JP2004232007A - Continuous type heat treatment facility for steel strip, and its combustion method - Google Patents

Continuous type heat treatment facility for steel strip, and its combustion method Download PDF

Info

Publication number
JP2004232007A
JP2004232007A JP2003020142A JP2003020142A JP2004232007A JP 2004232007 A JP2004232007 A JP 2004232007A JP 2003020142 A JP2003020142 A JP 2003020142A JP 2003020142 A JP2003020142 A JP 2003020142A JP 2004232007 A JP2004232007 A JP 2004232007A
Authority
JP
Japan
Prior art keywords
steel strip
heating
zone
direct
radiant tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003020142A
Other languages
Japanese (ja)
Other versions
JP4064253B2 (en
Inventor
Yasuo Matsuura
泰夫 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003020142A priority Critical patent/JP4064253B2/en
Publication of JP2004232007A publication Critical patent/JP2004232007A/en
Application granted granted Critical
Publication of JP4064253B2 publication Critical patent/JP4064253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous type heat treatment facility for steel strip and its combustion method with which a temperature controllability in a heating zone is improved in a transition period (in a unsteady state) changing the steel strip size, the steel strip temperature, line speed, etc., and also, carbon [C] can efficiently be oxidized and removed and further, even in a steady state, this facility can contribute to the heating of the steel strip. <P>SOLUTION: In the continuous type heat treatment facility for steel strip and its combustion method, setting directly firing reducing burners so as to be faced to both sides interposing the steel strip at an inlet side or an intermediate side or an outlet side of the heating zone performing the heating with a radiant tube type radiation duct, the above directly firing reducing burner is ordinarily burnt to a fixed reference load, and at the transition period changing the heating cycle, the combustion load of the directly firing reducing burner is adjusted so as to compensate the heat response for heating with the radiant tube type radiation duct. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼帯の連続焼鈍設備や連続式溶融亜鉛めっきラインにおいて、特に通板サイズや鋼種及びヒートサイクルの変更時における過渡的な鋼帯温度制御精度の向上を図る鋼帯の連続式熱処理設備及びその燃焼方法に関するものである。
【0002】
【従来の技術】
一般に鋼帯の連続焼鈍設備や連続溶融亜鉛めっきラインにおいては、鋼帯は焼鈍処理に必要な加熱、均熱、冷却を連続して行う連続焼鈍炉が設置されている。この連続焼鈍炉においては、鋼帯の鋼種に対応して加熱サイクルが設定され、ラジアントチューブ式輻射管による加熱装置によって設定温度に加熱される。鋼種による加熱サイクルや板厚サイズは、頻繁に変更されるので、所定の加熱サイクルをより精度良く実現するために、例えば特開平6−136451号公報(特許文献1)に示されているように、従来の輻射加熱或いは直火加熱からなる加熱装置の上流若しくは下流ないしは中間部分に誘導加熱装置を設置し、鋼帯の加熱応答性を改善しようとするものが提唱されている。
【0003】
また、同様な技術思想によるものとして特開昭57−94524号公報(特許文献2)には、誘導加熱装置の代わりに強制対流加熱や直火加熱を用い、ラジアントチューブ式輻射管による加熱装置による熱応答遅れを改善するために非定常時即ち鋼帯温度やライン速度を変更するときだけ、一時的に誘導加熱装置、強制対流加熱装置或いは直火加熱装置を使用して温度制御性を向上せしめる方法が提唱されていた。
【0004】
【引用文献】
(1)特許文献1(特開平6−136451号公報)
(2)特許文献2(特開昭57−94524号公報)
【0005】
【発明が解決しようとする課題】
しかしながら、従来の特許文献1に示されている方法においては、通常非酸化還元雰囲気中で誘導加熱装置を利用するものであって、鋼帯表面を原板のままの状態に保ちつつ加熱できるという利点はあるものの、原板表面にカーボン[C]分が多く付着している際に、ラジアントチューブ加熱や誘導加熱等のように非酸化還元雰囲気中で鋼板を加熱する場合はカーボン[C]が還元によって除去されることになるが、通常用いられている非酸化還元雰囲気中の水素濃度5〜10%程度ではカーボン[C]の除去効果は極めて小さく、水素濃度を上げてもその効果は十分なものではなかった。
【0006】
従って、連続式溶融亜鉛めっきラインのように鋼板を熱処理した後、引き続いて亜鉛めっきを施す場合に、鋼板表面のカーボン[C]がめっき密着性を阻害するという問題があった。加えて、誘導加熱装置を用いる場合は、電源装置、電力制御装置を含めて設備コストが高価にならざるを得ず、特に加熱装置の後段部に設置しようとする場合は、誘導加熱装置のコイル部分の耐熱対策を施す必要があり、非常に高価になってしまうという問題があった。
【0007】
鋼帯を連続して誘導加熱する方法には、Longitudinal Flux方式と呼ばれる方法とTransverse Flux方式に分けられる。Longitudinal Flux方式は、鋼帯を誘導加熱コイルで囲み、磁束を鋼帯表面に発生させ、磁束まわりに渦電流を発生せしめてジュール熱により鋼帯を加熱するもので、鋼帯幅方向に均一に加熱することができるが、反面、非磁性体や非磁性領域での被加熱体に対する加熱効率が悪い。従って、鋼帯加熱においては、キュリー点(760℃)以下の加熱に対してLongitudinal Flux方式が採用されることが多い。
【0008】
一方、Transverse Flux方式では、磁束が鋼帯表面を板厚方向に貫く様に鋼帯表裏にインダクターを配置し、磁束のまわりに発生する鋼帯平面方向の渦電流によってジュール加熱するものである。Transverse Flux方式では、磁性・非磁性を問わず加熱できるという利点があるが、鋼帯端部が過熱されやすいという問題がある。加熱装置の後段部に設置しようとする場合は、加熱効率を考慮してTransverse Flux方式が採用されるが、鋼帯端部の過熱が問題になる怖れがあった。
【0009】
また、特許文献2による強制対流加熱や従来の直火加熱方式も考えられるが、従来の強制対流加熱では加熱応答性が低く、従来の直火加熱方式では鋼帯表面を酸化させてしまうという問題があったため、鋼帯表面品質を維持したまま十分な加熱応答性の改善効果を得ることはできなかった。
このように、従来提唱されているいずれの方法であっても、鋼帯表面を清浄に保ち且つカーボン[C]分を効率良く除去しつつ、さらに鋼帯端部の過熱が発生し難く、板幅方向温度均一性と鋼帯表面品質に優れ、しかも電源装置や高周波電力調整装置などが不要で且つ安価な加熱方式により鋼帯の加熱熱応答性を改善することは困難であった。
【0010】
さらに、このような誘導加熱装置や強制対流加熱、直火加熱を用いる技術においては、ラジアントチューブ式輻射管による加熱装置による熱応答遅れを改善するために非定常時即ち鋼帯サイズ、鋼帯温度やライン速度を変更するときだけ、一時的に誘導加熱装置、強制対流加熱装置或いは直火加熱装置を使用して温度制御性を向上せしめるものであるため、定常時には使用されず鋼帯の加熱に寄与しないので、生産性が低下し不経済であるという問題があった。
そこで、本発明においては、鋼帯サイズや鋼帯温度やライン速度等を変更する過渡期(非定常時)において加熱帯における温度制御性を向上させるとともに、効率良くカーボン[C]を酸化除去することができ、更には定常時であっても鋼帯の加熱に寄与できることを目的とする。
【0011】
【課題を解決するための手段】
本発明では、ラジアントチューブ式輻射管を有する加熱帯を備えた鋼帯の連続式熱処理設備において、該加熱帯の入側或いは中間部或いは出側に、鋼帯を挟んで対向するように直火還元バーナーを設置した。
更に、直火還元バーナーを設置するにあたって、前記加熱帯の入側或いは中間部或いは出側に、直火還元バーナー帯を設置してもよい。この時、直火還元バーナー帯の前後にはシール装置を設けるとともに、該直火還元バーナー帯の炉圧を隣接する他の帯の炉圧よりも低くするための炉圧調節弁を設置した。
【0012】
また、ラジアントチューブ式輻射管による加熱を行う加熱帯の入側或いは中間部或いは出側に、鋼帯を挟んで対向するように直火還元バーナーを設置した鋼帯の連続式熱処理設備の燃焼方法であって、前記直火還元バーナーは、定常時は基準負荷で一定燃焼しており、例えば鋼帯サイズ、鋼帯温度、ライン速度等の加熱サイクルが変更するような過渡期には、ラジアントチューブ式輻射管による加熱の熱応答を補償するように直火還元バーナーの燃焼負荷を調節する。
【0013】
【発明の実施の形態】
以下、本発明について図面に従って詳細に説明する。
図1は、連続式熱処理設備の一例を示す図である。この図に示すように、鋼帯1は、上部ハースロール12群(各帯の上部に設置されているが図1では符合を一部省略)と下部ハースロール13群(各帯の下部に設置されているが図1では符合を一部省略)によって連続的に通板され、ラジアントチューブによる間接輻射加熱方式を採用した第一加熱帯2及び第二加熱帯3において所定の加熱温度に加熱され、均熱帯4を経て一次冷却帯5において急速に冷却される。一次冷却帯5には、ガスジェットクーラー方式、気水冷却方式或いはロール冷却方式またはこれらの組み合わせ方式などが採用され、鋼種に応じて250℃〜450℃の温度まで急冷される。鋼帯1は、引き続いて一次過時効帯6及び二次過時効帯7を経て、二次冷却帯8及び第一クエンチタンク9、第二クエンチタンク10によって常温近くまで最終冷却され、ドライヤー11により乾燥される。
【0014】
本発明では、図1において、第一加熱帯2と第二加熱帯3の間に直火還元バーナー帯14を設け、この直火還元バーナー帯14には、鋼帯1を挟んで対向するように直火還元バーナー20を配設している。直火還元バーナー20は、例えば特公平3−69972号公報に示されているような構成のものを使用するが、その具体的な構成について図3(a)及び図3(b)に示す。図3(a)は直火還元バーナーの断面図、図3(b)は図3(a)のV−V線矢視断面図である。バーナータイル底部21において、該底部面積100cmあたり5孔以上の2重管式吐出孔22を設け、内管24には燃料ガス(または空気)を、外管23には空気(または燃料ガス)をバーナー中心軸に平行に流し、その空気比を0.7〜0.9に調整し、鋼帯1とバーナータイル底部21との距離を100〜400mmに調整することによって有効な直火還元加熱を得ることができ、鋼帯表面に酸化膜を生じることなく鋼帯表面を清浄に保ったまま急速に加熱することが可能なものである。
【0015】
直火還元バーナー帯14は、第一加熱帯2の入側に設けてもよいし、第二加熱帯3の出側に設けてもよい。また、図2に示すように第一加熱帯と第二加熱帯との間に独立したチャンバーを設け、上下に通板されるそれぞれの鋼帯に対して、直火還元バーナー20を鋼帯1を挟んで対向するように設けてもよい。(図2のその他の構成は図1と同じ)
【0016】
図1および図2において、直火還元バーナー帯14からの排ガスは、排ガスダクト16より炉圧調整弁17を経て、排ガスブロワー18により吸引され、煙突19から屋外へ排気される。ここで、排ガスブロワー18は図示しているように単独で設けてもよいし、第一加熱帯2や第二加熱帯3の燃焼排ガス系に合流させて排出しても良い。また、直火還元バーナー帯14の前後には、例えば図4に示すようなシール装置が各々設けられている(図1、図2では図示を省略)。
【0017】
すなわち、図4は、直火還元バーナー帯の前後でのシール装置を示す図である。この図に示すように、直火還元バーナー帯14の前、すなわち、第一加熱帯2と直火還元バーナー帯14との間に設けたシール装置31においては、小室25内の雰囲気ガス圧力制御に当たって、炉内圧調整弁29を開くことにより小室25内の雰囲気ガスを炉外に放出し、小室25内の圧力を下げる。これによって、小室25をその前後の第一加熱帯2や直火還元バーナー帯14の炉内圧力より低い圧力に保持することができる。
【0018】
同様に、直火還元バーナー帯14の後、すなわち、直火還元バーナー帯14と第二加熱帯3の間に設けたシール装置31においても、炉内圧調整弁29を開くことにより小室25内の雰囲気ガスを炉外に放出し、小室25内の圧力を下げる。これによって、小室25をその前後の直火還元バーナー帯14や第二加熱帯3の炉内圧力より低い圧力に保持することができる。本発明の一実施例でのシール機構は上シール部材26が昇降アクチュエータ27によって鋼帯1に向けて、一定の押圧力で進出するように構成され、鋼帯1に押し圧してシール状態を維持する。
【0019】
また、このシール装置は図4に限定されるものではなく、ガスシール装置やロールシール装置等によってシールしても良く、特にシール装置には限定されるものではない。上述したように直火還元バーナー帯14の炉圧を隣接する第一加熱帯2や第二加熱帯3の炉圧よりも低くなるように、図1、図2に示した炉内圧調整弁17によって制御することにより、直火還元バーナー帯14の燃焼排ガスが隣接する第一加熱帯2や第二加熱帯3へ流入することを確実に防止することができる。なお、符号28は雰囲気ガス排気口を示す。
【0020】
図5は本発明による加熱制御の実施例を示すもので、図5(a)に示すように鋼帯加熱温度がt1からt2へ上がるように加熱サイクルを変更した場合を示している。変更前I期(定常時)はラジアントチューブ式輻射管及び直火還元バーナーにより定常加熱が行われており燃焼量は各々一定となっている。加熱サイクル変更指令が出されたII期(過渡期)には、図5(c)のようにライン速度が減速し、ラジアントチューブ式輻射管への投入燃焼量が増加するが、ラジアントチューブ式輻射管による間接加熱の場合は時定数が大きく図5(d)に示す様にラジアントチューブ加熱温度は徐々にしか上昇しない。
【0021】
従って、本発明によらない従来のラジアントチューブ加熱のみの場合では、図5(a)中に破線で示す様に鋼帯加熱温度は徐々にしか上昇せず加熱不足が生じてしまう。そこで本発明においては、ここで、図5(b)に示すように、直火還元バーナーの燃焼量を加熱サイクル変更指令と同時に増加させる。その後、ラジアントチューブ加熱による加熱量増加に応じて図5(b)に示すように直火還元バーナーの燃焼量を徐々に減少させる。サイクル変更後III期(定常時)では、直火還元バーナーの燃焼量は変更前I期に比べて増加させてあり、加熱に有効に寄与させている。
【0022】
図6は、本発明による加熱制御の別の実施例を示すもので、図6(a)に示すように鋼帯加熱温度がt2からt1へ下がるように加熱サイクルを変更した場合を示している。変更前I期(定常時)はラジアントチューブ式輻射管及び直火還元バーナーにより定常加熱が行われており燃焼量は各々一定となっている。加熱サイクル変更指令が出されたII期(過渡期)には、図6(c)のようにライン速度が増速し、ラジアントチューブ式輻射管への投入熱量が減少するが、ラジアントチューブ式輻射管による間接加熱の場合は図6(d)に示すようにラジアントチューブ加熱温度は徐々にしか下降しない。
【0023】
従って、本発明によらない従来のラジアントチューブ加熱のみの場合では、図6(a)中に破線で示すように鋼帯加熱温度は徐々にしか下降せず加熱過剰となってしまう。そこで本発明においては、ここで図6(b)に示すように、直火還元バーナーの燃焼量を加熱サイクル変更指令と同時に一旦下げ、その後、ラジアントチューブ加熱による加熱量減少に応じて図6(b)に示すように直火還元バーナーの燃焼量を徐々に増加させる。サイクル変更後III期(定常時)では、直火還元バーナーの燃焼量は変更前前I期に比べて減少させてある。
【0024】
図7は、鋼帯表面のカーボン[C]の除去効果を模式的に示している。本発明における加熱応答性改善のために設けた直火還元バーナーにより、鋼帯表面のカーボン[C]はC+CO→2COにより酸化除去され、その効果は、従来の誘導加熱装置を使用する場合のカーボン[C]の還元除去C+2H→CHに比べて大きい。従って、本発明においては加熱応答性改善効果に加えて鋼帯表面を清浄に保ったまま表面の付着カーボン[C]を効果的に除去できるという効果を得ることができる。
【0025】
【発明の効果】
以上述べたように、本発明によれば、ラジアントチューブ式輻射管による加熱装置による熱応答遅れを改善するために、ラジアントチューブ式輻射管による加熱帯の入側又は中間部又は出側に、直火還元バーナーを設置している。この直火還元バーナーは、定常時は基準負荷で燃焼しているが、鋼帯サイズや鋼帯温度やライン速度を変更する過渡期には、ラジアントチューブ式輻射管による加熱装置の熱応答を補償するように直火還元バーナーの燃焼負荷を調節することにより、温度制御性を向上させることができる。また、直火還元加熱バーナーは優れた還元性や急速加熱が実現できるので、鋼帯表面に酸化膜が生成することがなく鋼帯端部の過熱を生じることもない。
【0026】
さらに、鋼帯表面にカーボン[C]分が多く付着していても直火還元バーナーにより効率良くカーボン[C]を酸化除去することができるので、炉内雰囲気ガス中の水素濃度を通常以上に上げることなく高品質な成品を得ることができ、連続溶融亜鉛めっきラインにおいては優れためっき密着性を得ることができるようになる。加えて直火還元加熱バーナーは、定常時は基準負荷で燃焼しており非定常時に燃焼負荷を増減させるものであるため、定常時であっても鋼帯の加熱に寄与しているので生産性をも向上させることができる極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の連続式熱処理設備の一例を示す図である。
【図2】本発明の連続式熱処理設備の他の例を示す図である。
【図3】直火還元バーナーの断面図およびV−V線矢視断面図である。
【図4】直火還元バーナー帯の前後でのシール装置を示す図である。
【図5】本発明による加熱制御の作動を模式的に表した説明図である。
【図6】本発明による加熱制御の作動を模式的に表した他の説明図である。
【図7】鋼帯表面の付着カーボン[C]の除去効果を示す模式図である。
【符号の説明】
1 鋼帯
2 第一加熱帯
3 第二加熱帯
4 均熱帯
5 一次冷却帯
6 一次過時効帯
7 二次過時効帯
8 二次冷却帯
9 第一クエンチタンク
10 第二クエンチタンク
11 ドライヤー
12 上部ハースロール
13 下部ハースロール
14 直火還元バーナー帯
15 誘導加熱装置
16 排ガスダクト
17 炉圧調整弁
18 排ガスブロワー
19 煙突
20 直火還元バーナー
21 バーナータイル底部
22 2重管式吐出孔
23 外管
24 内管
25 小室
26 上シール部材
27 昇降アクチュエータ
28 雰囲気ガス排気口
29 炉内圧調整弁
30 排ガスダクト
31 シール装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to continuous annealing of steel strip in continuous annealing equipment for steel strip and continuous hot-dip galvanizing line, particularly in order to improve transient steel strip temperature control accuracy when changing the threading size, steel type and heat cycle. The present invention relates to equipment and a combustion method thereof.
[0002]
[Prior art]
Generally, in a continuous annealing facility for steel strip or a continuous hot-dip galvanizing line, a continuous annealing furnace for continuously performing heating, soaking, and cooling required for an annealing process is installed on the steel strip. In this continuous annealing furnace, a heating cycle is set in accordance with the steel type of the steel strip, and the heating cycle is set to a set temperature by a heating device using a radiant tube type radiation tube. Since the heating cycle and the sheet thickness depending on the steel type are frequently changed, in order to realize a predetermined heating cycle with higher accuracy, for example, as disclosed in Japanese Patent Application Laid-Open No. 6-136451 (Patent Document 1). It has been proposed to install an induction heating device upstream, downstream, or in the middle of a conventional heating device using radiant heating or direct flame heating to improve the heating response of a steel strip.
[0003]
Japanese Patent Application Laid-Open Publication No. 57-94524 (Patent Document 2) discloses a similar technical idea, in which a forced convection heating or a direct flame heating is used instead of an induction heating device, and a heating device using a radiant tube type radiation tube is used. Improve temperature controllability by using induction heating device, forced convection heating device or direct fire heating device only in the unsteady state, that is, when changing the steel strip temperature and line speed, to improve the thermal response delay. A method had been advocated.
[0004]
[References]
(1) Patent Document 1 (JP-A-6-136451)
(2) Patent Document 2 (JP-A-57-94524)
[0005]
[Problems to be solved by the invention]
However, the method disclosed in Patent Document 1 generally uses an induction heating device in a non-oxidizing and reducing atmosphere, and has an advantage that the steel strip surface can be heated while being kept in its original state. However, when a large amount of carbon [C] is attached to the surface of the original sheet, when the steel sheet is heated in a non-oxidizing and reducing atmosphere such as radiant tube heating or induction heating, carbon [C] is reduced by reduction. The removal effect of carbon [C] is extremely small when the hydrogen concentration in a normally used non-oxidizing and reducing atmosphere is about 5 to 10%, and the effect is sufficient even when the hydrogen concentration is increased. Was not.
[0006]
Therefore, when a steel sheet is heat-treated as in a continuous hot-dip galvanizing line and subsequently galvanized, there is a problem that carbon [C] on the steel sheet surface inhibits plating adhesion. In addition, when an induction heating device is used, the equipment cost including the power supply device and the power control device must be expensive, and particularly when the heating device is to be installed at a later stage, the coil of the induction heating device is required. There is a problem that it is necessary to take heat-resisting measures for the part, which is very expensive.
[0007]
The continuous induction heating of the steel strip can be classified into a method called Longitudinal Flux method and a Transverse Flux method. The Longitudinal Flux method encloses a steel strip with an induction heating coil, generates magnetic flux on the steel strip surface, generates an eddy current around the magnetic flux, and heats the steel strip with Joule heat. Although heating can be performed, the heating efficiency of the non-magnetic material or the non-magnetic region with respect to the object to be heated is low. Accordingly, in steel strip heating, the Longitudinal Flux method is often employed for heating at or below the Curie point (760 ° C.).
[0008]
On the other hand, in the Transverse Flux method, inductors are arranged on the front and back of the steel strip so that the magnetic flux penetrates the steel strip surface in the thickness direction, and Joule heating is performed by eddy current generated around the magnetic flux in the steel strip plane direction. The Transverse Flux method has the advantage that it can be heated regardless of whether it is magnetic or non-magnetic, but has the problem that the steel strip ends are easily overheated. When the heating device is to be installed at a later stage, the Transverse Flux method is adopted in consideration of the heating efficiency, but there is a fear that overheating of the end portion of the steel strip may become a problem.
[0009]
In addition, although forced convection heating according to Patent Document 2 and a conventional direct fire heating method are also conceivable, the conventional forced convection heating has low heating response, and the conventional direct fire heating method oxidizes the steel strip surface. Therefore, it was not possible to obtain a sufficient effect of improving the heating response while maintaining the steel strip surface quality.
As described above, in any of the conventionally proposed methods, the steel strip surface is kept clean and the carbon [C] component is efficiently removed, and furthermore, the overheating of the steel strip end is hard to occur, and It has been difficult to improve the heating thermal responsiveness of the steel strip by an inexpensive heating method, which is excellent in the temperature uniformity in the width direction and the surface quality of the steel strip, and does not require a power supply device or a high-frequency power adjusting device.
[0010]
Further, in the technology using such an induction heating device, forced convection heating, and direct flame heating, in order to improve the thermal response delay due to the heating device using a radiant tube type radiant tube, the steel strip size, the steel strip temperature, Only when the line speed is changed, the induction heating device, the forced convection heating device or the direct heating device is used to improve the temperature controllability. There is a problem that productivity is reduced and uneconomical because it does not contribute.
Therefore, in the present invention, the temperature controllability in the heating zone is improved in the transition period (unsteady state) in which the steel strip size, the steel strip temperature, the line speed, and the like are changed, and the carbon [C] is efficiently oxidized and removed. It is another object of the present invention to be able to contribute to the heating of the steel strip even in a steady state.
[0011]
[Means for Solving the Problems]
According to the present invention, in a continuous heat treatment facility for a steel strip provided with a heating zone having a radiant tube type radiant tube, a direct fire is performed so as to oppose an entrance side, an intermediate part, or an exit side of the heating zone with the steel strip therebetween. A reduction burner was installed.
Further, in installing the direct fire reduction burner, a direct fire reduction burner zone may be installed on the entrance side, intermediate portion, or exit side of the heating zone. At this time, a sealing device was provided before and after the direct fire reduction burner zone, and a furnace pressure control valve for lowering the furnace pressure of the direct fire reduction burner zone to the furnace pressure of the other adjacent zones was installed.
[0012]
In addition, a combustion method of a continuous heat treatment equipment for a steel strip in which a direct fire reduction burner is installed so as to oppose the steel strip at an entrance side, an intermediate part, or an exit side of a heating zone for heating by a radiant tube type radiation tube. In the direct fire reduction burner, during steady-state combustion at a constant load at a reference load, for example, in the transition period when the heating cycle such as steel strip size, steel strip temperature, line speed, etc. changes, the radiant tube The combustion load of the direct fire reduction burner is adjusted to compensate for the thermal response of heating by the radiant tube.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described below in detail with reference to the drawings.
FIG. 1 is a diagram showing an example of a continuous heat treatment facility. As shown in this figure, a steel strip 1 is composed of an upper group of hearth rolls 12 (installed at the upper part of each band, but some symbols are omitted in FIG. 1) and a lower group of hearth rolls 13 (installed at the lower part of each band). However, in FIG. 1, a part of the reference numeral is omitted), the sheet is continuously passed through, and heated to a predetermined heating temperature in the first heating zone 2 and the second heating zone 3 employing the indirect radiation heating method using a radiant tube. , And rapidly cooled in the primary cooling zone 5 via the solitary zone 4. The primary cooling zone 5 employs a gas jet cooler system, a steam-water cooling system, a roll cooling system, or a combination thereof, and is rapidly cooled to a temperature of 250 ° C to 450 ° C depending on the type of steel. The steel strip 1 subsequently passes through the primary overaging zone 6 and the secondary overaging zone 7, is finally cooled to near normal temperature by the secondary cooling zone 8, the first quench tank 9, and the second quench tank 10, and is dried by the dryer 11. Dried.
[0014]
In the present invention, in FIG. 1, a direct fire reduction burner zone 14 is provided between the first heating zone 2 and the second heating zone 3, and is opposed to the direct fire reduction burner zone 14 with the steel strip 1 interposed therebetween. The direct-fire reduction burner 20 is disposed. As the direct fire reduction burner 20, for example, one having a configuration as disclosed in Japanese Patent Publication No. 3-69972 is used, and the specific configuration is shown in FIGS. 3 (a) and 3 (b). FIG. 3A is a cross-sectional view of the direct fire reduction burner, and FIG. 3B is a cross-sectional view taken along line VV of FIG. 3A. At the bottom 21 of the burner tile, five or more double-pipe discharge holes 22 are provided per 100 cm 2 of the bottom area, fuel gas (or air) is provided in the inner pipe 24, and air (or fuel gas) is provided in the outer pipe 23. Flow parallel to the central axis of the burner, the air ratio is adjusted to 0.7 to 0.9, and the distance between the steel strip 1 and the bottom 21 of the burner tile is adjusted to 100 to 400 mm. Can be obtained, and the steel strip surface can be rapidly heated without forming an oxide film on the steel strip surface while keeping it clean.
[0015]
The direct fire reduction burner zone 14 may be provided on the inlet side of the first heating zone 2 or may be provided on the outlet side of the second heating zone 3. Further, as shown in FIG. 2, an independent chamber is provided between the first heating zone and the second heating zone, and a direct-fire reduction burner 20 is provided for each of the steel strips passed vertically. May be provided to face each other. (Other configurations in FIG. 2 are the same as those in FIG. 1)
[0016]
1 and 2, the exhaust gas from the direct-fire reduction burner zone 14 is sucked by an exhaust gas blower 18 from an exhaust gas duct 16 through a furnace pressure regulating valve 17, and is exhausted from a chimney 19 to the outside. Here, the exhaust gas blower 18 may be provided alone as shown, or may be discharged by being combined with the combustion exhaust gas system of the first heating zone 2 and the second heating zone 3. In addition, for example, a sealing device as shown in FIG. 4 is provided before and after the direct fire reduction burner zone 14 (not shown in FIGS. 1 and 2).
[0017]
That is, FIG. 4 is a diagram showing the sealing device before and after the direct-fire reduction burner zone. As shown in this figure, in the sealing device 31 provided before the direct fire reduction burner zone 14, that is, between the first heating zone 2 and the direct fire reduction burner zone 14, the atmosphere gas pressure control in the small chamber 25 is performed. At this time, the atmosphere gas in the small chamber 25 is discharged to the outside of the furnace by opening the furnace pressure adjusting valve 29 to lower the pressure in the small chamber 25. Thereby, the small chamber 25 can be maintained at a pressure lower than the pressure in the furnace of the first heating zone 2 and the direct fire reduction burner zone 14 before and after the small chamber 25.
[0018]
Similarly, in the sealing device 31 provided after the direct fire reduction burner zone 14, that is, between the direct fire reduction burner zone 14 and the second heating zone 3, the inside of the small chamber 25 is opened by opening the furnace pressure control valve 29. The atmosphere gas is released outside the furnace, and the pressure in the small chamber 25 is reduced. Thereby, the small chamber 25 can be maintained at a pressure lower than the furnace pressure of the direct fire reduction burner zone 14 and the second heating zone 3 before and after it. The sealing mechanism according to one embodiment of the present invention is configured such that the upper sealing member 26 advances toward the steel strip 1 with a constant pressing force by the elevating actuator 27, and presses against the steel strip 1 to maintain a sealed state. I do.
[0019]
Further, the sealing device is not limited to that shown in FIG. 4, and may be sealed by a gas sealing device, a roll sealing device, or the like, and is not particularly limited to the sealing device. As described above, the furnace pressure adjusting valve 17 shown in FIGS. 1 and 2 is set so that the furnace pressure of the direct-fire reduction burner zone 14 becomes lower than the furnace pressure of the adjacent first heating zone 2 and second heating zone 3. Thus, it is possible to reliably prevent the combustion exhaust gas of the direct-fired reduction burner zone 14 from flowing into the adjacent first heating zone 2 and second heating zone 3. Reference numeral 28 denotes an atmosphere gas exhaust port.
[0020]
FIG. 5 shows an embodiment of the heating control according to the present invention, and shows a case where the heating cycle is changed so that the steel strip heating temperature increases from t1 to t2 as shown in FIG. During the period I (at steady state) before the change, steady heating is performed by the radiant tube type radiant tube and the direct fire reduction burner, and the combustion amount is constant. In the period II (transitional period) when the heating cycle change command is issued, the line speed decreases as shown in FIG. 5C, and the amount of combustion injected into the radiant tube type radiant tube increases. In the case of indirect heating by a tube, the time constant is large and the radiant tube heating temperature rises only gradually as shown in FIG.
[0021]
Therefore, in the case of only conventional radiant tube heating not according to the present invention, the steel strip heating temperature rises only gradually as shown by the broken line in FIG. 5 (a), resulting in insufficient heating. Therefore, in the present invention, as shown in FIG. 5B, the combustion amount of the direct fire reduction burner is increased simultaneously with the heating cycle change command. Thereafter, as shown in FIG. 5 (b), the combustion amount of the direct fire reduction burner is gradually reduced in accordance with the increase in the heating amount due to the radiant tube heating. In the stage III (at a steady state) after the cycle change, the combustion amount of the direct flame reduction burner is increased as compared with the period I before the change, effectively contributing to the heating.
[0022]
FIG. 6 shows another embodiment of the heating control according to the present invention, in which the heating cycle is changed so that the steel strip heating temperature falls from t2 to t1 as shown in FIG. 6 (a). . During the period I (at steady state) before the change, steady heating is performed by the radiant tube type radiant tube and the direct fire reduction burner, and the combustion amount is constant. In the period II (transitional period) when the heating cycle change command is issued, the line speed increases as shown in FIG. 6C, and the amount of heat input to the radiant tube type radiation tube decreases, but the radiant tube type radiation tube In the case of indirect heating by a tube, the heating temperature of the radiant tube decreases only gradually as shown in FIG.
[0023]
Therefore, in the case of only the conventional radiant tube heating not according to the present invention, as shown by the broken line in FIG. Therefore, in the present invention, as shown in FIG. 6 (b), the combustion amount of the direct-fire reduction burner is reduced once at the same time as the heating cycle change command, and thereafter, as shown in FIG. As shown in b), the combustion amount of the direct fire reduction burner is gradually increased. In the period III (at a steady state) after the cycle change, the combustion amount of the direct flame reduction burner is reduced as compared with the period I before the change.
[0024]
FIG. 7 schematically shows the effect of removing carbon [C] from the surface of the steel strip. The carbon [C] on the steel strip surface is oxidized and removed by C + CO 2 → 2CO by the direct fire reduction burner provided for improving the heating response in the present invention. Reduction of carbon [C] is larger than C + 2H 2 → CH 4 . Therefore, in the present invention, in addition to the effect of improving the heat responsiveness, it is possible to obtain the effect of effectively removing the carbon [C] adhered to the surface of the steel strip while keeping the surface thereof clean.
[0025]
【The invention's effect】
As described above, according to the present invention, in order to improve the thermal response delay caused by the heating device using the radiant tube type radiant tube, the radiant tube type radiant tube is directly provided on the entrance side, the intermediate portion, or the exit side of the heating zone. A fire reduction burner is installed. This direct-fire reduction burner burns at the standard load in the steady state, but compensates for the thermal response of the heating device using the radiant tube radiant tube in the transition period when the steel strip size, steel strip temperature and line speed are changed. The temperature controllability can be improved by adjusting the combustion load of the direct flame reduction burner in such a manner. In addition, since the direct flame reduction heating burner can realize excellent reducibility and rapid heating, no oxide film is formed on the surface of the steel strip, and the steel strip end does not overheat.
[0026]
Further, even if a large amount of carbon [C] is adhered to the steel strip surface, the carbon [C] can be efficiently oxidized and removed by the direct-fire reduction burner. A high quality product can be obtained without raising, and excellent plating adhesion can be obtained in a continuous galvanizing line. In addition, the direct fire reduction heating burner burns at the standard load during normal operation and increases or decreases the combustion load during unsteady operation. Is very excellent.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a continuous heat treatment facility of the present invention.
FIG. 2 is a view showing another example of the continuous heat treatment equipment of the present invention.
FIG. 3 is a cross-sectional view of the direct fire reduction burner and a cross-sectional view taken along line VV.
FIG. 4 is a view showing a sealing device before and after a direct fire reduction burner zone.
FIG. 5 is an explanatory diagram schematically showing an operation of heating control according to the present invention.
FIG. 6 is another explanatory diagram schematically showing the operation of the heating control according to the present invention.
FIG. 7 is a schematic view showing the effect of removing carbon [C] adhering to the surface of a steel strip.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel strip 2 First heating zone 3 Second heating zone 4 Uniform tropical zone 5 Primary cooling zone 6 Primary overaging zone 7 Secondary overaging zone 8 Secondary cooling zone 9 First quench tank 10 Second quench tank 11 Dryer 12 Upper part Hearth roll 13 Lower hearth roll 14 Direct fire reduction burner zone 15 Induction heating device 16 Exhaust gas duct 17 Furnace pressure regulating valve 18 Exhaust gas blower 19 Chimney 20 Direct fire reduction burner 21 Burner tile bottom 22 Double pipe discharge hole 23 Outer pipe 24 Inside Pipe 25 Small chamber 26 Upper sealing member 27 Elevating actuator 28 Atmospheric gas exhaust port 29 Furnace pressure adjusting valve 30 Exhaust gas duct 31 Sealing device

Claims (3)

ラジアントチューブ式輻射管を有する加熱帯を備えた鋼帯の連続式熱処理設備において、該加熱帯の入側或いは中間部或いは出側に、鋼帯を挟んで対向するように直火還元バーナーを設置したことを特徴とする鋼帯の連続式熱処理設備。In a continuous heat treatment facility for a steel strip provided with a heating zone having a radiant tube type radiant tube, a direct flame reduction burner is installed on the entrance side, intermediate part, or exit side of the heating zone so as to face the steel strip. A continuous heat treatment facility for steel strips. 前記加熱帯の入側或いは中間部或いは出側に、直火還元バーナー帯を設置し、該直火還元バーナー帯の前後にシール装置を設けるとともに、該直火還元バーナー帯の炉圧を隣接する他の帯の炉圧よりも低くするための炉圧調節弁を設置したことを特徴とする請求項1記載の鋼帯の連続式熱処理設備。At the entrance, middle or exit side of the heating zone, a direct-fire reduction burner zone is installed, and a sealing device is provided before and after the direct-fire reduction burner zone, and the furnace pressure of the direct-fire reduction burner zone is adjacent. 2. The continuous heat treatment equipment for steel strip according to claim 1, further comprising a furnace pressure control valve for lowering the furnace pressure of the other strips. ラジアントチューブ式輻射管を有する加熱帯の入側或いは中間部或いは出側に、鋼帯を挟んで対向するように直火還元バーナーを設置した鋼帯の連続式熱処理設備の燃焼方法であって、前記直火還元バーナーは、定常時は基準負荷で一定燃焼しており、加熱サイクルが変更する過渡期には、ラジアントチューブ式輻射管による加熱の熱応答を補償するように直火還元バーナーの燃焼負荷を調節することを特徴とする鋼帯の連続式熱処理設備の燃焼方法。A combustion method of a continuous heat treatment equipment for a steel strip in which an open flame reduction burner is installed so as to oppose the steel strip on an inlet side, an intermediate part, or an outlet side of a heating zone having a radiant tube type radiation tube, The direct fire reduction burner is burning at a constant load at a reference load in a steady state, and in a transitional period when the heating cycle changes, the combustion of the direct fire reduction burner is performed so as to compensate for the thermal response of heating by the radiant tube type radiant tube. A method for burning steel strip continuous heat treatment equipment, comprising adjusting a load.
JP2003020142A 2003-01-29 2003-01-29 Steel strip continuous heat treatment equipment and combustion method thereof Expired - Fee Related JP4064253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020142A JP4064253B2 (en) 2003-01-29 2003-01-29 Steel strip continuous heat treatment equipment and combustion method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020142A JP4064253B2 (en) 2003-01-29 2003-01-29 Steel strip continuous heat treatment equipment and combustion method thereof

Publications (2)

Publication Number Publication Date
JP2004232007A true JP2004232007A (en) 2004-08-19
JP4064253B2 JP4064253B2 (en) 2008-03-19

Family

ID=32949852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020142A Expired - Fee Related JP4064253B2 (en) 2003-01-29 2003-01-29 Steel strip continuous heat treatment equipment and combustion method thereof

Country Status (1)

Country Link
JP (1) JP4064253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107964643A (en) * 2017-12-27 2018-04-27 安德里茨(中国)有限公司 Hot-strip continuous hot galvanizing device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107964643A (en) * 2017-12-27 2018-04-27 安德里茨(中国)有限公司 Hot-strip continuous hot galvanizing device and method

Also Published As

Publication number Publication date
JP4064253B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US5770838A (en) Induction heaters to improve transitions in continuous heating system, and method
WO2017163624A1 (en) Industrial furnace and method of utilizing heat therefrom
JP5000116B2 (en) Soaking furnace operation method in steel strip continuous treatment equipment
JP4987689B2 (en) Direct-fired type roller hearth continuous heat treatment furnace
JP4064253B2 (en) Steel strip continuous heat treatment equipment and combustion method thereof
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
JPS6056406B2 (en) Continuous annealing furnace with induction heating section
KR100785255B1 (en) Improvements to the preheating of metal strip, especially in galvanizing or annealing lines
US5827056A (en) Device and method for improving strip tracking in a continuous heating furnace
JP4123535B2 (en) Continuous heat treatment furnace for metal strip
JP2009092328A (en) Furnace atmosphere control method for heating furnace
JP2733885B2 (en) Continuous heat treatment of steel strip
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace
JPH07126759A (en) Method for heating metallic strip and device therefor
JPH10140246A (en) Device for heating skid mark
JP2006152336A (en) Conveying device in continuous heat treatment furnace for metal strip
JP3003062B2 (en) Heating method of billet in continuous heating furnace
JPH0762450A (en) Method for preventing overheat of steel strip edge part in continuous annealing furnace
JPH0225523A (en) Direct heating type continuous heat-treatment furnace for metal strip
JP5398685B2 (en) Combustion control method of regenerative burner in heating furnace
JP3473060B2 (en) Muffle furnace
JPH0553848B2 (en)
JP2010196132A (en) Method for controlling temperature in furnace width direction in heating furnace having heat storage type burner
JPH0472023A (en) Direct firing type continuous annealing method for steel strip and apparatus thereof
JPH0320405A (en) Method for changing temperature in furnace for multi-zones type continuous heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees