JP4064253B2 - Steel strip continuous heat treatment equipment and combustion method thereof - Google Patents

Steel strip continuous heat treatment equipment and combustion method thereof Download PDF

Info

Publication number
JP4064253B2
JP4064253B2 JP2003020142A JP2003020142A JP4064253B2 JP 4064253 B2 JP4064253 B2 JP 4064253B2 JP 2003020142 A JP2003020142 A JP 2003020142A JP 2003020142 A JP2003020142 A JP 2003020142A JP 4064253 B2 JP4064253 B2 JP 4064253B2
Authority
JP
Japan
Prior art keywords
heating
steel strip
direct
zone
radiant tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003020142A
Other languages
Japanese (ja)
Other versions
JP2004232007A (en
Inventor
泰夫 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2003020142A priority Critical patent/JP4064253B2/en
Publication of JP2004232007A publication Critical patent/JP2004232007A/en
Application granted granted Critical
Publication of JP4064253B2 publication Critical patent/JP4064253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼帯の連続焼鈍設備や連続式溶融亜鉛めっきラインにおいて、特に通板サイズや鋼種及びヒートサイクルの変更時における過渡的な鋼帯温度制御精度の向上を図る鋼帯の連続式熱処理設備及びその燃焼方法に関するものである。
【0002】
【従来の技術】
一般に鋼帯の連続焼鈍設備や連続溶融亜鉛めっきラインにおいては、鋼帯は焼鈍処理に必要な加熱、均熱、冷却を連続して行う連続焼鈍炉が設置されている。この連続焼鈍炉においては、鋼帯の鋼種に対応して加熱サイクルが設定され、ラジアントチューブ式輻射管による加熱装置によって設定温度に加熱される。鋼種による加熱サイクルや板厚サイズは、頻繁に変更されるので、所定の加熱サイクルをより精度良く実現するために、例えば特開平6−136451号公報(特許文献1)に示されているように、従来の輻射加熱或いは直火加熱からなる加熱装置の上流若しくは下流ないしは中間部分に誘導加熱装置を設置し、鋼帯の加熱応答性を改善しようとするものが提唱されている。
【0003】
また、同様な技術思想によるものとして特開昭57−94524号公報(特許文献2)には、誘導加熱装置の代わりに強制対流加熱や直火加熱を用い、ラジアントチューブ式輻射管による加熱装置による熱応答遅れを改善するために非定常時即ち鋼帯温度やライン速度を変更するときだけ、一時的に誘導加熱装置、強制対流加熱装置或いは直火加熱装置を使用して温度制御性を向上せしめる方法が提唱されていた。
【0004】
【引用文献】
(1)特許文献1(特開平6−136451号公報)
(2)特許文献2(特開昭57−94524号公報)
【0005】
【発明が解決しようとする課題】
しかしながら、従来の特許文献1に示されている方法においては、通常非酸化還元雰囲気中で誘導加熱装置を利用するものであって、鋼帯表面を原板のままの状態に保ちつつ加熱できるという利点はあるものの、原板表面にカーボン[C]分が多く付着している際に、ラジアントチューブ加熱や誘導加熱等のように非酸化還元雰囲気中で鋼板を加熱する場合はカーボン[C]が還元によって除去されることになるが、通常用いられている非酸化還元雰囲気中の水素濃度5〜10%程度ではカーボン[C]の除去効果は極めて小さく、水素濃度を上げてもその効果は十分なものではなかった。
【0006】
従って、連続式溶融亜鉛めっきラインのように鋼板を熱処理した後、引き続いて亜鉛めっきを施す場合に、鋼板表面のカーボン[C]がめっき密着性を阻害するという問題があった。加えて、誘導加熱装置を用いる場合は、電源装置、電力制御装置を含めて設備コストが高価にならざるを得ず、特に加熱装置の後段部に設置しようとする場合は、誘導加熱装置のコイル部分の耐熱対策を施す必要があり、非常に高価になってしまうという問題があった。
【0007】
鋼帯を連続して誘導加熱する方法には、Longitudinal Flux方式と呼ばれる方法とTransverse Flux方式に分けられる。Longitudinal Flux方式は、鋼帯を誘導加熱コイルで囲み、磁束を鋼帯表面に発生させ、磁束まわりに渦電流を発生せしめてジュール熱により鋼帯を加熱するもので、鋼帯幅方向に均一に加熱することができるが、反面、非磁性体や非磁性領域での被加熱体に対する加熱効率が悪い。従って、鋼帯加熱においては、キュリー点(760℃)以下の加熱に対してLongitudinal Flux方式が採用されることが多い。
【0008】
一方、Transverse Flux方式では、磁束が鋼帯表面を板厚方向に貫く様に鋼帯表裏にインダクターを配置し、磁束のまわりに発生する鋼帯平面方向の渦電流によってジュール加熱するものである。Transverse Flux方式では、磁性・非磁性を問わず加熱できるという利点があるが、鋼帯端部が過熱されやすいという問題がある。加熱装置の後段部に設置しようとする場合は、加熱効率を考慮してTransverse Flux方式が採用されるが、鋼帯端部の過熱が問題になる怖れがあった。
【0009】
また、特許文献2による強制対流加熱や従来の直火加熱方式も考えられるが、従来の強制対流加熱では加熱応答性が低く、従来の直火加熱方式では鋼帯表面を酸化させてしまうという問題があったため、鋼帯表面品質を維持したまま十分な加熱応答性の改善効果を得ることはできなかった。
このように、従来提唱されているいずれの方法であっても、鋼帯表面を清浄に保ち且つカーボン[C]分を効率良く除去しつつ、さらに鋼帯端部の過熱が発生し難く、板幅方向温度均一性と鋼帯表面品質に優れ、しかも電源装置や高周波電力調整装置などが不要で且つ安価な加熱方式により鋼帯の加熱熱応答性を改善することは困難であった。
【0010】
さらに、このような誘導加熱装置や強制対流加熱、直火加熱を用いる技術においては、ラジアントチューブ式輻射管による加熱装置による熱応答遅れを改善するために非定常時即ち鋼帯サイズ、鋼帯温度やライン速度を変更するときだけ、一時的に誘導加熱装置、強制対流加熱装置或いは直火加熱装置を使用して温度制御性を向上せしめるものであるため、定常時には使用されず鋼帯の加熱に寄与しないので、生産性が低下し不経済であるという問題があった。
そこで、本発明においては、鋼帯サイズや鋼帯温度やライン速度等を変更する過渡期(非定常時)において加熱帯における温度制御性を向上させるとともに、効率良くカーボン[C]を酸化除去することができ、更には定常時であっても鋼帯の加熱に寄与できることを目的とする。
【0011】
【課題を解決するための手段】
本発明では、ラジアントチューブ式輻射管を有する加熱帯を備えた鋼帯の連続式熱処理設備において、該加熱帯の入側或いは中間部或いは出側に、鋼帯を挟んで対向するように直火還元バーナーを設置した。
更に、直火還元バーナーを設置するにあたって、前記加熱帯の入側或いは中間部或いは出側に、直火還元バーナー帯を設置してもよい。この時、直火還元バーナー帯の前後にはシール装置を設けるとともに、該直火還元バーナー帯の炉圧を隣接する他の帯の炉圧よりも低くするための炉圧調節弁を設置した。
【0012】
また、ラジアントチューブ式輻射管による加熱を行う加熱帯の入側或いは中間部或いは出側に、鋼帯を挟んで対向するように燃焼負荷を調節する加熱制御手段を備えた直火還元バーナーを設置した鋼帯の連続式熱処理設備の燃焼方法であって、前記直火還元バーナーは、定常時は基準負荷で一定燃焼しており、例えば鋼帯サイズ、鋼帯温度、ライン速度等の加熱サイクルが変更するような過渡期には、加熱サイクル変更指令と同時に、ラジアントチューブ式輻射管による加熱の熱応答を補償するように直火還元バーナーの燃焼負荷を調節する。
【0013】
【発明の実施の形態】
以下、本発明について図面に従って詳細に説明する。
図1は、連続式熱処理設備の一例を示す図である。この図に示すように、鋼帯1は、上部ハースロール12群(各帯の上部に設置されているが図1では符合を一部省略)と下部ハースロール13群(各帯の下部に設置されているが図1では符合を一部省略)によって連続的に通板され、ラジアントチューブによる間接輻射加熱方式を採用した第一加熱帯2及び第二加熱帯3において所定の加熱温度に加熱され、均熱帯4を経て一次冷却帯5において急速に冷却される。一次冷却帯5には、ガスジェットクーラー方式、気水冷却方式或いはロール冷却方式またはこれらの組み合わせ方式などが採用され、鋼種に応じて250℃〜450℃の温度まで急冷される。鋼帯1は、引き続いて一次過時効帯6及び二次過時効帯7を経て、二次冷却帯8及び第一クエンチタンク9、第二クエンチタンク10によって常温近くまで最終冷却され、ドライヤー11により乾燥される。
【0014】
本発明では、図1において、第一加熱帯2と第二加熱帯3の間に直火還元バーナー帯14を設け、この直火還元バーナー帯14には、鋼帯1を挟んで対向するように直火還元バーナー20を配設している。直火還元バーナー20は、例えば特公平3−69972号公報に示されているような構成のものを使用するが、その具体的な構成について図3(a)及び図3(b)に示す。図3(a)は直火還元バーナーの断面図、図3(b)は図3(a)のV−V線矢視断面図である。バーナータイル底部21において、該底部面積100cm2 あたり5孔以上の2重管式吐出孔22を設け、内管24には燃料ガス(または空気)を、外管23には空気(または燃料ガス)をバーナー中心軸に平行に流し、その空気比を0.7〜0.9に調整し、鋼帯1とバーナータイル底部21との距離を100〜400mmに調整することによって有効な直火還元加熱を得ることができ、鋼帯表面に酸化膜を生じることなく鋼帯表面を清浄に保ったまま急速に加熱することが可能なものである。
【0015】
直火還元バーナー帯14は、第一加熱帯2の入側に設けてもよいし、第二加熱帯3の出側に設けてもよい。また、図2に示すように第一加熱帯と第二加熱帯との間に独立したチャンバーを設け、上下に通板されるそれぞれの鋼帯に対して、直火還元バーナー20を鋼帯1を挟んで対向するように設けてもよい。(図2のその他の構成は図1と同じ)
【0016】
図1および図2において、直火還元バーナー帯14からの排ガスは、排ガスダクト16より炉圧調整弁17を経て、排ガスブロワー18により吸引され、煙突19から屋外へ排気される。ここで、排ガスブロワー18は図示しているように単独で設けてもよいし、第一加熱帯2や第二加熱帯3の燃焼排ガス系に合流させて排出しても良い。また、直火還元バーナー帯14の前後には、例えば図4に示すようなシール装置が各々設けられている(図1、図2では図示を省略)。
【0017】
すなわち、図4は、直火還元バーナー帯の前後でのシール装置を示す図である。この図に示すように、直火還元バーナー帯14の前、すなわち、第一加熱帯2と直火還元バーナー帯14との間に設けたシール装置31においては、小室25内の雰囲気ガス圧力制御に当たって、炉内圧調整弁29を開くことにより小室25内の雰囲気ガスを炉外に放出し、小室25内の圧力を下げる。これによって、小室25をその前後の第一加熱帯2や直火還元バーナー帯14の炉内圧力より低い圧力に保持することができる。
【0018】
同様に、直火還元バーナー帯14の後、すなわち、直火還元バーナー帯14と第二加熱帯3の間に設けたシール装置31においても、炉内圧調整弁29を開くことにより小室25内の雰囲気ガスを炉外に放出し、小室25内の圧力を下げる。これによって、小室25をその前後の直火還元バーナー帯14や第二加熱帯3の炉内圧力より低い圧力に保持することができる。本発明の一実施例でのシール機構は上シール部材26が昇降アクチュエータ27によって鋼帯1に向けて、一定の押圧力で進出するように構成され、鋼帯1に押し圧してシール状態を維持する。
【0019】
また、このシール装置は図4に限定されるものではなく、ガスシール装置やロールシール装置等によってシールしても良く、特にシール装置には限定されるものではない。上述したように直火還元バーナー帯14の炉圧を隣接する第一加熱帯2や第二加熱帯3の炉圧よりも低くなるように、図1、図2に示した炉内圧調整弁17によって制御することにより、直火還元バーナー帯14の燃焼排ガスが隣接する第一加熱帯2や第二加熱帯3へ流入することを確実に防止することができる。なお、符号28は雰囲気ガス排気口を示す。
【0020】
図5は本発明による加熱制御の実施例を示すもので、図5(a)に示すように鋼帯加熱温度がt1からt2へ上がるように加熱サイクルを変更した場合を示している。変更前I期(定常時)はラジアントチューブ式輻射管及び直火還元バーナーにより定常加熱が行われており燃焼量は各々一定となっている。加熱サイクル変更指令が出されたII期(過渡期)には、図5(c)のようにライン速度が減速し、ラジアントチューブ式輻射管への投入燃焼量が増加するが、ラジアントチューブ式輻射管による間接加熱の場合は時定数が大きく図5(d)に示す様にラジアントチューブ加熱温度は徐々にしか上昇しない。
【0021】
従って、本発明によらない従来のラジアントチューブ加熱のみの場合では、図5(a)中に破線で示す様に鋼帯加熱温度は徐々にしか上昇せず加熱不足が生じてしまう。そこで本発明においては、ここで、図5(b)に示すように、直火還元バーナーの燃焼量を加熱サイクル変更指令と同時に増加させる。その後、ラジアントチューブ加熱による加熱量増加に応じて図5(b)に示すように直火還元バーナーの燃焼量を徐々に減少させる。サイクル変更後III期(定常時)では、直火還元バーナーの燃焼量は変更前I期に比べて増加させてあり、加熱に有効に寄与させている。
【0022】
図6は、本発明による加熱制御の別の実施例を示すもので、図6(a)に示すように鋼帯加熱温度がt2からt1へ下がるように加熱サイクルを変更した場合を示している。変更前I期(定常時)はラジアントチューブ式輻射管及び直火還元バーナーにより定常加熱が行われており燃焼量は各々一定となっている。加熱サイクル変更指令が出されたII期(過渡期)には、図6(c)のようにライン速度が増速し、ラジアントチューブ式輻射管への投入熱量が減少するが、ラジアントチューブ式輻射管による間接加熱の場合は図6(d)に示すようにラジアントチューブ加熱温度は徐々にしか下降しない。
【0023】
従って、本発明によらない従来のラジアントチューブ加熱のみの場合では、図6(a)中に破線で示すように鋼帯加熱温度は徐々にしか下降せず加熱過剰となってしまう。そこで本発明においては、ここで図6(b)に示すように、直火還元バーナーの燃焼量を加熱サイクル変更指令と同時に一旦下げ、その後、ラジアントチューブ加熱による加熱量減少に応じて図6(b)に示すように直火還元バーナーの燃焼量を徐々に増加させる。サイクル変更後III期(定常時)では、直火還元バーナーの燃焼量は変更前前I期に比べて減少させてある。
【0024】
図7は、鋼帯表面のカーボン[C]の除去効果を模式的に示している。本発明における加熱応答性改善のために設けた直火還元バーナーにより、鋼帯表面のカーボン[C]はC+CO2 →2COにより酸化除去され、その効果は、従来の誘導加熱装置を使用する場合のカーボン[C]の還元除去C+2H2 →CH4 に比べて大きい。従って、本発明においては加熱応答性改善効果に加えて鋼帯表面を清浄に保ったまま表面の付着カーボン[C]を効果的に除去できるという効果を得ることができる。
【0025】
【発明の効果】
以上述べたように、本発明によれば、ラジアントチューブ式輻射管による加熱装置による熱応答遅れを改善するために、ラジアントチューブ式輻射管による加熱帯の入側又は中間部又は出側に、直火還元バーナーを設置している。この直火還元バーナーは、定常時は基準負荷で燃焼しているが、鋼帯サイズや鋼帯温度やライン速度を変更する過渡期には、ラジアントチューブ式輻射管による加熱装置の熱応答を補償するように直火還元バーナーの燃焼負荷を調節することにより、温度制御性を向上させることができる。また、直火還元加熱バーナーは優れた還元性や急速加熱が実現できるので、鋼帯表面に酸化膜が生成することがなく鋼帯端部の過熱を生じることもない。
【0026】
さらに、鋼帯表面にカーボン[C]分が多く付着していても直火還元バーナーにより効率良くカーボン[C]を酸化除去することができるので、炉内雰囲気ガス中の水素濃度を通常以上に上げることなく高品質な成品を得ることができ、連続溶融亜鉛めっきラインにおいては優れためっき密着性を得ることができるようになる。加えて直火還元加熱バーナーは、定常時は基準負荷で燃焼しており非定常時に燃焼負荷を増減させるものであるため、定常時であっても鋼帯の加熱に寄与しているので生産性をも向上させることができる極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の連続式熱処理設備の一例を示す図である。
【図2】本発明の連続式熱処理設備の他の例を示す図である。
【図3】直火還元バーナーの断面図およびV−V線矢視断面図である。
【図4】直火還元バーナー帯の前後でのシール装置を示す図である。
【図5】本発明による加熱制御の作動を模式的に表した説明図である。
【図6】本発明による加熱制御の作動を模式的に表した他の説明図である。
【図7】鋼帯表面の付着カーボン[C]の除去効果を示す模式図である。
【符号の説明】
1 鋼帯
2 第一加熱帯
3 第二加熱帯
4 均熱帯
5 一次冷却帯
6 一次過時効帯
7 二次過時効帯
8 二次冷却帯
9 第一クエンチタンク
10 第二クエンチタンク
11 ドライヤー
12 上部ハースロール
13 下部ハースロール
14 直火還元バーナー帯
15 誘導加熱装置
16 排ガスダクト
17 炉圧調整弁
18 排ガスブロワー
19 煙突
20 直火還元バーナー
21 バーナータイル底部
22 2重管式吐出孔
23 外管
24 内管
25 小室
26 上シール部材
27 昇降アクチュエータ
28 雰囲気ガス排気口
29 炉内圧調整弁
30 排ガスダクト
31 シール装置
[0001]
BACKGROUND OF THE INVENTION
The present invention is a continuous annealing process for steel strips, which is intended to improve the accuracy of transient steel strip temperature control, especially when changing the plate size, steel type and heat cycle in continuous annealing equipment and continuous galvanizing lines. The present invention relates to equipment and a combustion method thereof.
[0002]
[Prior art]
In general, in a continuous annealing equipment for steel strip and a continuous hot dip galvanizing line, a continuous annealing furnace for continuously heating, soaking and cooling necessary for annealing treatment is installed in the steel strip. In this continuous annealing furnace, a heating cycle is set corresponding to the steel type of the steel strip, and it is heated to a set temperature by a heating device using a radiant tube type radiation tube. Since the heating cycle and the plate thickness size depending on the steel type are frequently changed, in order to realize a predetermined heating cycle with higher accuracy, for example, as disclosed in JP-A-6-136451 (Patent Document 1). In order to improve the heating responsiveness of the steel strip, an induction heating device is installed upstream, downstream, or in the middle of a conventional heating device composed of radiant heating or direct heating.
[0003]
Further, as a similar technical idea, Japanese Patent Application Laid-Open No. 57-94524 (Patent Document 2) uses forced convection heating or direct fire heating instead of induction heating device, and uses a radiant tube type radiant tube heating device. Temporarily improve the temperature controllability by using an induction heating device, forced convection heating device, or direct-fired heating device only during non-stationary conditions, that is, when changing the steel strip temperature or line speed to improve the thermal response delay. A method was proposed.
[0004]
[Cited document]
(1) Patent Document 1 (Japanese Patent Laid-Open No. 6-136451)
(2) Patent Document 2 (Japanese Patent Laid-Open No. 57-94524)
[0005]
[Problems to be solved by the invention]
However, in the method shown in the conventional patent document 1, an induction heating apparatus is normally used in a non-oxidation-reduction atmosphere, and the steel strip surface can be heated while keeping the original state. However, when a large amount of carbon [C] is adhering to the surface of the original plate, when the steel plate is heated in a non-oxidative reduction atmosphere such as radiant tube heating or induction heating, the carbon [C] is reduced by reduction. Although it will be removed, the removal effect of carbon [C] is extremely small at a hydrogen concentration of about 5 to 10% in a normally used non-oxidation-reduction atmosphere, and the effect is sufficient even if the hydrogen concentration is increased. It wasn't.
[0006]
Therefore, after heat-treating a steel sheet as in a continuous hot dip galvanizing line, there is a problem that carbon [C] on the surface of the steel sheet inhibits plating adhesion when galvanizing is subsequently performed. In addition, when an induction heating device is used, the equipment cost including the power supply device and the power control device must be expensive. Especially when the induction heating device is to be installed at the rear stage of the heating device, the coil of the induction heating device is required. There was a problem that it was necessary to take a heat-resistant measure for the part, and it became very expensive.
[0007]
The method of continuously induction heating the steel strip can be divided into a method called Longitudinal Flex method and a Transverse Flux method. The Longitudinal Flux system surrounds a steel strip with an induction heating coil, generates a magnetic flux on the surface of the steel strip, generates eddy currents around the magnetic flux, and heats the steel strip with Joule heat. Although it can be heated, on the other hand, the heating efficiency for the non-magnetic body and the heated body in the non-magnetic region is poor. Therefore, in steel strip heating, the Longitudinal Flux method is often employed for heating below the Curie point (760 ° C.).
[0008]
On the other hand, in the Transverse Flux system, inductors are arranged on the front and back of the steel strip so that the magnetic flux penetrates the steel strip surface in the plate thickness direction, and Joule heating is performed by the eddy current in the steel strip plane direction generated around the magnetic flux. The Transverse Flux system has the advantage that it can be heated regardless of whether it is magnetic or non-magnetic, but it has the problem that the end of the steel strip is easily overheated. When installing in the rear part of the heating device, the Transverse Flux method is adopted in consideration of the heating efficiency, but there is a fear that overheating of the steel strip end may become a problem.
[0009]
Moreover, although the forced convection heating by patent document 2 and the conventional direct-fired heating system are also considered, the heating responsiveness is low in the conventional forced convection heating, and the conventional direct-fired heating system oxidizes the steel strip surface. Therefore, sufficient heating response improvement effect could not be obtained while maintaining the steel strip surface quality.
As described above, in any of the methods proposed in the past, the steel strip surface is kept clean and the carbon [C] content is efficiently removed, and the steel strip end portion is not easily overheated. It is difficult to improve the heating and thermal responsiveness of the steel strip by an inexpensive heating method that is excellent in temperature uniformity in the width direction and surface quality of the steel strip, and that does not require a power supply device or a high-frequency power adjustment device.
[0010]
Furthermore, in the technology using such induction heating device, forced convection heating, and direct flame heating, in order to improve the thermal response delay due to the heating device by the radiant tube type radiant tube, it is unsteady, that is, steel strip size, steel strip temperature. Only when changing the line speed, the induction heating device, forced convection heating device or direct fire heating device is temporarily used to improve the temperature controllability. Since it does not contribute, there is a problem that productivity is lowered and uneconomical.
Therefore, in the present invention, the temperature controllability in the heating zone is improved and the carbon [C] is efficiently oxidized and removed in the transition period (unsteady time) in which the steel strip size, steel strip temperature, line speed, etc. are changed. Further, it is intended to contribute to heating of the steel strip even in a steady state.
[0011]
[Means for Solving the Problems]
In the present invention, in a continuous heat treatment facility for a steel strip provided with a heating zone having a radiant tube type radiant tube, a direct fire is made so that the steel strip is opposed to the entry side, intermediate portion or exit side of the heating zone. A reduction burner was installed.
Furthermore, when installing the direct fire reduction burner, a direct fire reduction burner band may be installed on the entry side, the intermediate portion, or the exit side of the heating zone. At this time, a seal device was provided before and after the direct fire reduction burner band, and a furnace pressure control valve was installed to lower the furnace pressure of the direct fire reduction burner band from the furnace pressure of other adjacent bands.
[0012]
In addition, a direct-fire reduction burner equipped with a heating control means that adjusts the combustion load so as to oppose the steel strip across the heating zone, which is heated by the radiant tube type radiant tube, is installed. The above-mentioned direct flame reduction burner is constantly burned at a standard load at a normal load, for example, a heating cycle such as a steel strip size, a steel strip temperature, a line speed, etc. In the transition period to be changed, simultaneously with the heating cycle change command, the combustion load of the direct flame reduction burner is adjusted so as to compensate for the thermal response of heating by the radiant tube type radiant tube.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a continuous heat treatment facility. As shown in this figure, the steel strip 1 is composed of an upper hearth roll 12 group (installed at the top of each band, part of which is omitted in FIG. 1) and a lower hearth roll 13 group (installed at the bottom of each band). However, in FIG. 1, the sign is partially omitted), and is heated to a predetermined heating temperature in the first heating zone 2 and the second heating zone 3 adopting an indirect radiation heating method using a radiant tube. Then, it is cooled rapidly in the primary cooling zone 5 through the soaking zone 4. The primary cooling zone 5 employs a gas jet cooler method, an air-water cooling method, a roll cooling method, or a combination thereof, and is rapidly cooled to a temperature of 250 ° C. to 450 ° C. depending on the steel type. The steel strip 1 subsequently passes through the primary overaging zone 6 and the secondary overaging zone 7, and is finally cooled to near normal temperature by the secondary cooling zone 8, the first quench tank 9, and the second quench tank 10, and is dried by the dryer 11. Dried.
[0014]
In the present invention, in FIG. 1, a direct fire reduction burner zone 14 is provided between the first heating zone 2 and the second heating zone 3, and the direct fire reduction burner zone 14 is opposed to the steel strip 1. A direct-fire reduction burner 20 is disposed on the side. As the direct fire reduction burner 20, for example, one having a configuration as shown in Japanese Patent Publication No. 3-69972 is used, and its specific configuration is shown in FIGS. 3 (a) and 3 (b). Fig.3 (a) is sectional drawing of an open fire reduction burner, FIG.3 (b) is a VV arrow directional cross-sectional view of Fig.3 (a). The burner tile bottom 21 is provided with five or more double-pipe discharge holes 22 per 100 cm 2 of the bottom area, the inner pipe 24 is fuel gas (or air), and the outer pipe 23 is air (or fuel gas). Is heated directly in parallel with the burner central axis, the air ratio is adjusted to 0.7 to 0.9, and the distance between the steel strip 1 and the burner tile bottom 21 is adjusted to 100 to 400 mm. The steel strip surface can be rapidly heated while keeping the steel strip surface clean without producing an oxide film on the steel strip surface.
[0015]
The direct fire reduction burner zone 14 may be provided on the entry side of the first heating zone 2 or on the exit side of the second heating zone 3. Further, as shown in FIG. 2, an independent chamber is provided between the first heating zone and the second heating zone, and the direct flame reduction burner 20 is provided for each steel strip that is passed vertically. You may provide so that it may oppose on both sides. (Other configurations in FIG. 2 are the same as those in FIG. 1)
[0016]
In FIG. 1 and FIG. 2, the exhaust gas from the direct fire reduction burner band 14 is sucked by the exhaust gas blower 18 through the furnace pressure adjusting valve 17 from the exhaust gas duct 16 and exhausted from the chimney 19 to the outside. Here, the exhaust gas blower 18 may be provided alone as shown in the figure, or may be combined with the combustion exhaust gas system of the first heating zone 2 or the second heating zone 3 and discharged. In addition, for example, a sealing device as shown in FIG. 4 is provided before and after the direct-fire reduction burner band 14 (not shown in FIGS. 1 and 2).
[0017]
That is, FIG. 4 is a diagram showing the sealing device before and after the direct fire reduction burner band. As shown in this figure, in the sealing device 31 provided in front of the direct fire reduction burner zone 14, that is, between the first heating zone 2 and the direct fire reduction burner zone 14, the atmospheric gas pressure control in the small chamber 25 is performed. At that time, by opening the furnace pressure regulating valve 29, the atmospheric gas in the small chamber 25 is released to the outside of the furnace, and the pressure in the small chamber 25 is lowered. Thereby, the small chamber 25 can be held at a pressure lower than the pressure in the furnace of the first heating zone 2 and the direct flame reduction burner zone 14 before and after the chamber 25.
[0018]
Similarly, also in the sealing device 31 provided after the direct fire reduction burner zone 14, that is, between the direct fire reduction burner zone 14 and the second heating zone 3, the inside of the small chamber 25 is opened by opening the furnace pressure regulating valve 29. The atmospheric gas is discharged outside the furnace, and the pressure in the small chamber 25 is lowered. As a result, the small chamber 25 can be maintained at a pressure lower than the pressure in the furnace of the direct fire reduction burner zone 14 and the second heating zone 3 before and after the small chamber 25. The sealing mechanism according to the embodiment of the present invention is configured such that the upper seal member 26 is advanced toward the steel strip 1 by the lifting actuator 27 with a constant pressing force, and the sealing state is maintained by pressing the steel strip 1. To do.
[0019]
Further, this sealing device is not limited to that shown in FIG. 4, and may be sealed by a gas sealing device, a roll sealing device or the like, and is not particularly limited to the sealing device. As described above, the furnace pressure regulating valve 17 shown in FIGS. 1 and 2 is set so that the furnace pressure of the direct-fire reduction burner zone 14 is lower than the furnace pressure of the adjacent first heating zone 2 and second heating zone 3. By controlling by this, it is possible to reliably prevent the combustion exhaust gas from the direct fire reduction burner zone 14 from flowing into the adjacent first heating zone 2 and second heating zone 3. Reference numeral 28 denotes an atmospheric gas exhaust port.
[0020]
FIG. 5 shows an embodiment of the heating control according to the present invention, and shows a case where the heating cycle is changed so that the steel strip heating temperature rises from t1 to t2 as shown in FIG. 5 (a). In the pre-change stage I (steady time), steady heating is performed by a radiant tube type radiant tube and a direct flame reduction burner, and the amount of combustion is constant. In stage II (transitional period) when the heating cycle change command is issued, the line speed decreases as shown in FIG. 5C, and the amount of combustion injected into the radiant tube type radiation pipe increases, but the radiant tube type radiation is increased. In the case of indirect heating with a tube, the time constant is large and the radiant tube heating temperature only rises gradually as shown in FIG.
[0021]
Therefore, in the case of only the conventional radiant tube heating not according to the present invention, the steel strip heating temperature only rises gradually as shown by the broken line in FIG. Therefore, in the present invention, as shown in FIG. 5 (b), the combustion amount of the direct fire reduction burner is increased simultaneously with the heating cycle change command. Thereafter, the combustion amount of the direct fire reduction burner is gradually decreased as shown in FIG. In the period III after the cycle change (steady time), the combustion amount of the direct-fire reduction burner is increased as compared with the period I before the change, which contributes to heating effectively.
[0022]
FIG. 6 shows another embodiment of the heating control according to the present invention, and shows a case where the heating cycle is changed so that the steel strip heating temperature is lowered from t2 to t1 as shown in FIG. 6 (a). . In the pre-change stage I (steady time), steady heating is performed by a radiant tube type radiant tube and a direct flame reduction burner, and the amount of combustion is constant. In stage II (transitional period) when the heating cycle change command is issued, the line speed increases as shown in FIG. 6C, and the amount of heat input to the radiant tube type radiation tube decreases, but the radiant tube type radiation is reduced. In the case of indirect heating with a tube, the radiant tube heating temperature only gradually decreases as shown in FIG.
[0023]
Therefore, in the case of only the conventional radiant tube heating not according to the present invention, as shown by the broken line in FIG. Therefore, in the present invention, as shown in FIG. 6 (b), the combustion amount of the direct-fire reduction burner is once lowered simultaneously with the heating cycle change command, and thereafter, according to the decrease in the heating amount due to the radiant tube heating, FIG. As shown in b), the combustion amount of the direct fire reduction burner is gradually increased. In the period III after the cycle change (steady time), the combustion amount of the direct fire reduction burner is reduced compared to the period I before the change.
[0024]
FIG. 7 schematically shows the carbon [C] removal effect on the steel strip surface. The carbon [C] on the surface of the steel strip is oxidized and removed by C + CO 2 → 2CO by the direct flame reduction burner provided for improving the heat responsiveness in the present invention, and the effect is the same as when using a conventional induction heating apparatus. It is larger than the reduction removal C + 2H 2 → CH 4 of carbon [C]. Therefore, in the present invention, in addition to the effect of improving the heat responsiveness, it is possible to obtain an effect that the carbon [C] attached to the surface can be effectively removed while the steel strip surface is kept clean.
[0025]
【The invention's effect】
As described above, according to the present invention, in order to improve the thermal response delay due to the heating device by the radiant tube type radiant tube, the heating zone by the radiant tube type radiant tube is directly connected to the inlet side, the intermediate portion or the outlet side. A fire reduction burner is installed. This direct-fire reduction burner burns at a standard load in the steady state, but compensates for the thermal response of the heating device with a radiant tube type radiant tube during the transition period when the steel strip size, steel strip temperature and line speed are changed. Thus, the temperature controllability can be improved by adjusting the combustion load of the direct flame reduction burner. Moreover, since the direct flame reduction heating burner can realize excellent reducibility and rapid heating, an oxide film is not generated on the steel strip surface, and the steel strip end is not overheated.
[0026]
Furthermore, even if a large amount of carbon [C] is attached to the surface of the steel strip, the carbon [C] can be efficiently oxidized and removed by the direct flame reduction burner, so that the hydrogen concentration in the furnace atmosphere gas is more than usual. A high-quality product can be obtained without increasing it, and excellent plating adhesion can be obtained in a continuous hot dip galvanizing line. In addition, the direct-fire reduction heating burner burns at the standard load in the steady state and increases or decreases the combustion load in the non-steady state, so it contributes to the heating of the steel strip even in the steady state. As a result, it is possible to improve the effect as well.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a continuous heat treatment facility according to the present invention.
FIG. 2 is a diagram showing another example of the continuous heat treatment equipment of the present invention.
FIG. 3 is a cross-sectional view and a cross-sectional view taken along line VV of the direct fire reduction burner.
FIG. 4 is a view showing a sealing device before and after a direct fire reduction burner band.
FIG. 5 is an explanatory view schematically showing an operation of heating control according to the present invention.
FIG. 6 is another explanatory view schematically showing the operation of the heating control according to the present invention.
FIG. 7 is a schematic view showing the effect of removing carbon [C] adhering to the steel strip surface.
[Explanation of symbols]
1 Steel strip 2 First heating zone 3 Second heating zone 4 Soaking zone 5 Primary cooling zone 6 Primary overaging zone 7 Secondary overaging zone 8 Secondary cooling zone 9 First quench tank 10 Second quench tank 11 Dryer 12 Upper part Hearth roll 13 Lower hearth roll 14 Direct fire reduction burner band 15 Induction heating device 16 Exhaust gas duct 17 Furnace pressure regulating valve 18 Exhaust gas blower 19 Chimney 20 Direct fire reduction burner 21 Burner tile bottom 22 Double pipe discharge hole 23 Outer pipe 24 Inside Pipe 25 Small chamber 26 Upper seal member 27 Elevating actuator 28 Atmospheric gas exhaust port 29 Furnace pressure regulating valve 30 Exhaust gas duct 31 Sealing device

Claims (2)

ラジアントチューブ式輻射管を有する加熱帯を備えた鋼帯の連続式熱処理設備において、該加熱帯の入側或いは中間部或いは出側に、鋼帯を挟んで対向するように燃焼負荷を調節する加熱制御手段を備えた直火還元バーナーを設置する直火還元バーナー帯を設置し、該直火還元バーナー帯の前後にシール装置を設けるとともに、該直火還元バーナー帯の炉圧を隣接する他の帯の炉圧よりも低くするための炉圧調節弁を設置したことを特徴とする鋼帯の連続式熱処理設備。In a steel strip continuous heat treatment facility equipped with a heating zone having a radiant tube type radiant tube, heating that adjusts the combustion load so that the steel strip is opposed to the inlet side, intermediate portion, or outlet side of the heating zone A direct-fire reduction burner zone for installing a direct-fire reduction burner equipped with a control means is installed, a sealing device is provided before and after the direct-fire reduction burner zone, and the furnace pressure of the direct-fire reduction burner zone is set to another adjacent A continuous heat treatment facility for steel strips, which is equipped with a furnace pressure control valve for lowering the strip furnace pressure. ラジアントチューブ式輻射管を有する加熱帯の入側或いは中間部或いは出側に、鋼帯を挟んで対向するように燃焼負荷を調節する加熱制御手段を備えた直火還元バーナーを設置した鋼帯の連続式熱処理設備の燃焼方法であって、前記直火還元バーナーは、定常時は基準負荷で一定燃焼しており、加熱サイクルが変更する過渡期には、加熱サイクル変更指令と同時に、ラジアントチューブ式輻射管による加熱の熱応答を補償するように直火還元バーナーの燃焼負荷を調節することを特徴とする鋼帯の連続式熱処理設備の燃焼方法。A steel strip equipped with a direct flame reduction burner equipped with a heating control means for adjusting the combustion load so as to oppose the steel strip across the heating zone having a radiant tube type radiation tube. In the combustion method of the continuous heat treatment equipment, the direct-fire reduction burner burns at a constant load at a reference load in a steady state, and in a transient period when the heating cycle changes, at the same time as a heating cycle change command, a radiant tube type A combustion method for a continuous heat treatment facility for a steel strip, wherein the combustion load of a direct flame reduction burner is adjusted so as to compensate for the thermal response of heating by a radiant tube.
JP2003020142A 2003-01-29 2003-01-29 Steel strip continuous heat treatment equipment and combustion method thereof Expired - Fee Related JP4064253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020142A JP4064253B2 (en) 2003-01-29 2003-01-29 Steel strip continuous heat treatment equipment and combustion method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020142A JP4064253B2 (en) 2003-01-29 2003-01-29 Steel strip continuous heat treatment equipment and combustion method thereof

Publications (2)

Publication Number Publication Date
JP2004232007A JP2004232007A (en) 2004-08-19
JP4064253B2 true JP4064253B2 (en) 2008-03-19

Family

ID=32949852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020142A Expired - Fee Related JP4064253B2 (en) 2003-01-29 2003-01-29 Steel strip continuous heat treatment equipment and combustion method thereof

Country Status (1)

Country Link
JP (1) JP4064253B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107964643A (en) * 2017-12-27 2018-04-27 安德里茨(中国)有限公司 Hot-strip continuous hot galvanizing device and method

Also Published As

Publication number Publication date
JP2004232007A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US5770838A (en) Induction heaters to improve transitions in continuous heating system, and method
CN104769137A (en) Batch type annealing thermal processing facility and method of manufacturing steel plate by using the facility
JP4064253B2 (en) Steel strip continuous heat treatment equipment and combustion method thereof
CN104775012A (en) Broad-width induction heating method and device used for uniform heating of strip steel
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
JP4987689B2 (en) Direct-fired type roller hearth continuous heat treatment furnace
JPS6056406B2 (en) Continuous annealing furnace with induction heating section
KR100785255B1 (en) Improvements to the preheating of metal strip, especially in galvanizing or annealing lines
JP4873325B2 (en) In-furnace atmosphere control method for heating furnace
US5827056A (en) Device and method for improving strip tracking in a continuous heating furnace
JP4123535B2 (en) Continuous heat treatment furnace for metal strip
US7371296B1 (en) Annealing furnace cooling and purging system and method
US6761778B2 (en) Heating process of steel strips in vertical furnaces
KR20040002520A (en) Heat-treating furnace
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace
JPH07126759A (en) Method for heating metallic strip and device therefor
JP2733885B2 (en) Continuous heat treatment of steel strip
JP2970920B2 (en) Alloying furnace and operating method thereof
JP2006307296A (en) Method for continuously heat-treating metallic strip and horizontal continuous heat treating furnace
CN115341079A (en) Method for controlling reverse flow of furnace gas of continuous normalizing furnace
JPH0762450A (en) Method for preventing overheat of steel strip edge part in continuous annealing furnace
JPH0225523A (en) Direct heating type continuous heat-treatment furnace for metal strip
Astesiano et al. Strip Annealing Furnaces for New Galvanizing Lines
JP2000034523A (en) Continuous heat treatment method for metallic strip
JPS63176424A (en) Heat treatment of metallic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees