0018】さらに、CoRu合金下地膜を、Ru濃度
の異なる二層の膜からなる構成とし、TiあるいはRu
の下地膜上にRu濃度の高い層を形成し、その表面にR
u濃度の低い層を形成することで、効果的に格子定数差
を緩和することができる。また、CoRu合金下地膜の
Ru濃度を、基板に近い側から垂直磁化膜側に向かっ
て、連続的に低下させることによっても、格子定数差を
緩和することができる。
Further, the CoRu alloy base film is constituted by two layers of films having different Ru concentrations, and Ti or Ru is used.
Layer with a high Ru concentration is formed on the underlayer film of
By forming the layer having a low u concentration, the difference in lattice constant can be effectively mitigated. The lattice constant difference can also be relaxed by continuously decreasing the Ru concentration of the CoRu alloy underlayer film from the side closer to the substrate toward the side of the perpendicular magnetization film.

【0019】このように、Co合金磁性膜のa軸の格子
定数に近い格子定数を持つCoRu合金を、下地膜に用
いることにより、Co合金磁性膜のc軸垂直配向性を高
め、従来よりも高密度記録に適した垂直磁気記録媒体を
提供できる。
As described above, by using the CoRu alloy having a lattice constant close to that of the a-axis of the Co alloy magnetic film for the underlayer, the c-axis vertical orientation of the Co alloy magnetic film is enhanced, and the CoRu alloy magnetic film has a higher orientation than the conventional one. A perpendicular magnetic recording medium suitable for high density recording can be provided.

【0020】[0020]

【実施例】【Example】

<実施例1>直径2.5 インチのガラス基板を用い、図
3に示すような断面構造を持つ磁気記録媒体を、DCマ
グネトロンスパッタリング法によって作製した。基板3
1の両面に、CoRu合金下地膜32,32′,Co合
金磁性膜33,33′,カーボン保護膜34,34′を
この順序で形成する。
Example 1 A magnetic recording medium having a cross-sectional structure as shown in FIG. 3 was produced by a DC magnetron sputtering method using a glass substrate having a diameter of 2.5 inches. Board 3
CoRu alloy base films 32 and 32 ', Co alloy magnetic films 33 and 33', and carbon protective films 34 and 34 'are formed in this order on both surfaces of No. 1 in this order.

【0021】成膜には、アルゴンガスを用い、ガスの圧
力0.7 Pa,基板温度260℃,成膜速度毎分50n
mの条件で形成した。下地膜の形成に用いるターゲット
の組成はCo−40at%Ru,磁性膜の形成に用いる
ターゲットの組成はCo−15at%Cr−5at%T
aとした。この組成のCo合金磁性膜のa軸の長さは
0.251 nmであった。各膜の膜厚は、CoRu合金
下地膜が50nm,Co合金磁性膜が100nm,カー
ボン保護膜が10nmとした。上記の膜形成はすべて同
一の真空槽内で真空を破ることなく連続して行った。
Argon gas was used for film formation, the gas pressure was 0.7 Pa, the substrate temperature was 260 ° C., and the film formation rate was 50 n / min.
It was formed under the condition of m. The composition of the target used for forming the underlayer film is Co-40 at% Ru, and the composition of the target used for forming the magnetic film is Co-15 at% Cr-5 at% T.
a. The a-axis length of the Co alloy magnetic film having this composition was 0.251 nm. The film thickness of each film was 50 nm for the CoRu alloy base film, 100 nm for the Co alloy magnetic film, and 10 nm for the carbon protective film. The above film formation was continuously performed in the same vacuum chamber without breaking the vacuum.

【0022】作製した試料の結晶配向をX線回折によっ
て、磁気特性を試料振動型磁力計(VSM)を用いてそ
れぞれ測定した。X線回折では、CoRu合金下地膜及
びCo合金磁性膜の0002回折ピークが観測され、こ
の膜が[0001]配向していることがわかった。Co
合金磁性膜のX線0002回折ピークのロッキング曲線
を測定したところ、本実施例の磁気記録媒体は、下地膜
を用いずに全く同様の条件で作製した磁気記録媒体と比
較して、ロッキング曲線の半値幅が減少しており、Co
合金磁性膜の[0001]配向が改善されていた。膜面
垂直方向の保磁力は38%(420Oe)向上した。
The crystal orientation of the prepared sample was measured by X-ray diffraction, and the magnetic characteristics were measured by using a sample vibrating magnetometer (VSM). In X-ray diffraction, a 0002 diffraction peak of the CoRu alloy underlayer film and the Co alloy magnetic film was observed, and it was found that this film had a [0001] orientation. Co
When the rocking curve of the X-ray 0002 diffraction peak of the alloy magnetic film was measured, the rocking curve of the magnetic recording medium of this example was higher than that of the magnetic recording medium manufactured under the same conditions without using the underlayer film. The full width at half maximum has decreased and Co
The [0001] orientation of the alloy magnetic film was improved. The coercive force in the direction perpendicular to the film surface was improved by 38% (420 Oe).

【0023】さらに下地膜にCo−50at%Ru合
金,Co−75at%Ru合金を用いた場合にも、改善
効果が認められた。これらの結果を表1に示す。
Further, when the Co-50 at% Ru alloy and the Co-75 at% Ru alloy were used for the underlayer film, the improvement effect was recognized. Table 1 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】〈実施例2〉直径1.8 インチのNiPを
コーティングしたAl合金基板を用い、図4に示すよう
な断面構造を持つ磁気記録媒体を、DCマグネトロンス
パッタリング法によって作製した。基板41の両面に、
Ruからなる第一の下地膜42,42′,CoRu合金
からなる第二の下地膜43,43′,Co合金磁性膜4
4,44′,カーボン保護膜45,45′をこの順序で
形成する。
Example 2 A magnetic recording medium having a cross-sectional structure as shown in FIG. 4 was produced by a DC magnetron sputtering method using an Al alloy substrate coated with NiP having a diameter of 1.8 inches. On both sides of the substrate 41,
First underlayer films 42, 42 'made of Ru, second underlayer films 43, 43' made of CoRu alloy, Co alloy magnetic film 4
4, 44 'and carbon protective films 45, 45' are formed in this order.

【0026】成膜には、アルゴンガスを用い、ガスの圧
力0.7 Pa,基板温度260℃,成膜速度毎分50n
mの条件で形成した。CoRu合金下地膜の形成に用い
るターゲットの組成はCo−40at%Ru,磁性膜の
形成に用いるターゲットの組成はCo−12at%Cr
−10at%Ptとした。この組成のCo合金磁性膜の
a軸の長さは0.255 nmであった。各膜の膜厚は、
Ru下地膜が30nm,CoRu合金下地膜が50n
m,Co合金磁性膜が100nm,カーボン保護膜が1
0nmとした。上記の膜形成はすべて同一の真空槽内で
真空を破ることなく連続して行った。
Argon gas was used for film formation, the gas pressure was 0.7 Pa, the substrate temperature was 260 ° C., and the film formation rate was 50 n / min.
It was formed under the condition of m. The composition of the target used to form the CoRu alloy underlayer film is Co-40 at% Ru, and the composition of the target used to form the magnetic film is Co-12 at% Cr.
It was set to -10 at% Pt. The a-axis length of the Co alloy magnetic film having this composition was 0.255 nm. The thickness of each film is
Ru base film 30 nm, CoRu alloy base film 50 n
m, Co alloy magnetic film 100 nm, carbon protective film 1
It was set to 0 nm. The above film formation was continuously performed in the same vacuum chamber without breaking the vacuum.

【0027】作製した試料の結晶配向をX線回折によっ
て、磁気特性を試料振動型磁力計(VSM)を用いてそ
れぞれ測定した。X線回折では、Ru下地膜,CoRu
合金下地膜及びCo合金磁性膜の0002回折ピークが
観測され、この膜が[0001]配向していることがわ
かった。Co合金磁性膜のX線0002回折ピークのロ
ッキング曲線を測定したところ、本実施例の磁気記録媒
体は、CoRu合金下地膜を用いずに全く同様の条件で作
製した磁気記録媒体と比較して、ロッキング曲線の半値
幅が減少しており、Co合金磁性膜の[0001]配向
が改善されていた。膜面垂直方向の保磁力は13%(1
90Oe)向上した。
The crystal orientation of the prepared sample was measured by X-ray diffraction, and the magnetic characteristics were measured by using a sample vibrating magnetometer (VSM). In X-ray diffraction, Ru underlayer, CoRu
0002 diffraction peaks of the alloy underlayer film and the Co alloy magnetic film were observed, and it was found that this film had a [0001] orientation. When the rocking curve of the X-ray 0002 diffraction peak of the Co alloy magnetic film was measured, the magnetic recording medium of this example was compared with a magnetic recording medium produced under exactly the same conditions without using the CoRu alloy underlayer film. The half-width of the rocking curve was reduced, and the [0001] orientation of the Co alloy magnetic film was improved. The coercive force in the direction perpendicular to the film surface is 13% (1
90 Oe) improved.

【0028】さらにRu下地膜に代えて、Ti下地膜を
用いた場合にも、改善効果が認められた。これらの結果
を表2に示す。
Further, when the Ti underlayer film was used instead of the Ru underlayer film, the improvement effect was recognized. Table 2 shows the results.

【0029】[0029]

【表2】 [Table 2]

【0030】このような垂直磁気記録媒体を用いて、図
5に模式的に示すような垂直磁気記録方式による磁気記
録装置を作製した。垂直磁気記録媒体51は、モータに
より回転する保持具により保持され、それぞれの各磁性
膜に対応して情報の書き込み,読み出しのための磁気ヘ
ッド52が配置されている。この磁気ヘッド52の磁気
記録媒体51に対する位置をアクチュエータ53とボイ
スコイルモータ54により移動させる。さらにこれらを
制御するために記録再生回路55,位置決め回路56,
インターフェース制御回路57が設けられている。Co
Ru下地膜を用いた垂直磁気記録媒体で、高密度記録が
可能であることを確かめた。
Using such a perpendicular magnetic recording medium, a magnetic recording apparatus according to the perpendicular magnetic recording system as schematically shown in FIG. 5 was manufactured. The perpendicular magnetic recording medium 51 is held by a holder rotated by a motor, and a magnetic head 52 for writing and reading information is arranged corresponding to each magnetic film. The position of the magnetic head 52 with respect to the magnetic recording medium 51 is moved by the actuator 53 and the voice coil motor 54. Further, in order to control these, a recording / reproducing circuit 55, a positioning circuit 56,
An interface control circuit 57 is provided. Co
It was confirmed that high density recording is possible with a perpendicular magnetic recording medium using a Ru underlayer.

【0031】〈実施例3〉直径1.8 インチのガラス基
板を用い、図4に示すような断面構造を持つ磁気記録媒
体を、イオンビームスパッタリング法によって作製し
た。基板41の両面に、Ruからなる第一の下地膜4
2,42′,CoRu合金からなる第二の下地膜43,
43′,Co合金磁性膜44,44′,カーボン保護膜
45,45′をこの順序で形成する。
Example 3 Using a glass substrate having a diameter of 1.8 inches, a magnetic recording medium having a cross sectional structure as shown in FIG. 4 was produced by the ion beam sputtering method. The first base film 4 made of Ru is formed on both surfaces of the substrate 41.
2, 42 ', a second base film 43 made of a CoRu alloy,
43 ', Co alloy magnetic films 44 and 44', and carbon protective films 45 and 45 'are formed in this order.

【0032】成膜には、アルゴンガスを用い、基板温度
260℃,成膜速度毎分50nmの条件で形成した。C
oRu合金下地膜の形成には、二つのイオン銃を用い、
CoターゲットとRuターゲットを独立にスパッタリン
グして同時に成膜した。Ruの成膜速度を制御すること
によって、膜中のRuの濃度を、膜厚方向に連続的に変
化させた。磁性膜の形成に用いるターゲットの組成はC
o−12at%Cr−10at%Ptとした。この組成
のCo合金磁性膜のa軸の長さは0.255nmであっ
た。各膜の膜厚は、Ru下地膜が30nm,CoRu合
金下地膜が50nm,Co合金磁性膜が100nm,カ
ーボン保護膜が10nmとした。上記の膜形成はすべて
同一の真空槽内で真空を破ることなく連続して行った。
Argon gas was used for the film formation, and the substrate temperature was 260 ° C. and the film formation rate was 50 nm / min. C
Two ion guns were used to form the oRu alloy base film,
A Co target and a Ru target were independently sputtered and deposited simultaneously. By controlling the Ru film formation rate, the Ru concentration in the film was continuously changed in the film thickness direction. The composition of the target used for forming the magnetic film is C
It was o-12 at% Cr-10 at% Pt. The length of the a-axis of the Co alloy magnetic film having this composition was 0.255 nm. The film thickness of each film was 30 nm for the Ru underlayer film, 50 nm for the CoRu alloy underlayer film, 100 nm for the Co alloy magnetic film, and 10 nm for the carbon protective film. The above film formation was continuously performed in the same vacuum chamber without breaking the vacuum.

【0033】作製した試料の結晶配向をX線回折で、膜
厚方向の組成の変化をオージェ電子分光法により、磁気
特性を試料振動型磁力計(VSM)を用いてそれぞれ測
定した。X線回折では、Ru下地膜,CoRu合金下地
膜及びCo合金磁性膜の0002回折ピークが観測され、こ
の膜が[0001]配向していることがわかった。Co
合金磁性膜のX線0002回折ピークのロッキング曲線
を測定したところ、本実施例の磁気記録媒体は、CoR
u合金下地膜を用いずに全く同様の条件で作製した磁気
記録媒体と比較して、ロッキング曲線の半値幅が35%
減少しており、Co合金磁性膜の[0001]配向が改
善されていた。CoRu合金下地膜の膜厚方向の組成分
布は、膜表面に向かってRu濃度がなだらかに減少して
おり、Ru下地膜との界面付近でCo−72at%R
u,Co合金磁性膜との界面付近でCo−46at%R
uであった。
The crystal orientation of the prepared sample was measured by X-ray diffraction, the change in composition in the film thickness direction was measured by Auger electron spectroscopy, and the magnetic characteristics were measured by a sample vibrating magnetometer (VSM). In X-ray diffraction, 0002 diffraction peaks of the Ru underlayer film, the CoRu alloy underlayer film, and the Co alloy magnetic film were observed, and it was found that this film had a [0001] orientation. Co
The rocking curve of the X-ray 0002 diffraction peak of the alloy magnetic film was measured, and it was found that the magnetic recording medium of this example had CoR
The full width at half maximum of the rocking curve is 35% compared to the magnetic recording medium produced under exactly the same conditions without using the u alloy underlayer.
And the [0001] orientation of the Co alloy magnetic film was improved. The compositional distribution in the film thickness direction of the CoRu alloy underlayer film has a gradually decreasing Ru concentration toward the film surface, and Co-72at% R near the interface with the Ru underlayer film.
Co-46 at% R near the interface with the u and Co alloy magnetic film
It was u.

【0034】この組成のCoRu合金のa軸の長さを見
積もると、Ru下地膜との界面付近で0.265nm,
Co合金磁性膜との界面付近で0.260nmである。
この値から見積もった、格子のミスフィット量は、Ru
下地膜とCoRu合金下地膜の界面で−4.0%,Co
Ru合金下地膜とCo合金磁性膜の界面で−1.8%で
ある。膜面垂直方向の保磁力も21%(310Oe)向
上した。
The length of the a-axis of the CoRu alloy of this composition was estimated to be 0.265 nm near the interface with the Ru underlayer.
The thickness is 0.260 nm near the interface with the Co alloy magnetic film.
The amount of lattice misfit estimated from this value is Ru
At the interface between the base film and the CoRu alloy base film, -4.0%, Co
It is -1.8% at the interface between the Ru alloy base film and the Co alloy magnetic film. The coercive force in the direction perpendicular to the film surface was also improved by 21% (310 Oe).

【0035】〈実施例4〉直径1.8 インチのガラス基
板を用い、図6に示すような断面構造を持つ磁気記録媒
体を、DCマグネトロンスパッタリング法によって作製
した。基板61の両面に、Ti下地膜62,62′,C
o−70at%Ru合金下地膜63,63′,Co−4
0at%Ru合金下地膜64,64′,Co合金磁性膜
65,65′,カーボン保護膜66,66′をこの順序
で形成する。成膜に先立ち、基板の表面をアルゴンイオ
ンによってスパッタリングし、平均深さ約2nmの微細
な起伏を形成した。成膜には、アルゴンガスを用い、基
板温度250℃,成膜速度毎分50nmの条件で形成し
た。
Example 4 Using a glass substrate having a diameter of 1.8 inches, a magnetic recording medium having a cross sectional structure as shown in FIG. 6 was produced by the DC magnetron sputtering method. On both surfaces of the substrate 61, Ti base films 62, 62 ', C
o-70 at% Ru alloy base film 63, 63 ', Co-4
The 0 at% Ru alloy base films 64 and 64 ', the Co alloy magnetic films 65 and 65', and the carbon protective films 66 and 66 'are formed in this order. Prior to film formation, the surface of the substrate was sputtered with argon ions to form fine undulations having an average depth of about 2 nm. Argon gas was used for the film formation, and the substrate temperature was 250 ° C. and the film formation rate was 50 nm / min.

【0036】磁性膜の形成に用いるターゲットの組成は
Co−15at%Cr−5at%Taとした。この組成の
Co合金磁性膜のa軸の長さは0.251 nmであっ
た。各膜の膜厚は、Ti下地膜が30nm,Co−70
at%Ru合金下地膜が25nm,Co−40at%R
u合金下地膜が25nm,Co合金磁性膜が100n
m,カーボン保護膜が10nmとした。上記の膜形成は
すべて同一の真空槽内で真空を破ることなく連続して行
った。
The composition of the target used for forming the magnetic film was Co-15 at% Cr-5 at% Ta. The a-axis length of the Co alloy magnetic film having this composition was 0.251 nm. Regarding the film thickness of each film, the Ti underlayer film is 30 nm, Co-70
at% Ru alloy base film is 25 nm, Co-40 at% R
u alloy underlayer film is 25 nm, Co alloy magnetic film is 100 n
m, the carbon protective film was 10 nm. The above film formation was continuously performed in the same vacuum chamber without breaking the vacuum.

【0037】作製した試料の結晶配向をX線回折で、磁
気特性を試料振動型磁力計(VSM)を用いてそれぞれ測
定した。X線回折では、Ti下地膜,CoRu合金下地
膜及びCo合金磁性膜の0002回折ピークが観測さ
れ、この膜が[0001]配向していることがわかっ
た。
The crystal orientation of the produced sample was measured by X-ray diffraction, and the magnetic characteristics were measured by using a sample vibrating magnetometer (VSM). In X-ray diffraction, 0002 diffraction peaks of the Ti underlayer film, the CoRu alloy underlayer film, and the Co alloy magnetic film were observed, and it was found that this film had a [0001] orientation.

【0038】Co合金磁性膜のX線0002回折ピーク
のロッキング曲線を測定したところ、本実施例の磁気記
録媒体は、CoRu合金下地膜を用いずに全く同様の条
件で作製した磁気記録媒体と比較して、ロッキング曲線
の半値幅が27%減少しており、Co合金磁性膜の[0
001]配向が改善されていた。この場合の格子のミス
フィット量は、Ti下地膜とCo−70at%Ru合金
下地膜の界面で−10%,Co−70at%Ru合金下
地膜とCo−40at%Ru合金下地膜の界面で−2.
2 %,Co−40at%Ru合金下地膜とCo合金磁
性膜の界面で−2.9 %である。膜面垂直方向の保磁力
も、CoRu合金下地膜を用いずに全く同様の条件で作
製した磁気記録媒体と比較して8%(130Oe)向上
した。
The rocking curve of the X-ray 0002 diffraction peak of the Co alloy magnetic film was measured, and the magnetic recording medium of this example was compared with the magnetic recording medium prepared under exactly the same conditions without using the CoRu alloy underlayer. As a result, the full width at half maximum of the rocking curve is reduced by 27%, and the [0
001] orientation was improved. In this case, the amount of lattice misfit is -10% at the interface between the Ti underlayer and the Co-70at% Ru alloy underlayer, and at the interface between the Co-70at% Ru alloy underlayer and the Co-40at% Ru alloy underlayer- 2.
2%, Co-40 at% Ru-2.9% at the interface between the Ru alloy underlayer and the Co alloy magnetic film. The coercive force in the direction perpendicular to the film surface was also improved by 8% (130 Oe) as compared with the magnetic recording medium manufactured under exactly the same conditions without using the CoRu alloy base film.

【0039】この垂直磁気記録媒体を用いて、図5に模
式的に示すような垂直磁気記録方式による磁気記録装置
を作製した。基板表面の微細な起伏の効果で、磁気ヘッ
ドが媒体表面に固着することなく、安定した記録再生が
行えた。
Using this perpendicular magnetic recording medium, a magnetic recording device of the perpendicular magnetic recording system as schematically shown in FIG. 5 was produced. Due to the effect of fine undulations on the substrate surface, stable recording and reproduction could be performed without the magnetic head sticking to the medium surface.

【0040】[0040]

【発明の効果】本発明のように、CoRu合金を下地膜
に用いることにより、Co合金磁性膜のc軸垂直配向性
を高め、従来よりも高密度記録に適した高性能の垂直磁
気記録媒体を提供することができる。
As in the present invention, by using a CoRu alloy for the underlayer film, the c-axis vertical orientation of the Co alloy magnetic film is enhanced, and a high-performance perpendicular magnetic recording medium suitable for high-density recording as compared with the prior art. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の垂直磁気記録媒体の断
面構造の説明図。
FIG. 1 is an explanatory diagram of a sectional structure of a perpendicular magnetic recording medium according to a first embodiment of the present invention.

【図2】本発明の第二の実施例の垂直磁気記録媒体の断
面構造の説明図。
FIG. 2 is an explanatory view of a sectional structure of a perpendicular magnetic recording medium of a second embodiment of the present invention.

【図3】本発明の第一の実施例の垂直磁気記録媒体の断
面構造の説明図。
FIG. 3 is an explanatory diagram of a cross-sectional structure of the perpendicular magnetic recording medium of the first embodiment of the present invention.

【図4】本発明の第二の実施例の垂直磁気記録媒体の断
面構造の説明図。
FIG. 4 is an explanatory view of a sectional structure of a perpendicular magnetic recording medium according to a second embodiment of the invention.

【図5】本発明の磁気記録装置のブロック図。FIG. 5 is a block diagram of a magnetic recording device of the present invention.

【図6】本発明の第三の実施例の垂直磁気記録媒体の断
面構造の説明図。
FIG. 6 is an explanatory diagram of a sectional structure of a perpendicular magnetic recording medium according to a third embodiment of the invention.

【符号の説明】[Explanation of symbols]

11…非磁性基板、12…CoRu合金下地膜、13…
Co合金磁性膜、14…保護膜。
11 ... Non-magnetic substrate, 12 ... CoRu alloy base film, 13 ...
Co alloy magnetic film, 14 ... Protective film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高山 孝信 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takanobu Takayama 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板と,前記非磁性基板上に形成さ
れた下地膜と,前記下地膜上に形成されたCoを主成分
とする合金からなる垂直磁化膜と,前記垂直磁化膜上に
形成された保護膜とからなる垂直磁気記録媒体におい
て、前記下地膜がCoとRuの合金からなることを特徴
とする垂直磁気記録媒体。
1. A non-magnetic substrate, a base film formed on the non-magnetic substrate, a perpendicular magnetization film formed on the base film and made of an alloy containing Co as a main component, and a perpendicular magnetization film on the perpendicular magnetization film. A perpendicular magnetic recording medium comprising a protective film formed on the underlayer, wherein the underlayer film is made of an alloy of Co and Ru.
【請求項2】非磁性基板と,前記非磁性基板上に形成さ
れた第一の下地膜と,前記第一の下地膜上に形成された
第二の下地膜と,前記第二の下地膜上に形成されたCo
を主成分とする合金の垂直磁化膜と,前記垂直磁化膜上
に形成された保護膜とからなる垂直磁気記録媒体におい
て、前記第一の下地膜がTiまたはRuのいずれかから
なり、前記第二の下地膜がCoとRuの合金からなるこ
とを特徴とする垂直磁気記録媒体。
2. A non-magnetic substrate, a first base film formed on the non-magnetic substrate, a second base film formed on the first base film, and the second base film. Co formed on top
In a perpendicular magnetic recording medium comprising a vertically magnetized film of an alloy containing as a main component and a protective film formed on the vertically magnetized film, the first underlayer is made of either Ti or Ru. A perpendicular magnetic recording medium, wherein the second underlayer film is made of an alloy of Co and Ru.
【請求項3】請求項2において、CoとRuの合金から
なる前記下地膜が、Ruの濃度の異なる二層の膜からな
り、前記垂直磁化膜の直下に位置する層のRu濃度が、
その直下に位置する層のRu濃度よりも低い垂直磁気記
録媒体。
3. The underlayer film made of an alloy of Co and Ru is formed of two layers having different Ru concentrations, and the Ru concentration of a layer located immediately below the perpendicularly magnetized film is:
A perpendicular magnetic recording medium having a Ru concentration lower than that of a layer located thereunder.
【請求項4】請求項2に記載の垂直磁気記録媒体におけ
る、前記CoとRuの合金からなる下地膜において、R
uの濃度が、前記非磁性基板に近い側から前記垂直磁化
膜側に向かって、連続的に低下している垂直磁気記録媒
体。
4. The perpendicular film of the perpendicular magnetic recording medium according to claim 2, wherein R is a base film made of an alloy of Co and Ru.
A perpendicular magnetic recording medium in which the concentration of u continuously decreases from the side closer to the non-magnetic substrate toward the side of the perpendicular magnetization film.
【請求項5】請求項1から4のいずれかに記載の垂直磁
気記録媒体における、前記CoとRuの合金からなる下
地膜において、Ruの濃度が、40at%Ru以上であ
る垂直磁気記録媒体。
5. The perpendicular magnetic recording medium according to any one of claims 1 to 4, wherein in the underlayer film made of an alloy of Co and Ru, the Ru concentration is 40 at% Ru or more.
【請求項6】請求項1,2,3または4において、前記
各下地膜の優先配向方位と、前記垂直磁化膜の優先配向
方位が、ともに[0001]である垂直磁気記録媒体。
6. A perpendicular magnetic recording medium according to claim 1, 2, 3 or 4, wherein the preferred orientation azimuth of each underlayer and the preferred orientation azimuth of the perpendicular magnetization film are both [0001].
【請求項7】請求項1,2,3または4において、前記
非磁性基板の表面に微細な起伏を設けた垂直磁気記録媒
体。
7. The perpendicular magnetic recording medium according to claim 1, 2, 3 or 4, wherein fine undulations are provided on the surface of the non-magnetic substrate.
【請求項8】請求項1,2,3,4,5,6または7に
記載の垂直磁気記録媒体,前記垂直磁気記録媒体を保持
するための保持具,前記垂直磁気記録媒体に情報を記
録,再生するための磁気ヘッド,前記磁気ヘッドと前記
垂直磁気記録媒体の相対位置を移動させるための移動手
段、及びこれら各部を制御するための制御手段を有する
磁気記録装置。
8. A perpendicular magnetic recording medium according to claim 1, 2, 3, 4, 5, 6 or 7, a holder for holding the perpendicular magnetic recording medium, and information recorded on the perpendicular magnetic recording medium. A magnetic recording device having a magnetic head for reproducing, a moving means for moving the relative position of the magnetic head and the perpendicular magnetic recording medium, and a control means for controlling each of these parts.
JP31795194A 1994-12-21 1994-12-21 Perpendicular magnetic recording medium and magnetic recording device Expired - Fee Related JP3345199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31795194A JP3345199B2 (en) 1994-12-21 1994-12-21 Perpendicular magnetic recording medium and magnetic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31795194A JP3345199B2 (en) 1994-12-21 1994-12-21 Perpendicular magnetic recording medium and magnetic recording device

Publications (2)

Publication Number Publication Date
JPH08180360A true JPH08180360A (en) 1996-07-12
JP3345199B2 JP3345199B2 (en) 2002-11-18

Family

ID=18093839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31795194A Expired - Fee Related JP3345199B2 (en) 1994-12-21 1994-12-21 Perpendicular magnetic recording medium and magnetic recording device

Country Status (1)

Country Link
JP (1) JP3345199B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083870B2 (en) 2002-07-12 2006-08-01 Showa Denko K. K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
US7141315B2 (en) 2002-07-31 2006-11-28 Showa Denko K.K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
JP2009187596A (en) * 2008-02-01 2009-08-20 Fujitsu Ltd Vertical magnetic recording medium and magnetic storage unit
JP2011192326A (en) * 2010-03-12 2011-09-29 Showa Denko Kk Magnetic recording medium and magnetic recording and reproducing device
WO2012081668A1 (en) * 2010-12-17 2012-06-21 Jx日鉱日石金属株式会社 Ferromagnetic material sputtering target
WO2012086575A1 (en) * 2010-12-22 2012-06-28 Jx日鉱日石金属株式会社 Ferromagnetic sputtering target

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083870B2 (en) 2002-07-12 2006-08-01 Showa Denko K. K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
US7141315B2 (en) 2002-07-31 2006-11-28 Showa Denko K.K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
JP2009187596A (en) * 2008-02-01 2009-08-20 Fujitsu Ltd Vertical magnetic recording medium and magnetic storage unit
JP2011192326A (en) * 2010-03-12 2011-09-29 Showa Denko Kk Magnetic recording medium and magnetic recording and reproducing device
WO2012081668A1 (en) * 2010-12-17 2012-06-21 Jx日鉱日石金属株式会社 Ferromagnetic material sputtering target
WO2012086575A1 (en) * 2010-12-22 2012-06-28 Jx日鉱日石金属株式会社 Ferromagnetic sputtering target
CN103180481A (en) * 2010-12-22 2013-06-26 吉坤日矿日石金属株式会社 Ferromagnetic sputtering target

Also Published As

Publication number Publication date
JP3345199B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US6596409B2 (en) Onset layer for thin film disk with CoPtCrB alloy
JPH07334832A (en) Perpendicular magnetic recording medium and magnetic recorder
US5834085A (en) Grain isolated multilayer perpendicular recording medium
JPH11149628A (en) Perpendicular magnetic recording medium
JP3612087B2 (en) Magnetic recording medium
JPH0363919A (en) Magnetic thin film recording medium and method of manufacturing the same
US6541131B1 (en) Perpendicular recording media with enhanced coercivity
JP3345199B2 (en) Perpendicular magnetic recording medium and magnetic recording device
JP2991672B2 (en) Magnetic recording media
JP3370720B2 (en) Magnetic recording medium and magnetic recording device
JPH0814889B2 (en) Perpendicular magnetic recording media
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP3157806B2 (en) Magnetic recording media
JP3445537B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2991689B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP3045797B2 (en) Perpendicular magnetic recording media
JPH06187628A (en) Magnetic recording medium and magnetic memory device
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH0387005A (en) Magnetic film
JPH0573877A (en) Magnetic recording medium

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120830

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees