JP4123535B2 - Continuous heat treatment furnace for metal strip - Google Patents

Continuous heat treatment furnace for metal strip Download PDF

Info

Publication number
JP4123535B2
JP4123535B2 JP27790296A JP27790296A JP4123535B2 JP 4123535 B2 JP4123535 B2 JP 4123535B2 JP 27790296 A JP27790296 A JP 27790296A JP 27790296 A JP27790296 A JP 27790296A JP 4123535 B2 JP4123535 B2 JP 4123535B2
Authority
JP
Japan
Prior art keywords
heating furnace
furnace
chamber
radiant tube
roll chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27790296A
Other languages
Japanese (ja)
Other versions
JPH10121150A (en
Inventor
匠 今宿
洋 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP27790296A priority Critical patent/JP4123535B2/en
Publication of JPH10121150A publication Critical patent/JPH10121150A/en
Application granted granted Critical
Publication of JP4123535B2 publication Critical patent/JP4123535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は冷延鋼帯等の金属帯の縦型連続熱処理炉に係わり、加熱帯に誘導加熱炉と輻射管加熱炉を併用する場合、又は通電加熱炉と輻射管加熱炉を併用する場合の縦型連続熱処理炉に関するものである。
【0002】
【従来の技術】
縦型連続熱処理炉では上下部に設置された多数のハースロールによって金属帯が保持、搬送されつつ加熱、冷却が行なわれる。
【0003】
縦型連続熱処理炉の加熱装置としては一般に耐熱鋼管の内部でガスを燃焼させる輻射管(ラジアントチューブ)加熱装置が広く採用されている。
【0004】
しかし、輻射管加熱装置は、加熱速度が低いためにライン長が長くなり、それに伴って金属帯の蛇行、バックリング、破断等の通板異常が発生し易い。
また,温度制御性、応答性が悪いため、金属帯サイズ、焼鈍(加熱目標)温度等の操業条件を速やかに変更できず、生産性の低下を招いている。
【0005】
これらの対策として、近年は電磁誘導加熱装置、通電加熱装置等の高速、高応答加熱装置を輻射管加熱装置と併用する例が増加している。
例えば、特開昭57−94524号公報、特公昭60−56406号公報等には、電磁誘導加熱装置と輻射管加熱装置を併用する技術が開示されている。
【0006】
その一例として図3は縦型連続熱処理炉に電磁誘導加熱装置と輻射管加熱装置を併用した場合の概略図である。
【0007】
図3では縦型加熱炉1内の上下に多数のハースロール2a、2bが設置されている。鋼帯3が縦型加熱炉1内のハースロール2a、2bにより上下に走行しながら、熱処理されて、次工程に引抜かれる。
【0008】
ここでは入側に熱処理するための加熱炉4を設け、輻射管加熱装置4aを配置し、加熱炉4に続いて急速加熱炉5を設け、電磁誘導加熱装置5aを配置している。6は均熱炉、7は冷却炉、8は再加熱炉、9は急速加熱炉5の炉温制御装置である。
【0009】
また、特開平7−90391号公報には通電加熱装置と輻射管加熱装置を併用する技術が開示されている。
【0010】
【発明が解決しようとする課題】
しかしながら、上記の従来技術には以下のような問題点がある。
輻射管加熱装置と電磁誘導加熱装置の併用では、電磁誘導加熱装置が金属帯のみを加熱し、炉内ガスが加熱されないために、電磁誘導加熱装置のハースロール近傍での板温が炉温よりも高くなり、ロールの金属帯との接触部分が金属帯からの加熱によって、一方、ロールの非接触部分が炉内ガスによって加熱されるので、ロール軸方向に熱勾配を発生し易い。
【0011】
ハースロールには通板を安定させる目的で初期クラウンが設定されているが、この熱勾配に起因するハースロールの不均一な熱膨張(以降サーマルクラウンという)によって操業時のサーマルクラウンは初期クラウンよりもかなり大きくなり、金属帯にバックリング、あるいは絞りと呼ばれる皺状の欠陥が発生し易い。
【0012】
また、通電加熱装置では、同様に通電ロールにサーマルクラウンが発生し、上記したサーマルクラウンによる欠陥に加えて、金属帯と通電ロール間の接触不良によりスパークが発生し易い。
【0013】
本発明は、上記のような問題点の解決を図ったものであり、サーマルクラウンの発生を抑制し、高速かつ高応答の加熱処理が可能な金属帯の縦型連続熱処理炉を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1に係る発明は加熱帯に誘導加熱炉と輻射管加熱炉を併用する金属帯の縦型連続熱処理炉において、前記誘導加熱炉を各々ハースロールを収容する上部ロール室と下部ロール室ならびに加熱室とに区分して形成し、該上部ロール室と該加熱室の間および該下部ロール室と該加熱室の間は金属帯を通過させる部分を除いて遮蔽させるとともに、前記誘導加熱炉の前記上部ロール室と輻射管加熱炉の間および前記下部ロール室と輻射管加熱炉との間各々連通路を設け、そのうちの一方はガス流のみの連通路としたことを特徴とする金属帯の連続熱処理炉である。
【0015】
請求項2に係る発明は加熱帯に通電加熱炉と輻射管加熱炉を併用する金属帯の縦型連続熱処理炉において、前記通電加熱炉を各々通電ロールを収容する上部ロール室と下部ロール室ならびに加熱室とに区分して形成し、該上部ロール室と該加熱室の間および該下部ロール室と該加熱室の間は金属帯を通過させる部分を除いて遮蔽させるとともに、前記通電加熱炉の前記上部ロール室と輻射管加熱炉の間および前記下部ロール室と輻射管加熱炉の間各々連通路を設け、そのうちの一方はガス流のみの連通路としたことを特徴とする金属帯の連続熱処理炉である。
【0016】
請求項3にかかる発明は、請求項1に係る発明又は請求項2に係る発明において、請求項1記載の誘導加熱炉と輻射管加熱炉は、誘導加熱炉と輻射管加熱炉の炉内ガス圧差を制御する手段と輻射管加熱炉から誘導加熱炉のロール室へ流入するガスの流量を制御する手段とを備え、請求項2記載の通電加熱炉と輻射管加熱炉は、通電加熱炉と輻射管加熱炉の炉内ガス圧差を制御する手段と輻射管加熱炉から通電加熱炉のロール室へ流入するガスの流量を制御する手段とを備えたことを特徴とする金属帯の連続熱処理炉である。
【0017】
本発明によれば、上記の構成により、輻射管加熱炉の炉圧を誘導加熱炉あるいは通電加熱炉よりも高くすることによって、炉温の高い輻射管加熱炉の炉内ガスを誘導加熱炉のロール室あるいは通電加熱炉のロール室に流入させ、それらのロール室の炉温を上昇させ、流入ガス流量を制御することにより、ロール室内の炉温を板温に近づけてサーマルクラウンを小さくすることができる。
【0018】
一方、誘導加熱炉あるいは通電加熱炉は上下部ロール室(上部ロール室と下部ロール室)を形成し、上下部ロール室(上部ロール室と下部ロール室)と加熱室の間が金属帯を通過させる部分を除いて遮蔽されているので、輻射管加熱炉の温度の高い炉内ガスが加熱室に直接に多量流入することがなくなり、輻射管加熱炉の炉温を安定して保持できる。
【0019】
また、輻射管加熱炉の温度の高い炉内ガスが誘導加熱炉の加熱室に直接に流入しないので、加熱室の誘導コイルは過剰な温度上昇による弊害を生じない。
【0020】
【発明の実施の形態】
本発明の実施の形態を図によって説明する。
図1は本発明の一実施の形態を示す側断面図である。
【0021】
誘導加熱炉と輻射管加熱炉を順次配置した鋼帯の連続熱処理炉の場合を示す。図1において、鋼帯11は溶接、洗浄、ルーパ等の入側設備を経て誘導加熱炉12に入る。誘導加熱炉12には、誘導コイル13により加熱を行なう加熱室14と、ハースロール15を収容する上下部ロール室16a、16b、16cを形成している。加熱室14と上下部ロール室16a、16b、16cはスロート17a、17b、17cで連通されている。
【0022】
スロート17a、17b、17cを用いて、効果的に金属帯を通過させる部分を除いて遮蔽することができる。
【0023】
誘導加熱炉12を通過した鋼帯11は約500〜600℃に加熱され、さらに輻射管加熱炉18で焼鈍温度(600〜900℃)まで加熱された後に、均熱、冷却処理される。
【0024】
本発明では誘導加熱炉12の上下部ロール室16c、16bと輻射管加熱炉18との間に連通路19a、19bを設け、連通路19bをガス流のみの連通路とした。連通路19aは鋼帯11を通過させるものである。
【0025】
下部ロール室16bと輻射管加熱炉18の連通路19bには輻射管加熱炉18から流入する温度の高い雰囲気ガスの流量を調節するダンパ20を設けている。上下部ロール室16a、16bと輻射管加熱炉18の上下部には各々雰囲気ガスの温度を測定する温度計21a、21b及び圧力を測定する圧力計22a、22bが設置されている。
【0026】
また、輻射管加熱炉18と誘導加熱炉12への雰囲気ガス(N2 を主体とした非酸化性ガス) は各炉の下方に設けたガス供給口より流量調節弁24a、24bにより調節されて送入され、排ガスは各炉の上方の設けた排出口から流量調節弁25a、25bにより調節されて排出される。
【0027】
圧力計22a、22bの測定値に基づき、輻射管加熱炉18の炉内雰囲気ガス圧を誘導加熱炉12の炉内雰囲気ガス圧よりも高くすると、輻射管加熱炉18から下部ロール室16bへ高温の炉内ガスが流入する。流入するガスの温度は、焼鈍温度にもよるが約800〜900℃である。
【0028】
ロール室16cと輻射管加熱炉18との連通路19aは鋼帯を通過させる部分を除いて遮蔽板で遮蔽しているが輻射管加熱炉18の高温雰囲気ガスも流入するので、上部ロール室16aと上部ロール室16cの間に連通路19cを設けて、連通路19cにダンパ20を設け、輻射管加熱炉18の高温雰囲気ガスの流量を調節できるようにしている。
【0029】
上部ロール室16a、下部ロール室16bへ流入する高温雰囲気ガスの流量をダンパ20により調節することにより、ロール室内の雰囲気ガスの温度を板温と同程度まで上昇させることができ、これにより上部ロール室16a、下部ロール室16b内のハースロール15に発生するサーマルクラウンを抑制することができる。
【0030】
また、誘導加熱炉12では加熱室14と上部ロール室16a、下部ロール室16bを分離するスロート17a、17bによって、温度の高い炉内ガスが直接に加熱室14に流入することを防止できるため、輻射管加熱炉18の炉温が極度に低下することがない。
【0031】
また、加熱室14の炉温が上昇するのを防止することができるために、通常冷却されている誘導コイル13について冷却の支障をきたさない。
【0032】
以上のような操作に必要なデータは全て制御装置23に入力されて、指令によって的確に制御され、誘導加熱炉12と輻射管加熱炉18の操業が円滑に行われる。
【0033】
図2は本発明の他の実施の形態を示す側面図である。輻射管加熱炉と通電加熱炉を順次配置した鋼帯の連続熱処理炉の場合を示す。
【0034】
図2において、鋼帯11は溶接、洗浄、ルーパ等の入側設備を経て輻射管加熱炉18に入り、500〜600℃まで加熱される。さらに、通電加熱炉26において、通電ロール室27a、27bの通電ロール28を介して鋼帯11に電流が直接供給され、加熱室29でジュール熱により焼鈍温度(600〜900℃)まで加熱された後に、均熱、冷却処理される。
【0035】
加熱室29と上下部通電ロール室27a、27bはスロー30a、30bで連通されている。
【0036】
スロート30a、30bを用いて、効果的に鋼帯を通過させる部分を除いて遮蔽することができる。
【0037】
輻射管加熱炉18を通過した鋼帯11は約500〜600℃に加熱され、さらにで通電加熱炉26で焼鈍温度(600〜900℃)まで加熱された後に、均熱、冷却処理される。
【0038】
本発明では通電加熱炉26の上下部通電ロール室27a、27bと輻射管加熱炉18との間に連通路31a、31bを設け、連通路31aをガス流のみの連通路とした。連通路31bは鋼帯11を通過させるものである。
【0039】
上部通電ロール室27aと輻射管加熱炉18の連通路31aには輻射管加熱炉18から流入する800〜900℃の高い温度の雰囲気ガスの流量を調節するダンパ36を設けている。
【0040】
上部通電ロール室27aと輻射管加熱炉18の上部には各々雰囲気ガスの温度を測定する温度計32a、32b及び圧力を測定する圧力計33a、33bが設置されている。また、輻射管加熱炉18と通電加熱炉26への雰囲気ガス(N2 を主体とした非酸化性ガス) は各炉の下方に設けたガス供給口より流量調節弁34a、34bにより調節されて送入され、排ガスは各炉の上方の設けた排出口から流量調節弁35a、35bにより調節されて排出される。
【0041】
圧力計33a、33bの測定値に基づき、輻射管加熱炉18の炉内雰囲気ガス圧を通電加熱炉26の炉内雰囲気ガス圧よりも高くすると、輻射管加熱炉18から通電ロール室27aへ高温の炉内ガスが流入する。流入するガスの温度は、焼鈍温度にもよるが約800〜900℃である。
【0042】
一方、通電ロール室27bと輻射管加熱炉18との連通路31bは鋼帯を通過させる部分を除いて遮蔽板で遮蔽しているが輻射管加熱炉18の高温雰囲気ガスも流入するので、ここでは特にダンパによる調節は必要ない。
【0043】
通電ロール室27aでは流入される高温雰囲気ガスの流量をダンパ35により調節することにより、通電ロール室27a内の雰囲気ガスの温度を板温と同程度まで上昇させることができ、これにより通電ロール室27a内の通電ロール28に発生するサーマルクラウンを抑制することができる。
【0044】
以上のような操作に必要なデータは全て制御装置23に入力されて、指令によって的確に制御され、通電加熱炉26と輻射管加熱炉18の操業が円滑に行われる。
【0045】
なお、上述した二つの実施の形態以外にも、誘導加熱炉を輻射管加熱炉の中間部もしくは後に配置する場合、あるいは通電加熱炉を輻射管加熱炉の中間部もしくは前に配置する場合においても本発明が有効であることは明らかである。
【0046】
【発明の効果】
本発明により、金属帯のサーマルクラウンの発生を抑制し、高速かつ高応答の加熱処理ができ、金属帯のバックリングあるいは皺状の欠陥が発生を防止し、また、通電ロールと金属帯の接触不良によるスパークの発生を防止できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す側面図である。
【図2】本発明の他実施の形態を示す側面図である。
【図3】従来の縦型連続熱処理炉に電磁誘導加熱装置と輻射管加熱装置を併用した場合の概略図である。
【符号の説明】
11 鋼帯
12 誘導加熱炉
13 誘導コイル
14 加熱室
15 ハースロール
16a、23a、27a 上部ロール室
16b、23b、27b 下部ロール室
17a、17b、26a、26b 、31a、31b スロート
18 輻射管加熱炉
19a、19b、19c 連通路
20、36 ダンパ
21a、21b、32a、32b 温度計
22a、22b、33a、33b 圧力計
23 制御装置
24a、24b、34a、34b 流量調節弁(供給側)
25a、25b、35a、35b 流量調節弁(排出側)
26 通電加熱炉
27a、上部通電ロール室
27b 下部通電ロール室
28 通電ロール
29 加熱室
31a、31b 連通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vertical continuous heat treatment furnace for a metal strip such as a cold-rolled steel strip, when an induction heating furnace and a radiant tube heating furnace are used together in a heating zone, or when an electric heating furnace and a radiant tube heating furnace are used together. The present invention relates to a vertical continuous heat treatment furnace.
[0002]
[Prior art]
In a vertical continuous heat treatment furnace, heating and cooling are performed while a metal strip is held and conveyed by a number of hearth rolls installed at the upper and lower parts.
[0003]
As a heating device for a vertical continuous heat treatment furnace, generally, a radiant tube (radiant tube) heating device for burning gas inside a heat-resistant steel tube is widely adopted.
[0004]
However, the radiation tube heating device has a long line length due to a low heating rate, and accordingly, a plate abnormality such as meandering, buckling, and breakage of the metal band tends to occur.
In addition, since the temperature controllability and responsiveness are poor, the operating conditions such as the metal band size and the annealing (heating target) temperature cannot be changed quickly, leading to a decrease in productivity.
[0005]
As measures against these, in recent years, an example in which a high-speed, high-response heating device such as an electromagnetic induction heating device or an electric heating device is used in combination with a radiant tube heating device is increasing.
For example, Japanese Patent Application Laid-Open Nos. 57-94524 and 60-56406 disclose techniques for using both an electromagnetic induction heating device and a radiation tube heating device.
[0006]
As an example, FIG. 3 is a schematic view in the case where an electromagnetic induction heating device and a radiation tube heating device are used in combination in a vertical continuous heat treatment furnace.
[0007]
In FIG. 3, a number of hearth rolls 2 a and 2 b are installed above and below the vertical heating furnace 1. The steel strip 3 is heat-treated while being moved up and down by the hearth rolls 2a and 2b in the vertical heating furnace 1, and is drawn out to the next step.
[0008]
Here, a heating furnace 4 for heat treatment is provided on the entry side, a radiant tube heating device 4a is provided, a rapid heating furnace 5 is provided following the heating furnace 4, and an electromagnetic induction heating device 5a is provided. 6 is a soaking furnace, 7 is a cooling furnace, 8 is a reheating furnace, and 9 is a furnace temperature control device for the rapid heating furnace 5.
[0009]
Japanese Patent Application Laid-Open No. 7-90391 discloses a technique in which an energization heating device and a radiant tube heating device are used in combination.
[0010]
[Problems to be solved by the invention]
However, the above prior art has the following problems.
In the combined use of the radiant tube heating device and the electromagnetic induction heating device, the electromagnetic induction heating device heats only the metal band and the furnace gas is not heated, so the plate temperature near the hearth roll of the electromagnetic induction heating device is higher than the furnace temperature. The contact portion of the roll with the metal strip is heated by the metal strip, and the non-contact portion of the roll is heated by the furnace gas, so that a thermal gradient is easily generated in the roll axis direction.
[0011]
The initial crown is set to the hearth roll for the purpose of stabilizing the plate, but the thermal crown during operation is different from the initial crown due to the non-uniform thermal expansion of the hearth roll due to this thermal gradient (hereinafter referred to as thermal crown). However, it is easy to generate a flaw-like defect called buckling or squeezing.
[0012]
Further, in the energization heating apparatus, a thermal crown is similarly generated on the energizing roll, and in addition to the above-described defects due to the thermal crown, sparks are likely to occur due to poor contact between the metal strip and the energizing roll.
[0013]
The present invention has been made to solve the above problems, and provides a vertical continuous heat treatment furnace for a metal strip that suppresses the generation of thermal crowns and enables high-speed and high-response heat treatment. Objective.
[0014]
[Means for Solving the Problems]
The invention according to claim 1 in a vertical continuous heat treatment furnace of the metal strip used in combination radiant tube heating furnace and induction heating furnace to the heating zone, the induction heating furnace each upper roll chamber for accommodating the hearth rolls and the lower roll chamber and It is divided into heating chambers, shielded between the upper roll chamber and the heating chamber and between the lower roll chamber and the heating chamber except for a portion through which a metal band passes, and the induction heating furnace Metal strips characterized in that communication paths are provided between the upper roll chamber and the radiant tube heating furnace and between the lower roll chamber and the radiant tube heating furnace , respectively , one of which is a communication path only for gas flow. It is a continuous heat treatment furnace.
[0015]
The invention according to claim 2 in vertical continuous heat treatment furnace of the metal strip used in combination radiant tube furnace with electrical heating furnace heating zone, said upper roll chamber for accommodating each energization rolls electrical heating furnace and the lower roll chamber and It is divided into heating chambers, shielded between the upper roll chamber and the heating chamber and between the lower roll chamber and the heating chamber except for a portion through which a metal band passes, A metal strip characterized in that a communication path is provided between the upper roll chamber and the radiant tube heating furnace and between the lower roll chamber and the radiant tube heating furnace , respectively , one of which is a communication path only for gas flow. It is a continuous heat treatment furnace.
[0016]
The invention according to claim 3 is the invention according to claim 1 or the invention according to claim 2, wherein the induction heating furnace and the radiation tube heating furnace according to claim 1 are the in-furnace gas of the induction heating furnace and the radiation tube heating furnace. A means for controlling the pressure difference and a means for controlling the flow rate of the gas flowing from the radiant tube heating furnace into the roll chamber of the induction heating furnace are provided. A continuous heat treatment furnace for a metal strip comprising means for controlling the gas pressure difference in the furnace of the radiant tube heating furnace and means for controlling the flow rate of gas flowing from the radiant tube heating furnace into the roll chamber of the energizing heating furnace. It is.
[0017]
According to the present invention, with the above-described configuration, the furnace pressure of the radiant tube heating furnace is made higher than that of the induction heating furnace or the electric heating furnace, whereby the gas in the radiant tube heating furnace having a high furnace temperature is supplied to the induction heating furnace. By flowing into the roll chamber or the roll chamber of the electric heating furnace, raising the furnace temperature of those roll chambers, and controlling the inflow gas flow rate, the furnace temperature in the roll chamber is brought close to the plate temperature to reduce the thermal crown. Can do.
[0018]
Meanwhile, the induction heating furnace or electric heating furnace to form the upper and lower roll chamber (upper roll chamber and a lower roll chamber), passes through the upper and lower roll chamber (upper roll chamber and a lower roll chamber) and the metal band between the heating chamber Since it is shielded except for the portion to be made, a large amount of in-furnace gas having a high temperature in the radiant tube heating furnace does not flow directly into the heating chamber, and the furnace temperature of the radiant tube heating furnace can be stably maintained.
[0019]
In addition, since the gas in the furnace having a high temperature in the radiant tube heating furnace does not flow directly into the heating chamber of the induction heating furnace, the induction coil in the heating chamber does not cause an adverse effect due to excessive temperature rise.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view showing an embodiment of the present invention.
[0021]
The case of a steel strip continuous heat treatment furnace in which an induction heating furnace and a radiant tube heating furnace are sequentially arranged is shown. In FIG. 1, a steel strip 11 enters an induction heating furnace 12 through entrance equipment such as welding, cleaning, and a looper. In the induction heating furnace 12, a heating chamber 14 for heating by the induction coil 13 and upper and lower roll chambers 16 a, 16 b and 16 c for accommodating the hearth roll 15 are formed. The heating chamber 14 and the upper and lower roll chambers 16a, 16b, 16c are communicated with each other through throats 17a, 17b, 17c.
[0022]
Using the throats 17a, 17b, and 17c, it is possible to shield except the portion that allows the metal band to pass effectively.
[0023]
The steel strip 11 that has passed through the induction heating furnace 12 is heated to about 500 to 600 ° C., further heated to the annealing temperature (600 to 900 ° C.) in the radiant tube heating furnace 18, and then subjected to soaking and cooling.
[0024]
In the present invention, communication paths 19a and 19b are provided between the upper and lower roll chambers 16c and 16b of the induction heating furnace 12 and the radiant tube heating furnace 18, and the communication path 19b is a communication path only for gas flow. The communication path 19a allows the steel strip 11 to pass through.
[0025]
A damper 20 is provided in the communication path 19 b between the lower roll chamber 16 b and the radiant tube heating furnace 18 to adjust the flow rate of the atmospheric gas flowing from the radiant tube heating furnace 18. Thermometers 21a and 21b for measuring the temperature of the atmospheric gas and pressure gauges 22a and 22b for measuring the pressure are installed at the upper and lower parts of the upper and lower roll chambers 16a and 16b and the radiation tube heating furnace 18, respectively.
[0026]
Further, the atmospheric gas (non-oxidizing gas mainly composed of N 2) to the radiant tube heating furnace 18 and the induction heating furnace 12 is adjusted by the flow rate control valves 24a and 24b from the gas supply ports provided below the furnaces. The exhaust gas is sent and the exhaust gas is adjusted and discharged by the flow rate control valves 25a and 25b from the discharge port provided above each furnace.
[0027]
When the in-furnace atmosphere gas pressure of the radiant tube heating furnace 18 is made higher than the in-furnace atmosphere gas pressure of the induction heating furnace 12 based on the measured values of the pressure gauges 22a and 22b, the temperature is increased from the radiant tube heating furnace 18 to the lower roll chamber 16b. In-furnace gas flows in. The temperature of the inflowing gas is about 800 to 900 ° C. although it depends on the annealing temperature.
[0028]
The communication path 19a between the roll chamber 16c and the radiant tube heating furnace 18 is shielded by a shielding plate except for the portion through which the steel strip passes, but the high temperature atmosphere gas of the radiant tube heating furnace 18 also flows in, so the upper roll chamber 16a A communication path 19c is provided between the upper roll chamber 16c and a damper 20 is provided in the communication path 19c so that the flow rate of the high-temperature atmosphere gas in the radiant tube heating furnace 18 can be adjusted.
[0029]
By adjusting the flow rate of the high-temperature atmosphere gas flowing into the upper roll chamber 16a and the lower roll chamber 16b with the damper 20, the temperature of the atmosphere gas in the roll chamber can be increased to the same level as the plate temperature. The thermal crown generated in the hearth roll 15 in the chamber 16a and the lower roll chamber 16b can be suppressed.
[0030]
Moreover, in the induction heating furnace 12, since the throats 17a and 17b that separate the heating chamber 14, the upper roll chamber 16a, and the lower roll chamber 16b can prevent high-temperature furnace gas from flowing directly into the heating chamber 14, The furnace temperature of the radiant tube heating furnace 18 does not extremely decrease.
[0031]
Moreover, since it can prevent that the furnace temperature of the heating chamber 14 raises, it does not cause the trouble of cooling about the induction coil 13 normally cooled.
[0032]
All the data necessary for the operation as described above is input to the control device 23 and is accurately controlled by the command, so that the induction heating furnace 12 and the radiation tube heating furnace 18 are smoothly operated.
[0033]
FIG. 2 is a side view showing another embodiment of the present invention. The case of a steel strip continuous heat treatment furnace in which a radiant tube heating furnace and an electric heating furnace are sequentially arranged is shown.
[0034]
In FIG. 2, the steel strip 11 enters the radiant tube heating furnace 18 through entrance equipment such as welding, cleaning, and a looper, and is heated to 500 to 600 ° C. Furthermore, in the energizing heating furnace 26, the current was directly supplied to the steel strip 11 through the energizing rolls 28 of the energizing roll chambers 27 a and 27 b, and heated to the annealing temperature (600 to 900 ° C.) by Joule heat in the heating chamber 29. Later, it is soaked and cooled.
[0035]
The heating chamber 29 and the upper and lower energizing roll chambers 27a and 27b communicate with each other through throws 30a and 30b.
[0036]
Using the throats 30a and 30b, it is possible to shield except the portion that allows the steel strip to pass through effectively.
[0037]
The steel strip 11 that has passed through the radiant tube heating furnace 18 is heated to about 500 to 600 ° C., and further heated to the annealing temperature (600 to 900 ° C.) in the electric heating furnace 26, and then subjected to soaking and cooling.
[0038]
In the present invention, the communication passages 31a and 31b are provided between the upper and lower energization roll chambers 27a and 27b and the radiant tube heating furnace 18 in the electric heating furnace 26, and the communication passage 31a is a communication passage only for the gas flow. The communication path 31b allows the steel strip 11 to pass through.
[0039]
A damper 36 is provided in the upper energizing roll chamber 27 a and the communication passage 31 a between the radiant tube heating furnace 18 and adjusts the flow rate of high-temperature atmospheric gas at 800 to 900 ° C. flowing from the radiant tube heating furnace 18.
[0040]
Thermometers 32a and 32b for measuring the temperature of the atmospheric gas and pressure gauges 33a and 33b for measuring the pressure are installed on the upper energizing roll chamber 27a and the radiant tube heating furnace 18, respectively. Further, the atmospheric gas (non-oxidizing gas mainly composed of N 2) to the radiant tube heating furnace 18 and the electric heating furnace 26 is adjusted by the flow rate control valves 34a and 34b from the gas supply ports provided below the furnaces. The exhaust gas is sent and the exhaust gas is adjusted and discharged by the flow control valves 35a and 35b from the discharge port provided above each furnace.
[0041]
Based on the measured values of the pressure gauges 33a and 33b, when the furnace atmosphere gas pressure of the radiant tube heating furnace 18 is set higher than the furnace atmosphere gas pressure of the conduction heating furnace 26, the radiant tube heating furnace 18 is heated to the conduction roll chamber 27a. In-furnace gas flows in. The temperature of the inflowing gas is about 800 to 900 ° C. although it depends on the annealing temperature.
[0042]
On the other hand, the communication path 31b between the energizing roll chamber 27b and the radiant tube heating furnace 18 is shielded by a shielding plate except for the portion through which the steel strip passes, but the high temperature atmosphere gas of the radiant tube heating furnace 18 also flows in, so Then there is no need for adjustment with a damper.
[0043]
In the energizing roll chamber 27a, the temperature of the atmospheric gas in the energizing roll chamber 27a can be increased to the same level as the plate temperature by adjusting the flow rate of the high-temperature atmosphere gas flowing in by the damper 35. The thermal crown which generate | occur | produces in the electricity supply roll 28 in 27a can be suppressed.
[0044]
All the data necessary for the operation as described above is input to the control device 23 and accurately controlled by the command, so that the operation of the energizing heating furnace 26 and the radiant tube heating furnace 18 is performed smoothly.
[0045]
In addition to the above-described two embodiments, when the induction heating furnace is arranged in the middle part or after the radiant tube heating furnace, or when the electric heating furnace is arranged in the middle part or in front of the radiant tube heating furnace, It is clear that the present invention is effective.
[0046]
【The invention's effect】
According to the present invention, the occurrence of thermal crown of the metal strip is suppressed, heat treatment can be performed at high speed and with high response, buckling of the metal strip or wrinkle-like defects can be prevented, and the contact between the energizing roll and the metal strip The occurrence of sparks due to defects can be prevented.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of the present invention.
FIG. 2 is a side view showing another embodiment of the present invention.
FIG. 3 is a schematic view when an electromagnetic induction heating device and a radiant tube heating device are used in combination with a conventional vertical continuous heat treatment furnace.
[Explanation of symbols]
11 Steel strip 12 Induction heating furnace 13 Induction coil 14 Heating chamber 15 Hearth rolls 16a, 23a, 27a Upper roll chambers 16b, 23b, 27b Lower roll chambers 17a, 17b, 26a, 26b, 31a, 31b Throat 18 Radiation tube heating furnace 19a , 19b, 19c Communication path 20, 36 Damper 21a, 21b, 32a, 32b Thermometer 22a, 22b, 33a, 33b Pressure gauge 23 Controller 24a, 24b, 34a, 34b Flow rate regulating valve (supply side)
25a, 25b, 35a, 35b Flow control valve (discharge side)
26 Energizing heating furnace 27a, upper energizing roll chamber 27b lower energizing roll chamber 28 energizing roll 29 heating chambers 31a, 31b

Claims (3)

加熱帯に誘導加熱炉と輻射管加熱炉を併用する金属帯の縦型連続熱処理炉において、前記誘導加熱炉を各々ハースロールを収容する上部ロール室と下部ロール室ならびに加熱室とに区分して形成し、該上部ロール室と該加熱室の間および該下部ロール室と該加熱室の間は金属帯を通過させる部分を除いて遮蔽させるとともに、前記誘導加熱炉の前記上部ロール室と輻射管加熱炉の間および前記下部ロール室と輻射管加熱炉との間各々連通路を設け、そのうちの一方はガス流のみの連通路としたことを特徴とする金属帯の連続熱処理炉。In a metal strip vertical continuous heat treatment furnace that uses both an induction heating furnace and a radiant tube heating furnace in the heating zone, the induction heating furnace is divided into an upper roll chamber, a lower roll chamber, and a heating chamber each containing a hearth roll. Forming and shielding between the upper roll chamber and the heating chamber and between the lower roll chamber and the heating chamber except for a portion through which a metal band passes, and the upper roll chamber and the radiation tube of the induction heating furnace each communication passage is provided, a continuous heat treatment furnace of the metal strip, characterized in that one of which was the communication passage only gas flow between and between the lower roll chamber and the radiation tube heating furnace of the heating furnace. 加熱帯に通電加熱炉と輻射管加熱炉を併用する金属帯の縦型連続熱処理炉において、前記通電加熱炉を各々通電ロールを収容する上部ロール室と下部ロール室ならびに加熱室とに区分して形成し、該上部ロール室と該加熱室の間および該下部ロール室と該加熱室の間は金属帯を通過させる部分を除いて遮蔽させるとともに、前記通電加熱炉の前記上部ロール室と輻射管加熱炉の間および前記下部ロール室と輻射管加熱炉の間各々連通路を設け、そのうちの一方はガス流のみの連通路としたことを特徴とする金属帯の連続熱処理炉。In a vertical continuous heat treatment furnace of a metal strip that uses both an electric heating furnace and a radiant tube heating furnace in a heating zone, the electric heating furnace is divided into an upper roll chamber, a lower roll chamber, and a heating chamber each containing an electric roll. Forming and shielding between the upper roll chamber and the heating chamber and between the lower roll chamber and the heating chamber except for a portion through which a metal band passes, and the upper roll chamber and the radiation tube of the energizing heating furnace each communication passage is provided, a continuous heat treatment furnace of the metal strip, characterized in that one of which was the communication passage only gas flow between the between the heating furnace and the lower roll chamber and the radiation tube furnace. 請求項1記載の誘導加熱炉と輻射管加熱炉は、誘導加熱炉と輻射管加熱炉の炉内ガス圧差を制御する手段と輻射管加熱炉から誘導加熱炉のロール室へ流入するガスの流量を制御する手段とを備え、請求項2記載の通電加熱炉と輻射管加熱炉は、通電加熱炉と輻射管加熱炉の炉内ガス圧差を制御する手段と輻射管加熱炉から通電加熱炉のロール室へ流入するガスの流量を制御する手段とを備えたことを特徴とする請求項1又は請求項2記載の金属帯の連続熱処理炉。 The induction heating furnace and the radiant tube heating furnace according to claim 1 are a means for controlling a gas pressure difference in the furnace between the induction heating furnace and the radiant tube heating furnace, and a flow rate of gas flowing from the radiant tube heating furnace into the roll chamber of the induction heating furnace. The electric heating furnace and the radiant tube heating furnace according to claim 2 are configured to control the gas pressure difference in the furnace between the electric heating furnace and the radiant tube heating furnace, and from the radiant tube heating furnace to the electric heating furnace. 3. A continuous heat treatment furnace for a metal strip according to claim 1, further comprising means for controlling the flow rate of the gas flowing into the roll chamber .
JP27790296A 1996-10-21 1996-10-21 Continuous heat treatment furnace for metal strip Expired - Fee Related JP4123535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27790296A JP4123535B2 (en) 1996-10-21 1996-10-21 Continuous heat treatment furnace for metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27790296A JP4123535B2 (en) 1996-10-21 1996-10-21 Continuous heat treatment furnace for metal strip

Publications (2)

Publication Number Publication Date
JPH10121150A JPH10121150A (en) 1998-05-12
JP4123535B2 true JP4123535B2 (en) 2008-07-23

Family

ID=17589893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27790296A Expired - Fee Related JP4123535B2 (en) 1996-10-21 1996-10-21 Continuous heat treatment furnace for metal strip

Country Status (1)

Country Link
JP (1) JP4123535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2513582B1 (en) 2009-12-15 2018-05-02 Primetals Technologies France SAS Equipment for preheating a continuously moving steel strip

Also Published As

Publication number Publication date
JPH10121150A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
US5770838A (en) Induction heaters to improve transitions in continuous heating system, and method
JP4480231B2 (en) Convection brazing method and apparatus for metal workpiece
US3508899A (en) Edge heating in annealing process
JP4123535B2 (en) Continuous heat treatment furnace for metal strip
JP5000116B2 (en) Soaking furnace operation method in steel strip continuous treatment equipment
US4760995A (en) Continuously treating line for steel bands having a heating furnace by directly flaming
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
KR100785255B1 (en) Improvements to the preheating of metal strip, especially in galvanizing or annealing lines
US5827056A (en) Device and method for improving strip tracking in a continuous heating furnace
JPH0196333A (en) Continuous annealing furnace provided with gas circulating device
JP4064253B2 (en) Steel strip continuous heat treatment equipment and combustion method thereof
US2638333A (en) Continuous furnace
KR101903179B1 (en) Continuous annealing furnace
JPH09241761A (en) Method for controlling pressure in continuous annealing furnace
JP3098998B1 (en) Heat treatment method of vertical continuous annealing furnace for copper / copper alloy strip
JPH02100316A (en) Heat-treating furnace for semiconductor wafer
JPS6141725A (en) Method for controlling hearth roll temperature of continuous annealing furnace
KR20020064159A (en) Improvements to methods of heating steel strip in vertical furnaces
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
JP3473060B2 (en) Muffle furnace
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace
JPH07126759A (en) Method for heating metallic strip and device therefor
JPH06248354A (en) Method for controlling crown of hearth roll in continuous annealin furnace
JPH1073242A (en) Temperature control for continuous annealing furnace
JPS6160899B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees