JP4058850B2 - Coating solution for solar filter film formation - Google Patents

Coating solution for solar filter film formation Download PDF

Info

Publication number
JP4058850B2
JP4058850B2 JP22700099A JP22700099A JP4058850B2 JP 4058850 B2 JP4058850 B2 JP 4058850B2 JP 22700099 A JP22700099 A JP 22700099A JP 22700099 A JP22700099 A JP 22700099A JP 4058850 B2 JP4058850 B2 JP 4058850B2
Authority
JP
Japan
Prior art keywords
film
solution
transmittance
fine particles
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22700099A
Other languages
Japanese (ja)
Other versions
JP2001049190A (en
Inventor
健治 足立
賢一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP22700099A priority Critical patent/JP4058850B2/en
Publication of JP2001049190A publication Critical patent/JP2001049190A/en
Application granted granted Critical
Publication of JP4058850B2 publication Critical patent/JP4058850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、車両、ビル、事務所、一般住宅の窓、電話ボックス、ショーウィンドウ、照明用ランプなど、ガラス、プラスチックその他の各種透明基材に塗布して熱線と紫外線とを遮蔽する日射フィルター膜を形成するために用いる塗布液に関する。
【0002】
【従来の技術】
オゾンホールの発生、拡大により、地表面に到達する紫外線量が著しく増加し、日焼けや、皮膚癌など人体への悪影響が問題となっている。また、住宅、ビル、自動車、ショーウィンドウなどの窓から紫外線が入り込むと、カーテンや、絨毯、ソファーなどの家具や、絵画、書類などが変色、退色、劣化する。また、省エネルギーの観点から、太陽光線の赤外線部分を遮蔽して夏場の冷房負荷を軽減したり、可視光領域の透過率を減じて皮膚に感ずる暑さを和らげたり、プライバシーを保護したりするガラスが近年注目されている。
【0003】
このように、透明なプラスチックやガラス表面に薄い膜を形成して、太陽光線から有害な紫外線や近赤外線をできるだけ除去し、目に見える可視光のみを通過させようとする日射フィルター機能の需要が増大している。
【0004】
従来、このような機能性膜は、大部分がスパッタ法や、蒸着法などによる乾式法で作製されているため、大掛かりな装置と複雑な工程が必要とされ、製品としてのコストも非常に高価であった。塗布法を用いて熱線を遮蔽する材料として、アンチモン含有酸化錫(ATO)や錫含有酸化インジウム(ITO)が知られている。しかし、これらの材料ではプラズマ波長が近赤外域の比較的長波長側にあり、可視光に近い近赤外域におけるこれらの膜の反射・吸収効果は十分ではなかった。ATOやITO微粒子は塗布液中に多量に添加すれば熱線透過率を下げることも可能であるが、その場合コスト高になることに加え、塗膜の強度が低下したり、膜に曇り(ヘイズ)が生ずるという問題点があった。またATOやITOに紫外線を遮蔽する材料を加えて熱線と紫外線の両方を遮蔽する試みも行なわれているが、特に熱線の遮蔽効果は不十分であった。
【0005】
また、有機染料を用いた窓貼り用の着色フィルムが市販されているが、紫外線などによる色あせやフィルムの劣化が大きく、十分な効果を発揮するものとは言えなかった。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解決し、可視光領域の光の透過率が高く、近赤外領域の光の透過率が低く、かつ紫外線を効率よく遮蔽する膜を、高コストの物理成膜法を用いずに簡便な塗布法で成膜できる日射フィルター膜形成用塗布液を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、材料そのものの特性として、自由電子を多量に保有する窒化物及び6ホウ化物に着目し、種々検討の結果、これを超微粒子化し、かつ高度に分散した膜を作製することにより、可視光領域に透過率の極大をもつとともに、可視光領域に近い近赤外域に強い吸収を発現して透過率の極小をもつようになるという現象を見出し、これに更に無機系または有機系の紫外線吸収材料を導入することにより、本発明を完成した。
すなわち、本発明の日射フィルター膜形成用塗布液は、窒化物からなる平均粒径200nm以下の微粒子と、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクチルオキシベンゾフェノン、5−クロロ−2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトアリゾールから選ばれる1種の有機紫外線吸収成分とを含有し、前記微粒子の含有量が0.02〜8.0重量%であり、前記有機紫外線吸収成分の含有量が5重量%以下の日射フィルター膜形成用塗布液であって、該塗布液を用いて得られる日射フィルター膜の可視光透過率τVは45.9〜59.3%、紫外線透過率τUVは1.2〜2.1%となることを特徴とするものである、また、本発明の別の日射フィルター膜形成用塗布液は、前記窒化物が、Ti、Zr、Hf、V、 Nb、及び、Taの群から選択される1種以上の金属の窒化物であることを特徴とするものである。
更に、本発明の他の日射フィルター膜形成用塗布液は、6ホウ化物からなる平均粒径200nm以下の微粒子と、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクチルオキシベンゾフェノン、5−クロロ−2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトアリゾールから選ばれる1種の有機紫外線吸収成分とを含有し、前記微粒子の含有量が0.02〜8.0重量%であり、前記有機紫外線吸収成分の含有量が5重量%以下の日射フィルター膜形成用塗布液であって、該塗布液を用いて得られる日射フィルター膜の可視光透過率τVは57.9〜72.8%、紫外線透過率τUVは0.1〜0.4%となることを特徴とするものであり、また、本発明の別の日射フィルター膜形成用塗布液は、前記6ホウ化物が、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、及び、Caの群から選択される1種以上の金属の6ホウ化物であることを特徴とするものである。
【0008】
また、本発明の日射フィルター膜形成用塗布液は、更に、酸化鉄、酸化水酸化鉄、酸化セリウム、及び、酸化亜鉛の群から選択される1種以上の無機紫外線吸収成分を含有したことを特徴とするものである。
【0009】
【発明の実施の形態】
本発明に使用される窒化物微粒子としては、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)などの微粒子がその代表的なものとして挙げられる。
【0010】
また、本発明に使用される6ホウ化物微粒子としては、6ホウ化ランタン(LaB)、6ホウ化セリウム(CeB)、6ホウ化プラセオジム(PrB)、6ホウ化ネオジム(NdB)、6ホウ化ガドリニウム(GdB)、6ホウ化テルビウム(TbB)、6ホウ化ディスプロシウム(DyB)、6ホウ化ホルミウム(HoB)、6ホウ化イットリウム(YB)、6ホウ化サマリウム(SmB)、6ホウ化ユーロピウム(EuB)、6ホウ化エルビウム(ErB)、6ホウ化ツリウム(TmB)、6ホウ化イッテルビウム(YbB)、6ホウ化ルテチウム(LuB)、6ホウ化ランタンセリウム((La,Ce)B)、6ホウ化ストロンチウム(SrB)、6ホウ化カルシウム(CaB)などの微粒子が、その代表的なものとして挙げられる。
【0011】
本発明に使用される窒化物微粒子と6ホウ化物微粒子は、その表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかしその場合でも日射遮蔽効果を発現する有効性に変わりはない。またこれらの微粒子は、結晶としての完全性が高いほど大きい日射遮蔽効果が得られるが、結晶性が低くX線回折でブロードな回折ピークを生じるようなものであっても、微粒子内部の基本的な結合が各金属と窒素またはホウ素との結合から成り立っているものならば日射遮蔽効果を発現する。
【0012】
これらの窒化物微粒子は、茶黒色、青黒色などに着色した粉末であり、また、これらの6ホウ化物微粒子は灰黒色、茶黒色、緑黒色などに着色した粉末であるが、粒径が可視光波長に比べて十分小さく薄膜中に分散した状態においては膜に可視光透過性が生じる。しかし赤外光遮蔽能は十分強く保持できる。
【0013】
この理由は詳細には理解されていないが、これら微粒子中の自由電子の量が多く、微粒子内部及び表面の自由電子によるプラズモン吸収およびバンド間間接遷移の吸収エネルギーが、丁度、可視〜近赤外の付近にあるために、この波長領域の熱線が選択的に反射・吸収されると考えられる。実験によれば、これら微粒子を十分細かく且つ均一に分散した膜では、透過率が波長400〜700nmの間に極大値をもち、且つ波長700〜1800nmの間に極小値をもち、さらにこれらの透過率の極大値と極小値の差が15ポイント以上であることが観察される。
【0014】
可視光波長が380〜780nmであり、視感度が550nm付近をピークとする釣鐘型であることを考慮すると、このような膜では可視光を有効に透過し、それ以外の熱線を有効に反射・吸収することが理解される。
【0015】
また、一般的に使用される紫外線遮蔽成分は、吸収端が紫外〜可視域にあり、紫外線遮蔽成分を含む塗布膜は紫外線と同時に可視光の短波長域を吸収し、黄色や橙色に着色し好ましくないが、可視光の短波長域に透過性をもつ窒化物微粒子を添加することで、膜の黄変を防ぐことも可能である。
【0016】
窒化物微粒子または6ホウ化物微粒子の日射遮蔽効果は、バインダー成分との比や、乾燥膜厚に依存するので一概に含有量のみでこれを規定することはできないが、通常の使用においては、微粒子の含有量は、0.02重量%〜8.0重量%の間で使用されることが好ましい。0.02重量%未満の含有量では如何に膜厚が厚くても十分な日射遮蔽効果を得ることは難しく、8.0重量%を超えると塗布液の粘度が増加するばかりでなく、表面活性に富んだ窒化物微粒子または6ホウ化物微粒子の触媒作用で、共存するバインダー成分のゲル化を促進し、塗布液のポットライフを短縮する。但し、他の熱線吸収剤との併用で添加される場合には、0.02重量%未満でもよく、また例えば貯蔵用濃縮液としては、8.0重量%を超える塗布液を用いることも可能である。
【0017】
本発明において、塗布液中の窒化物微粒子と6ホウ化物微粒子の粒径は、100nm以下が良い。微粒子の粒子径が200nmよりも大きくなると、近赤外光の吸収効果が得られず、単調に透過率の減少した灰色っぽい膜になる。また、粒子径が200nmよりも大きい場合には、分散液中の微粒子同士の凝集傾向が強くなり、微粒子の沈降原因となる。さらに200nm以上の微粒子もしくはそれらの凝集した粗大粒子は、光散乱源となって膜に曇り(ヘイズ)を生じたり、可視光透過率が減少する原因となる。従って、上記微粒子の平均粒径は上記した理由により200nm以下とする必要がある。現状の技術で経済的に入手可能な最低の粒径は2nm程度である。
【0018】
本発明に使用される無機紫外線遮蔽成分としては、酸化鉄(Fe)、酸化水酸化鉄(FeOOH)、酸化セリウム(CeO)、酸化チタン(TiO)、酸化亜鉛(ZnO)などの微粒子を、その代表的な例として挙げることができる。これらの酸化物微粒子は、吸収端が紫外〜可視域にあり、紫外線を吸収する。また無機物であるために光や水分による劣化が少なく、経時安定性がある。しかし紫外線遮蔽能率は、酸化鉄や酸化水酸化鉄以外は比較的少ないので、多量の添加が必要であるが、多量に添加すると塗布液の粘度を増加させて液のレベリング性を低下させるために、20重量%以下の添加量が好ましく、更に好ましくは7重量%以下の含有量で使用するとよい。また多量に添加すると、特に酸化鉄や酸化水酸化鉄では、塗布膜が黄色や橙色に着色するので好ましくない。
【0019】
無機紫外線遮蔽成分微粒子の粒径は、前記窒化物微粒子や6ホウ化物微粒子と同様の理由で100nm以下が良い。
【0020】
本発明に使用される有機紫外線吸収成分としては、吸収効果の大きいベンゾフェノン系またはベンゾトリアゾール系が好ましい。また、トリアジン系、蓚酸アニリド系、シアノアクリレート系、サリシレート系など他の市販の材料も使用することが可能である。ベンゾフェノン系の紫外線吸収剤としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクチルオキシベンゾフェノンなどが、ベンゾトリアゾール系の紫外線吸収剤としては、例えば、5−クロロ−2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトアリゾールなどがある。
【0021】
これらの有機系紫外線吸収材料では、無機紫外線吸収材料に比べて吸収能率は格段に優れているが、熱や空気中の水分の影響により滲みだしや析出が起こりやすく、これを避けるにはおよそ5重量%以下の少量の添加量が好ましい。またこれらの有機紫外線吸収成分は、紫外線や空気中の酸素により劣化するため、塗布液中に、光安定剤(HALS)、過酸化物分解剤、消光剤などを適宜添加することも可能である。
【0022】
塗布液中の微粒子の分散媒は特に限定されるものではなく、塗布条件や塗布環境、塗布液中のアルコキシド、合成樹脂バインダーなどに合わせて選択可能であり、例えば水や、アルコール、エーテル、エステル、ケトンなどの有機溶媒の各種が使用可能である。また、必要に応じて酸やアルカリを添加してpHを調整しても良い。更に塗布液中微粒子の分散安定性を一層向上させるために、各種の界面活性剤、カップリング剤などを添加することも可能である。そのときのそれぞれの添加量は、無機微粒子に対して30重量%以下、好ましくは5重量%以下である。
【0023】
上記微粒子の分散方法は、微粒子が均一に溶液中に分散する方法であれば任意に選択できる。例えば、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を挙げることができる。
【0024】
本発明における日射フィルター膜は、基材上に上記微粒子が高密度に堆積し膜を形成するものであるが、塗布液中には無機または有機樹脂のバインダー成分を加えてもよい。無機系のバインダーとしては、例えば、珪素、ジルコニウム、チタン、アルミニウムの各金属のアルコキシド、もしくはこれら金属の部分加水分解重合物が挙げられる。また、有機樹脂としては、アクリル樹脂、熱可塑性ポリウレタン樹脂、ポリカーボネートなど、従来公知のものを広く使用することができる。これらのバインダーは、塗布、硬化後、微粒子の基材への結着性を向上させ、更に膜の硬度を向上させる効果がある。またこのようにして得られた膜上に、さらに上記バインダー成分のような無機または有機樹脂を含有する被膜を第2層として被着することで、微粒子を主成分とする膜の基材への結着力や、膜の硬度及び耐候性を一層向上させることも可能となる。
【0025】
本発明の塗布液には、透過率を向上させるために、さらにATOやITOやアルミニウム添加酸化亜鉛などの超微粒子を混合することも可能である。これらの透明超微粒子は、添加量を増すと可視光に近い近赤外線領域での吸収が増加するため、可視光透過率の高い熱線遮蔽膜とすることが可能である。また逆に、ATOやITOやアルミニウム添加酸化亜鉛などの超微粒子を分散した液に本発明の塗布液を添加して、膜に着色すると同時にその熱線遮蔽効果を補助することも可能である。この場合、主体となるITOなどに対して奔の僅かの添加量で熱線遮蔽効果を補助できるため、ITOの必要量の大幅な減少が可能となり、液のコストを下げられるという利点がある。
【0026】
塗布液及び被膜用の塗布液の塗布方法は特に限定されるものではなく、スピンコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗り、刷毛塗りなど、処理液を平坦且つ薄く均一に塗布できる方法であれば如何なる方法でも適宜採用することができる。
【0027】
上記各金属アルコキシド及びその加水分解重合物を含む塗布液の塗布後の基材加熱温度は、100℃未満では塗膜中に含まれるアルコキシド及びその加水分解重合物の重合反応が未完結で残る場合が多く、また水や有機溶媒が膜中に残留し、加熱後の膜の可視光透過率の低減の原因となるので、100℃以上が好ましく、更に好ましくは塗布液中の全ての溶媒の沸点以上である。
【0028】
また樹脂バインダーを使用した場合は、それぞれの硬化方法に従って硬化させれば良く、例えば紫外線硬化樹脂であれば紫外線を適宜照射すれば良く、また熱可塑性樹脂であれば塗布後加熱すればよい。常温硬化樹脂であればそのまま放置しておけばよい為、既存の窓ガラスなどへの現場での塗布が可能であり、汎用性が広がる。
【0029】
常温硬化性のバインダーとしては、例えば、オルガノシザラン溶液では、側鎖基の修正や酸化触媒の添加で重合硬化温度が100℃以下のものが市販されている。また市販のシリケート系のものを用いることも可能である。どちらも硬化後はSiOの無機膜、または、有機鎖の混ざったSiO膜を形成し、耐候性や膜強度において樹脂膜よりも優れている。
【0030】
このように、本発明によれば、上記無機日射遮蔽微粒子と、無機及び/または有機紫外線吸収材料を適切に混合することで、熱線及び紫外線の遮蔽効果を有する日射フィルター膜を得ることができる。
【0031】
[実施例]
以下、本発明を、本発明の実施例、比較例によってより詳細に説明する。
【0032】
(参考例1)
平均粒径40nmのTiN微粒子8g、ジアセトンアルコール(以下、「DAA」と略す。)80g、水及び分散剤適量を混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混合して、TiN分散液100gを作製した(A液)。平均重合度で4〜5量体である多摩化学工業株式会社製エチルシリケート40を6g、エタノールを31g、5%塩酸水溶液を8g、水5gを良く混合・攪拌して、エチルシリケート混合液50gを調製した(B液)。平均粒径30nmの酸化水酸化鉄FeOOH微粒子を10g、DAAを80g、水及び分散剤適量を前記同様にボールミル混合して、FeOOH分散液100gを作製した(C液)。
【0033】
A液とB液とC液を、TiN:FeOOH比が1:1.5(重量比。以下、比の記載は全て重量比による。)、(TiN+FeOOH):SiO比が4:1となるような割合で混合・攪拌し、さらにエタノールで希釈して、TiN濃度が1.0重量%(以下、「%」は「重量%」を示す。)、FeOOH濃度が1.5%となるように塗布液を作製した(D液)。このD液15gをスピンコーターでソーダライム板ガラス基板(以下、基板は全てソーダライム板ガラス基板を用いた。)上に塗布し、180℃の電気炉に入れて30分間加熱し、目的とする膜を得た。
【0034】
形成された膜の分光特性を、日立製作所製の分光光度計を用いて測定した(以下、同様)。膜の透過プロファイルより、透過率の極大値が422nm、極小値が746nm、反射率の極大値が1000nm付近にあり、また、ISO−9050に基づいて、3mm厚ガラス基板を含めた値として(以下、τUV、τV、τeにおいて同様)、紫外線透過率(τUV)8.9%が得られた。また、村上色材研究所製のヘイズメータを用いて(以下、同様)、塗布膜のヘイズは1.7%であった。この膜は、透過率の極大値と極小値の差が16ポイントあって可視光波長で透過率が高く、近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も91.1%遮蔽しており、優れた日射フィルターの機能を有している。
【0035】
(参考例2)
平均粒径43nmのHfN微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、HfN分散液100gを作製した(E液)。平均粒径50nmの酸化鉄Fe微粒子10g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、Fe分散液100gを作製した(F液)。
【0036】
参考例1で作製したB液とC液にこのE液とF液を、HfN:FeOOH:Fe比が1:1:0.5、(HfN+FeOOH+Fe):SiO比が4:1となるような割合で混合・攪拌し、さらにエタノールで希釈して、HfN濃度が1.0%、FeOOH濃度が1.0%、Fe濃度が0.5%となるように塗布液を作製した(G液)。このG液15gをスピンコーターで基板上に塗布し、180℃の電気炉に入れて30分間加熱し、目的とする膜を得た。
【0037】
膜の透過プロファイルより、透過率の極大値が469nm、極小値が768nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)8.8%が得られた。また、塗布膜のヘイズは1.5%であった。この膜は、透過率の極大値と極小値の差が16ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も91.2%遮蔽しており、優れた日射フィルターの機能を有している。
【0038】
(参考例3)
平均粒径35nmのZrN微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、ZrN分散液100gを作製した(H液)。平均粒径12nmの酸化セリウムCeO微粒子35g、DAA55g、水及び分散剤適量を参考例1と同様にボールミル混合して、CeO分散液100gを作製した(I液)。
【0039】
参考例1で作製したB液に、H液、I液を加えて、ZrN:CeO比が1:10、(ZrN+CeO):SiO比が4:1となるような割合で混合・攪拌し、さらにエタノールで希釈して、ZrN濃度が1.0%、CeO濃度が10%となるように塗布液を作製した(J液)。このJ液15gを用いて、参考例1と同様の手順で成膜し、評価した。
【0040】
膜の透過プロファイルより、透過率の極大値が432nm、極小値が735nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)6.4%が得られた。また、塗布膜のヘイズは1.7%であった。この膜は、透過率の極大値と極小値の差が15ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も93.6%遮蔽しており、優れた日射フィルターの機能を有している。
【0041】
(実施例1)
平均粒径64nmのVN微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、VN分散液100gを作製した(K液)。K液に、チバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、VN濃度が1.0%、チヌビン384の濃度が4.5%、XS−66の濃度が30%となるように塗布液を作製した(L液)。このL液15gをスピンコーターで基板上に塗布し、常温で24時間放置し、目的とする膜を得た。
【0042】
膜の透過プロファイルより、透過率の極大値が622nm、極小値が975nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)1.2%が得られた。また、塗布膜のヘイズは1.9%であった。この膜は、透過率の極大値と極小値の差が19ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も98.8%遮蔽しており、優れた日射フィルターの機能を有している。
【0043】
(実施例2)
平均粒径55nmのNbN微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、NbN分散液100gを作製した(M液)。M液に、シプロ化成社製のベンゾフェノン系紫外線吸収剤SEESORB100、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、NbN濃度が1.0%、SEESORB100の濃度が4.0%、XS−66の濃度が30%となるように塗布液を作製した(N液)。このN液15gを用いて、実施例1と同様の手順で成膜、評価した。
【0044】
膜の透過プロファイルより、透過率の極大値が615nm、極小値が963nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)2.1%が得られた。また、塗布膜のヘイズは1.3%であった。この膜は、透過率の極大値と極小値の差が18ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も97.9%遮蔽しており、優れた日射フィルターの機能を有している。
【0045】
(実施例3)
平均粒径25nmの酸化亜鉛ZnO微粒子20g、DAA70g、水及び分散剤適量を参考例1と同様にボールミル混合して、ZnO分散液100gを作製した(O液)。O液に参考例2で作製したF液、チバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、HfN濃度が1.0%、ZnO濃度が5%、チヌビン384の濃度が2.5%、XS−66の濃度が30%となるように塗布液を作製した(P液)。このP液15gを用いて、実施例1と同様の手順で成膜、評価した。
【0046】
膜の透過プロファイルより、透過率の極大値が470nm、極小値が775nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)1.5%が得られた。また、塗布膜のヘイズは1.8%であった。この膜は、透過率の極大値と極小値の差が16ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も98.2%遮蔽しており、優れた日射フィルターの機能を有している。
【0047】
(実施例4)
平均粒径43nmのTaN微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、TaN分散液100gを作製した(Q液)。Q液に参考例1で作製したC液、チバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、TaN濃度が1.0%、FeOOH濃度が0.4%、チヌビン384の濃度が2.5%、XS−66の濃度が30%となるように塗布液を作製した(R液)。このR液を用いて、実施例1と同様の手順で成膜、評価した。
【0048】
膜の透過プロファイルより、透過率の極大値が585nm、極小値が1071nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)1.7%が得られた。また、塗布膜のヘイズは1.8%であった。この膜は、透過率の極大値と極小値の差が17ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も98.3%遮蔽しており、優れた日射フィルターの機能を有している。
【0049】
(実施例5)
参考例3で作製したH液に参考例1で作製したC液、シプロ化成社製のベンゾフェノン系紫外線吸収剤SEESORB100、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、ZrN濃度が1.0%、FeOOH濃度が0.4%、SEESORB100の濃度が2.5%、XS−66の濃度が30%となるように塗布液を作製した(S液)。このS液を用いて、実施例1と同様の手順で成膜、評価した。
【0050】
膜の透過プロファイルより、透過率の極大値が435nm、極小値が736nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)1.3%が得られた。また、塗布膜のヘイズは1.9%であった。この膜は、透過率の極大値と極小値の差が18ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も98.2%遮蔽しており、優れた日射フィルターの機能を有している。
【0051】
(比較例1)
参考例3と同様にしてZrNとCeOを含む液と膜を作製、評価した。但し、平均粒径221nmの粗大な大きさのZrNを用いた。
【0052】
膜の透過プロファイルより、透過率の極大値が438nm、極小値が751nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)7.1%が得られた。また、塗布膜のヘイズは11.3%であった。この膜は、透過率の極大値と極小値の差が17ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、熱線及び紫外線遮蔽機能は十分であるが、粗大粒子を用いたために膜の曇りが11.3%と高く、実用には向かないと判断される。
【0053】
(比較例2)
参考例2で作製したHfN分散液(E液)とシリケート液(B液)に参考例3で作製したCeO分散液(I液)を加えて、HfN:CeO比が1:21、HfN:SiO比が4:1となるような割合で混合・攪拌し、さらにエタノールで希釈して、HfN濃度が1.0%、CeO2濃度が21.0%となるように塗布液を作製した(T液)。このT液15gを用いて、実施例1と同様の手順で成膜、評価した。
【0054】
膜の透過プロファイルより、透過率の極大値が475nm、極小値が778nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)2.1%が得られた。また、塗布膜のヘイズは3.8%であった。この膜は、透過率の極大値と極小値の差が16ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も97.9%遮蔽と良いレベルであるが、膜に曇りがあり、また、膜厚ムラが観察された。
【0055】
(比較例3)
参考例1で作製したTiN分散液(A液)に、チバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、TiN濃度が1.0%、チヌビン384の濃度が8.0%、XS−66の濃度が30%となるように塗布液を作製した(U液)。このU液15gを用いて、実施例1と同様の手順で成膜、評価した。
【0056】
膜の透過プロファイルより、透過率の極大値が432nm、極小値が732nm、反射率の極大値が1000nm付近にあり、また、紫外線透過率(τUV)1.5%が得られた。また、塗布膜のヘイズは1.8%であった。この膜は、透過率の極大値と極小値の差が18ポイントあって可視光波長で透過率が高く近赤外波長で透過率が小さいプロファイルになっており、優れた熱遮蔽効果があることは明瞭である。また、紫外線も98.2%遮蔽しており、熱線・紫外線の遮蔽効果は十分であるが、1日放置後、膜表面に白くベンゾトリアゾールの成分が浮き出て膜が白化した。
【0057】
参考例1〜3、実施例1〜5および比較例1〜3の結果を表1に示す。
【0058】
【表1】

Figure 0004058850
【0059】
(参考例4)
平均粒径67nmのLaB微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、LaB分散液100gを作製した(A’液)。平均重合度で4〜5量体である多摩化学工業株式会社製エチルシリケート40を6g、エタノール31g、5%塩酸水溶液8g、水5gで調製したエチルシリケート溶液50gと、水800g、及びエタノール300gを良く混合・攪拌して、エチルシリケート混合液1150gを調製した(B’液)。また、平均粒径50nmの酸化鉄Fe微粒子10g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、Fe分散液100gを作製した(C’液)。
【0060】
A’液とB’液とC’液を、LaB:Fe比が1:1.5、(LaB+Fe):SiO比が4:1となるような割合で混合・攪拌し、さらにエタノールで希釈して、LaB濃度が0.5%、Fe濃度が0.75%となるように塗布液を作製した(D’液)。このD’液15gを145rpmで回転する200×200×3mmの基板上にビーカから滴下し、そのまま3分間振り切った後、回転を止めた。これを180℃の電気炉に入れて30分間加熱し目的とする膜を得た。
【0061】
可視光透過率(τV)63.5%、日射透過率(τe)42.5%、紫外線透過率(τUV)1.6%が得られた。また、塗布膜のヘイズは0.8%であった。この膜は、日射透過率が可視光透過率よりも21%低く優れた熱遮蔽効果があることは明瞭である。また、紫外線も98.4%遮蔽しており、優れた日射フィルターの機能を有している。
【0062】
(参考例5)
平均粒径46nmのCeB微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、CeB分散液100gを作製した(E’液)。平均粒径30nmの酸化水酸化鉄FeOOH微粒子10g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、FeOOH分散液100gを作製した(F’液)。
【0063】
参考例4で作製したB’液にこのE’液とF’液を加えて、CeB:FeOOH比が1:2、(CeB+FeOOH):SiO比が4:1となるような割合で混合・攪拌し、さらにエタノールで希釈して、CeB濃度が0.5%、FeOOH濃度が1.0%となるように塗布液を作製した(G’液)。
【0064】
このG’液15gを用いて、参考例4と同様の手順で成膜、評価した。τV=58.3%、τe=34.6%、τUV=2.5%、ヘイズは1.3%であった。この膜は、日射透過率が可視光透過率よりも23%低く優れた日射遮蔽効果があることは明瞭である。また、紫外線も97.5%遮蔽しており、優れた日射フィルターの機能を有している。
【0065】
(参考例6)
平均粒径53nmのPrB微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、LaB分散液100gを作製した(H’液)。また、平均粒径12nmの酸化セリウムCeO微粒子10g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、CeO分散液100gを作製した(I’液)。
【0066】
参考例4で作製したB’液とC’液にこのH’液とI’液を加えて、PrB:Fe:CeO比が1:0.5:10、(PrB+Fe+CeO):SiO比が4:1となるような割合で混合・攪拌し、さらにエタノールで希釈して、PrB濃度が0.5%、Fe濃度が0.25%、CeO濃度が5%となるように塗布液を作製した(J’液)。このJ’液15gを用いて、参考例4と同様の手順で成膜、評価した。
【0067】
τV=68.6%、τe=45.1%、τUV=1.3%、ヘイズは0.5%であった。この膜は、日射透過率が可視光透過率よりも23%低く優れた熱遮蔽効果があることは明瞭である。また、紫外線も98.7%遮蔽しており、優れた日射フィルターの機能を有している。
【0068】
(実施例6)
平均粒径66nmのNdB微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、NdB分散液100gを作製した(K’液)。このK’液に、チバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、NdB濃度が0.5%、チヌビン384の濃度が4.5%、XS−66の濃度が30%となるように塗布液を作製した(L’液)。このL’液15gを145rpmで回転する200×200×3mmの基板上にビーカから滴下し、そのまま3分間振り切った後、回転を止めた。これを常温で24時間放置し目的とする膜を得た。
【0069】
τV=72.3%、τe=49.1%、τUV=0.3%、ヘイズは0.4%であった。この膜は、日射透過率が可視光透過率よりも24%低く優れた熱遮蔽効果があることは明瞭である。また、紫外線も99.7%遮蔽しており、優れた日射フィルターの機能を有している。
【0070】
(実施例7)
平均粒径41nmのGdB微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、GdB分散液100gを作製した(M’液)。このM’液に、シプロ化成社製のベンゾフェノン系紫外線吸収剤SEESORB100、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、GdB濃度が0.5%、SEESORB100の濃度が5.0%、XS−66の濃度が30%となるように塗布液を作製した(N’液)。このN’液15gを用いて、参考例4と同様の手順で成膜、評価した。
【0071】
τV=72.8%、τe=49.0%、τUV=0.4%、ヘイズは0.8%であった。この膜は、日射透過率が可視光透過率よりも24%低く優れた熱遮蔽効果があることは明瞭である。また、紫外線も98.6%遮蔽しており、優れた日射フィルターの機能を有している。
【0072】
(実施例8)
平均粒径47nmのTbB微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、TbB分散液100gを作製した(O’液)。平均粒径25nmの酸化亜鉛ZnO微粒子10g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、ZnO分散液100gを作製した(P’液)。O’液とP’液にチバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、TbB濃度が0.5%、ZnO濃度が6%、チヌビン384の濃度が2.5%、XS−66の濃度が30%となるように塗布液を作製した(Q’液)。このQ’液15gを用いて、参考例4と同様の手順で成膜、評価した。
【0073】
τV=71.0%、τe=48.3%、τUV=0.1%、ヘイズは1.0%であった。この膜は、日射透過率が可視光透過率よりも22%低く優れた熱遮蔽効果があることは明瞭である。また、紫外線も99.9%遮蔽しており、優れた日射フィルターの機能を有している。
【0074】
(実施例9)
平均粒径58nmのDyB微粒子8g、DAA80g、水及び分散剤適量を参考例1と同様にボールミル混合して、DyB分散液100gを作製した(R’液)。このR’液と参考例4で作製したC’液、チバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、DyB濃度が0.5%、Fe濃度が0.4%、チヌビン384の濃度が2.5%、XS−66の濃度が30%となるように塗布液を作製した(S’液)。このS’液を用いて、参考例4と同様の手順で成膜、評価した。
【0075】
τV=64.2%、τe=39.6%、τUV=0.2%、ヘイズは1.4%であった。この膜は、日射透過率が可視光透過率よりも24%低く優れた熱遮蔽効果があることは明瞭である。また、紫外線も99.8%遮蔽しており、優れた日射フィルターの機能を有している。
【0076】
(実施例10〜実施例16)
初期粒径がそれぞれ63、72、48、50、49、67、65nmであるXB(X=Y、Sm、Eu、Er、Yb、Sr、Ca)微粒子を用いて、上記参考例4〜15でA’、E’、H’、K’、M’、O’、R’液を作製したと同様の手順で、XB分散液を作製した。これらを用いて、実施例9と同様にして、日射遮蔽成分をXBとし、無機紫外線吸収成分をFeとし、有機紫外線吸収成分をベンゾトリアゾール系のチヌビン384とする塗布液をそれぞれ作製した。これらを実施例9の手順と同様に成膜・評価を行なった。いずれも優れた熱線・紫外線遮蔽効果を示すことが確認された。
【0077】
(比較例4)
平均粒径20nmのITO微粒子20g、DAA70g、水及び分散剤適量を参考例1と同様にボールミル混合して、ITO分散液100gを作製した(T’液)。T’液と実施例8で作製したP’液にチバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、ITO濃度が8.0%、ZnO濃度が5.0%、チヌビン384の濃度が4.5%、XS−66の濃度が30%となるように塗布液を作製した(U’液)。このU’液15gを用いて、参考例4と同様の手順で成膜、評価した。
【0078】
τV=88.5%、τe=84.0%、τUV=0.3%が得られた。この膜は、紫外線は99.7%遮蔽しているが、日射遮蔽機能は不十分であり、また、ヘイズ値が3.8%と高くやや曇りがある。従って日射遮蔽材料としてITOを用いると、8%以下の含有量では熱線遮蔽機能は不十分である。
【0079】
(比較例5)
参考例5と同様にしてCeBとFeOOHを含む液と膜を作製・評価した。但し、平均粒径212nmの粗大な大きさのCeBを用いた。
【0080】
この膜の可視光透過率は64.5%、日射透過率は44.7%、紫外線透過率は2.5%と測定され、熱線及び紫外線遮蔽機能は十分であるが、粗大粒子を用いたために膜の曇りが10.5%と高く、実用には向かないと判断される。
【0081】
(比較例6)
参考例4で作製したLaB分散液(A’液)とシリケート液(B’液)に参考例5で作製したCeO分散液(I’液)を加えて、LaB:CeO比が1:42、LaB:SiO比が4:1となるような割合で混合・攪拌し、さらにエタノールで希釈して、LaB濃度が0.5%、CeO濃度が21.0%となるように塗布液を作製した(V’液)。このV’液15gを用いて、参考例4と同様の手順で成膜、評価した。
【0082】
τV=65.8%、τe=44.7%、τUV=5.7%、ヘイズは2.7%であった。この膜は、日射透過率が可視光透過率よりも21%低く優れた熱遮蔽効果があり、また、紫外線遮蔽率も94.3%と良いレベルであるが、膜に曇りがあり、また、膜厚ムラが観察された。
【0083】
(比較例7)
参考例4で作製したLaB分散液(A’液)に、チバスペシャルティケミカルズ社製のベンゾトリアゾール系紫外線吸収剤チヌビン384、東芝シリコーン社製常温硬化樹脂XS−66、及びエタノールを混合・攪拌して、LaB濃度が0.5%、チヌビン384の濃度が8.0%、XS−66の濃度が30%となるように塗布液を作製した(W’液)。このW’液15gを用いて、参考例4と同様の手順で成膜・評価した。τV=71.5%、τe=46.3%、τUV=0.1%、ヘイズは0.5%であった。この膜は、熱線・紫外線の遮蔽効果は十分であるが、1日放置後、膜表面に白くベンゾトリアゾールの成分が浮き出て膜が白化した。
【0084】
参考例4〜6、実施例6〜16および比較例4〜7の結果を表2に示す。
【0085】
【表2】
Figure 0004058850
【0086】
【発明の効果】
以上示したように、本発明の塗布液を用いることにより、高コストの物理成膜法を用いずに、簡便で安価な塗布法で、熱線・紫外線を遮蔽する日射フィルター膜が成膜できるので、コスト面や大面積膜の面から工業的有用性が高い。[0001]
BACKGROUND OF THE INVENTION
The present invention is a solar filter membrane that shields heat rays and ultraviolet rays by coating on glass, plastic, and other transparent substrates such as windows of vehicles, buildings, offices, ordinary houses, telephone boxes, show windows, and lighting lamps. The present invention relates to a coating solution used for forming the film.
[0002]
[Prior art]
Due to the generation and expansion of the ozone hole, the amount of ultraviolet rays reaching the ground surface has increased remarkably, and adverse effects on the human body such as sunburn and skin cancer have become problems. In addition, when ultraviolet rays enter through windows such as houses, buildings, automobiles, and show windows, furniture such as curtains, carpets, and sofas, paintings, and documents are discolored, faded, and deteriorated. In addition, from the viewpoint of energy saving, glass that shields the infrared part of sunlight to reduce the cooling load in summer, reduces the transmittance in the visible light region, relieves the heat felt on the skin, and protects privacy Has attracted attention in recent years.
[0003]
In this way, there is a need for a solar filter function that forms a thin film on the surface of transparent plastic and glass, removes harmful ultraviolet rays and near infrared rays as much as possible from sunlight, and allows only visible light to pass through. It is increasing.
[0004]
Conventionally, most of such functional films have been produced by a dry method such as sputtering or vapor deposition, which requires a large-scale apparatus and complicated processes, and the cost as a product is very high. Met. Antimony-containing tin oxide (ATO) and tin-containing indium oxide (ITO) are known as materials for shielding heat rays using a coating method. However, in these materials, the plasma wavelength is on the relatively long wavelength side in the near infrared region, and the reflection / absorption effect of these films in the near infrared region close to visible light is not sufficient. If ATO and ITO fine particles are added in a large amount in the coating solution, it is possible to lower the heat ray transmittance. In this case, however, the cost is increased and the strength of the coating film is reduced or the film is clouded (haze). ) Occurred. Attempts have also been made to shield both heat rays and ultraviolet rays by adding a material that shields ultraviolet rays to ATO and ITO, but the effect of shielding heat rays is particularly insufficient.
[0005]
Moreover, although a colored film for window pasting using an organic dye is commercially available, it cannot be said to exhibit sufficient effects due to fading due to ultraviolet rays and the deterioration of the film.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and a film that has a high light transmittance in the visible light region, a low light transmittance in the near-infrared region, and efficiently shields ultraviolet rays is provided at a high cost. An object of the present invention is to provide a solar filter film forming coating solution that can be formed by a simple coating method without using a physical film forming method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have focused on nitrides and hexaborides that possess a large amount of free electrons as the characteristics of the materials themselves, and as a result of various studies, they have been made into ultrafine particles and are highly sophisticated. By creating a film dispersed in the region, we found a phenomenon in which the maximum transmittance was observed in the visible light region, and strong absorption was exhibited in the near infrared region close to the visible light region, resulting in a minimum transmittance. In addition, the present invention was completed by further introducing an inorganic or organic ultraviolet absorbing material.
That is, the solar filter film-forming coating solution of the present invention comprises fine particles of an average particle diameter of 200 nm or less made of nitride, 2,4-dihydroxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 5-chloro-2- One organic ultraviolet ray absorbing component selected from (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole and 2- (2′-hydroxy-5′-methylphenyl) benzotoarizole; A coating solution for forming a solar filter film, wherein the content of the fine particles is 0.02 to 8.0% by weight, and the content of the organic ultraviolet absorbing component is 5% by weight or less, The solar filter membrane obtained by using a visible light transmittance τV is 45.9 to 59.3%, and the ultraviolet transmittance τUV is 1.2 to 2.1%. Further, in another coating solution for forming a solar filter film according to the present invention, the nitride is a nitride of one or more metals selected from the group consisting of Ti, Zr, Hf, V, Nb, and Ta. It is characterized by being.
Further, another solar filter film forming coating solution of the present invention comprises fine particles of hexaboride having an average particle size of 200 nm or less, 2,4-dihydroxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 5-chloro. One organic ultraviolet ray selected from 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole and 2- (2′-hydroxy-5′-methylphenyl) benzotoarizole An absorption component, the content of the fine particles is 0.02 to 8.0% by weight, and the content of the organic ultraviolet absorption component is 5% by weight or less, a coating solution for forming a solar filter film, The solar filter film obtained using the coating solution has a visible light transmittance τV of 57.9 to 72.8% and an ultraviolet transmittance τUV of 0.1 to 0.4%. Further, in another coating solution for forming a solar filter film of the present invention, the hexaboride is La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm. , Yb, Lu, Sr, and Ca are one or more kinds of metal hexaboride selected from the group of Ca.
[0008]
Further, the solar filter film forming coating solution of the present invention further contains one or more inorganic ultraviolet absorbing components selected from the group consisting of iron oxide, iron oxide hydroxide, cerium oxide, and zinc oxide. It is a feature.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The nitride fine particles used in the present invention include fine particles such as titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), and tantalum nitride (TaN). Is a typical example.
[0010]
Further, as the hexaboride fine particles used in the present invention, lanthanum hexaboride (LaB) 6 ), Cerium hexaboride (CeB) 6 ), Praseodymium hexaboride (PrB) 6 ), Neodymium hexaboride (NdB) 6 ), Gadolinium hexaboride (GdB) 6 ), Terbium hexaboride (TbB) 6 ), Dysprosium hexaboride (DyB) 6 ), Holmium hexaboride (HoB) 6 ), Yttrium hexaboride (YB) 6 ), Samarium hexaboride (SmB 6 ), Europium hexaboride (EuB) 6 ), Erbium hexaboride (ErB) 6 ), Thulium hexaboride (TmB) 6 ), Ytterbium hexaboride (YbB) 6 ), Lutetium hexaboride (LuB) 6 ), Lanthanum cerium hexaboride ((La, Ce) B 6 ), Strontium hexaboride (SrB) 6 ), Calcium boride (CaB) 6 ) And the like are typical examples.
[0011]
The nitride fine particles and hexaboride fine particles used in the present invention are preferably not oxidized on the surface, but are usually slightly oxidized, and the surface is oxidized during the fine particle dispersion step. Something is unavoidable. However, even in that case, there is no change in the effectiveness of the solar radiation shielding effect. In addition, the higher the completeness of the crystal, the greater the solar radiation shielding effect. However, even if the crystallinity is low and a broad diffraction peak is generated by X-ray diffraction, the basic inside of the microparticle If the strong bond is composed of a bond between each metal and nitrogen or boron, the solar radiation shielding effect is exhibited.
[0012]
These nitride fine particles are powders colored brown black, blue black, etc., and these hexaboride fine particles are powders colored gray black, brown black, green black, etc., but the particle size is visible. In a state where it is sufficiently smaller than the light wavelength and dispersed in the thin film, the film has visible light transmittance. However, the infrared light shielding ability can be kept strong enough.
[0013]
The reason for this is not understood in detail, but the amount of free electrons in these fine particles is large, and the absorption energy of plasmon absorption and indirect interband transition due to free electrons inside and on the surface of the fine particles is just visible to near infrared. Therefore, it is considered that heat rays in this wavelength region are selectively reflected and absorbed. According to experiments, in a film in which these fine particles are sufficiently finely and uniformly dispersed, the transmittance has a maximum value between wavelengths of 400 to 700 nm, and has a minimum value between wavelengths of 700 to 1800 nm. It is observed that the difference between the local maximum and the minimum is 15 points or more.
[0014]
Considering that the visible light wavelength is 380 to 780 nm and the visibility is a bell-shaped peak with a peak near 550 nm, such a film effectively transmits visible light and effectively reflects other heat rays. It is understood to absorb.
[0015]
Also, commonly used ultraviolet shielding components have an absorption edge in the ultraviolet to visible range, and the coating film containing the ultraviolet shielding component absorbs a short wavelength range of visible light simultaneously with ultraviolet rays and is colored yellow or orange. Although not preferred, it is possible to prevent yellowing of the film by adding nitride fine particles having transparency in the short wavelength region of visible light.
[0016]
The solar radiation shielding effect of nitride fine particles or hexaboride fine particles depends on the ratio to the binder component and the dry film thickness, and thus cannot be defined by the content alone, but in normal use, the fine particles The content of is preferably used between 0.02 wt% and 8.0 wt%. If the content is less than 0.02% by weight, it is difficult to obtain a sufficient solar radiation shielding effect no matter how thick the film is. If it exceeds 8.0% by weight, not only the viscosity of the coating solution increases but also the surface activity. By the catalytic action of the nitride fine particles or hexaboride fine particles rich in the gel, gelation of the coexisting binder component is promoted, and the pot life of the coating liquid is shortened. However, when added in combination with other heat ray absorbents, it may be less than 0.02% by weight. For example, as a concentrated liquid for storage, a coating liquid exceeding 8.0% by weight can be used. It is.
[0017]
In the present invention, the particle size of the nitride fine particles and hexaboride fine particles in the coating solution is preferably 100 nm or less. When the particle diameter of the fine particles is larger than 200 nm, the effect of absorbing near-infrared light cannot be obtained, resulting in a grayish film with a monotonously reduced transmittance. Moreover, when the particle diameter is larger than 200 nm, the tendency of aggregation of the fine particles in the dispersion becomes strong, which causes sedimentation of the fine particles. Furthermore, fine particles of 200 nm or more or coarse particles formed by agglomeration thereof serve as a light scattering source and cause clouding (haze) on the film or cause a decrease in visible light transmittance. Therefore, the average particle size of the fine particles needs to be 200 nm or less for the reason described above. The minimum particle size economically available with current technology is about 2 nm.
[0018]
As an inorganic ultraviolet shielding component used in the present invention, iron oxide (Fe 2 O 3 ), Iron oxide hydroxide (FeOOH), cerium oxide (CeO) 2 ), Titanium oxide (TiO 2 ) And fine particles such as zinc oxide (ZnO) can be given as typical examples. These oxide fine particles have an absorption edge in the ultraviolet to visible range and absorb ultraviolet rays. Moreover, since it is an inorganic substance, there is little deterioration by light and moisture, and it is stable over time. However, UV shielding efficiency is relatively small except for iron oxide and iron oxide hydroxide, so a large amount of addition is necessary, but adding a large amount increases the viscosity of the coating solution and decreases the leveling property of the solution. The addition amount is preferably 20% by weight or less, and more preferably 7% by weight or less. If it is added in a large amount, iron oxide or iron oxide hydroxide is not preferable because the coating film is colored yellow or orange.
[0019]
The particle size of the inorganic ultraviolet shielding component fine particles is preferably 100 nm or less for the same reason as the nitride fine particles and hexaboride fine particles.
[0020]
As the organic ultraviolet absorbing component used in the present invention, a benzophenone-based or benzotriazole-based compound having a large absorption effect is preferable. In addition, other commercially available materials such as triazine-based, oxalic acid anilide-based, cyanoacrylate-based, and salicylate-based materials can also be used. Examples of the benzophenone-based ultraviolet absorber include 2,4-dihydroxybenzophenone and 2-hydroxy-4-octyloxybenzophenone, and examples of the benzotriazole-based ultraviolet absorber include 5-chloro-2- (2 '-Hydroxy-3', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotoarizole and the like.
[0021]
These organic ultraviolet absorbing materials have much higher absorption efficiency than inorganic ultraviolet absorbing materials, but they tend to ooze and precipitate due to the influence of heat and moisture in the air. A small amount of addition of less than wt% is preferred. In addition, since these organic ultraviolet absorbing components are deteriorated by ultraviolet rays or oxygen in the air, a light stabilizer (HALS), a peroxide decomposing agent, a quencher, etc. can be appropriately added to the coating solution. .
[0022]
The dispersion medium of the fine particles in the coating liquid is not particularly limited, and can be selected according to the coating conditions and coating environment, the alkoxide in the coating liquid, the synthetic resin binder, and the like. For example, water, alcohol, ether, ester Various organic solvents such as ketones can be used. Moreover, you may adjust pH by adding an acid and an alkali as needed. Furthermore, in order to further improve the dispersion stability of the fine particles in the coating solution, various surfactants, coupling agents and the like can be added. The amount of each added at that time is 30% by weight or less, preferably 5% by weight or less based on the inorganic fine particles.
[0023]
The method for dispersing the fine particles can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solution. For example, methods such as a bead mill, a ball mill, a sand mill, and ultrasonic dispersion can be exemplified.
[0024]
The solar filter film in the present invention is a film in which the fine particles are deposited at a high density on a substrate to form a film, but an inorganic or organic resin binder component may be added to the coating solution. Examples of the inorganic binder include alkoxides of metals such as silicon, zirconium, titanium, and aluminum, or partial hydrolysis polymers of these metals. Moreover, as an organic resin, conventionally well-known things, such as an acrylic resin, a thermoplastic polyurethane resin, and a polycarbonate, can be used widely. These binders have the effect of improving the binding property of the fine particles to the substrate after coating and curing, and further improving the hardness of the film. In addition, a film containing an inorganic or organic resin such as the binder component is further applied as a second layer on the film thus obtained, so that the film mainly composed of fine particles can be applied to the substrate. It is also possible to further improve the binding force, the hardness of the film, and the weather resistance.
[0025]
In order to improve the transmittance, the coating liquid of the present invention can further be mixed with ultrafine particles such as ATO, ITO, and aluminum-added zinc oxide. These transparent ultrafine particles increase absorption in the near-infrared region close to visible light as the amount added is increased, so that a heat ray shielding film having high visible light transmittance can be obtained. Conversely, the coating liquid of the present invention can be added to a liquid in which ultrafine particles such as ATO, ITO, and aluminum-added zinc oxide are dispersed to color the film, and at the same time, assist the heat ray shielding effect. In this case, since the heat ray shielding effect can be assisted with a small amount of soot added to the main ITO or the like, there is an advantage that the required amount of ITO can be greatly reduced and the cost of the liquid can be reduced.
[0026]
The coating method of the coating solution and the coating solution for coating is not particularly limited, and the processing solution such as spin coating method, spray coating method, dip coating method, screen printing method, roll coating method, flow coating, brush coating, etc. Any method can be suitably employed as long as it is a method that can be applied flatly and thinly and uniformly.
[0027]
When the base material heating temperature after application of the coating solution containing each metal alkoxide and its hydrolysis polymer is less than 100 ° C., the polymerization reaction of the alkoxide and its hydrolysis polymer contained in the coating film remains incomplete. In addition, since water and organic solvents remain in the film and cause a reduction in the visible light transmittance of the film after heating, it is preferably 100 ° C. or higher, more preferably the boiling points of all the solvents in the coating solution. That's it.
[0028]
When a resin binder is used, it may be cured in accordance with each curing method. For example, an ultraviolet curable resin may be appropriately irradiated with ultraviolet rays, and a thermoplastic resin may be heated after application. If it is a room temperature curable resin, it can be left as it is, so it can be applied to existing window glass in the field, and versatility is expanded.
[0029]
As a room temperature curable binder, for example, an organosizaran solution is commercially available having a polymerization curing temperature of 100 ° C. or less by correcting a side chain group or adding an oxidation catalyst. A commercially available silicate type can also be used. Both are SiO after curing 2 Inorganic film or SiO mixed with organic chain 2 Forms a film and is superior to a resin film in terms of weather resistance and film strength.
[0030]
As described above, according to the present invention, it is possible to obtain a solar filter film having an effect of shielding heat rays and ultraviolet rays by appropriately mixing the inorganic solar shielding fine particles and inorganic and / or organic ultraviolet absorbing materials.
[0031]
[Example]
Hereinafter, the present invention will be described in more detail with reference to examples of the present invention and comparative examples.
[0032]
(Reference Example 1)
TiN fine particles having an average particle size of 40 nm 8 g, diacetone alcohol (hereinafter abbreviated as “DAA”) 80 g, water and an appropriate amount of a dispersing agent are mixed, and ball mill mixing is performed for 100 hours using zirconia balls having a diameter of 4 mm to disperse TiN. A liquid 100 g was prepared (A liquid). 6 g of ethyl silicate 40 manufactured by Tama Chemical Industry Co., Ltd. having an average polymerization degree of 4-5 mer, 31 g of ethanol, 8 g of 5% hydrochloric acid aqueous solution and 5 g of water were mixed and stirred well, and 50 g of ethyl silicate mixed solution was mixed. Prepared (Liquid B). 10 g of iron oxide hydroxide FeOOH fine particles having an average particle size of 30 nm, 80 g of DAA, and an appropriate amount of water and a dispersant were ball milled in the same manner as described above to prepare 100 g of an FeOOH dispersion (solution C).
[0033]
A liquid, B liquid, and C liquid have a TiN: FeOOH ratio of 1: 1.5 (weight ratio. Hereinafter, all the ratios are described by weight ratio), (TiN + FeOOH): SiO 2 Mixing and stirring at a ratio of 4: 1, further diluting with ethanol, TiN concentration is 1.0 wt% (hereinafter, "%" indicates "wt%"), FeOOH concentration is A coating solution was prepared so as to be 1.5% (D solution). 15 g of this solution D is applied onto a soda lime plate glass substrate (hereinafter, all the soda lime plate glass substrates are used) by a spin coater, and heated in an electric furnace at 180 ° C. for 30 minutes to form a target film. Obtained.
[0034]
Spectral characteristics of the formed film were measured using a spectrophotometer manufactured by Hitachi, Ltd. (hereinafter the same). From the transmission profile of the film, the maximum value of the transmittance is 422 nm, the minimum value is 746 nm, the maximum value of the reflectance is around 1000 nm, and the value including the 3 mm thick glass substrate based on ISO-9050 , ΤUV, τV, τe), and UV transmittance (τUV) of 8.9%. Moreover, the haze of the coating film was 1.7% using a haze meter manufactured by Murakami Color Research Laboratory (hereinafter the same). This film has a difference between the maximum value and the minimum value of the transmittance of 16 points, has a high transmittance at the visible light wavelength, and a low transmittance at the near infrared wavelength, and has an excellent heat shielding effect. That is clear. Moreover, the ultraviolet rays are also shielded by 91.1% and have an excellent solar filter function.
[0035]
(Reference Example 2)
Ball mill mixing of 8 g of HfN fine particles having an average particle diameter of 43 nm, 80 g of DAA, water and a suitable amount of a dispersant was conducted in the same manner as in Reference Example 1 to prepare 100 g of an HfN dispersion (solution E). Iron oxide Fe with an average particle size of 50 nm 2 O 3 In the same manner as in Reference Example 1, 10 g of fine particles, 80 g of DAA, water and an appropriate amount of dispersant were mixed in a ball mill, and Fe 2 O 3 A dispersion 100 g was prepared (F solution).
[0036]
The E and F liquids were added to the B and C liquids prepared in Reference Example 1, and HfN: FeOOH: Fe. 2 O 3 The ratio is 1: 1: 0.5, (HfN + FeOOH + Fe 2 O 3 ): SiO 2 Mixing and stirring at a ratio of 4: 1, further diluting with ethanol, HfN concentration is 1.0%, FeOOH concentration is 1.0%, Fe 2 O 3 A coating solution was prepared so that the concentration was 0.5% (G solution). 15 g of this G solution was applied onto a substrate with a spin coater, placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the intended film.
[0037]
From the transmission profile of the film, the maximum value of transmittance was 469 nm, the minimum value was 768 nm, the maximum value of reflectance was about 1000 nm, and the ultraviolet transmittance (τUV) was 8.8%. Moreover, the haze of the coating film was 1.5%. This film has a 16-point difference between the maximum value and minimum value of transmittance, has a high transmittance at visible wavelengths, and a low transmittance at near infrared wavelengths, and has an excellent heat shielding effect. Is clear. Moreover, the ultraviolet rays are also shielded by 91.2% and have an excellent solar filter function.
[0038]
(Reference Example 3)
Ball mill mixing was performed in the same manner as in Reference Example 1 to 8 g of ZrN fine particles having an average particle diameter of 35 nm, 80 g of DAA, water and an appropriate amount of a dispersant to prepare 100 g of a ZrN dispersion (liquid H). Cerium oxide CeO with an average particle size of 12 nm 2 35 g of fine particles, 55 g of DAA, water and a suitable amount of a dispersant were mixed in a ball mill in the same manner as in Reference Example 1 to obtain CeO. 2 Dispersion 100g was produced (I liquid).
[0039]
H liquid and I liquid were added to B liquid produced in Reference Example 1, and ZrN: CeO was added. 2 The ratio is 1:10, (ZrN + CeO 2 ): SiO 2 Mixing and stirring at a ratio of 4: 1, further diluting with ethanol, the ZrN concentration is 1.0%, CeO 2 A coating solution was prepared so as to have a concentration of 10% (solution J). Using 15 g of this J solution, a film was formed and evaluated in the same procedure as in Reference Example 1.
[0040]
From the transmission profile of the film, the maximum value of transmittance was 432 nm, the minimum value was 735 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) was 6.4%. Further, the haze of the coating film was 1.7%. This film has a 15-point difference between the maximum and minimum values of transmittance, has a high transmittance at visible wavelengths, and a low transmittance at near infrared wavelengths, and has an excellent heat shielding effect. Is clear. Moreover, 93.6% of ultraviolet rays are shielded, and it has an excellent solar filter function.
[0041]
Example 1
VN fine particles having an average particle diameter of 64 nm, 8 g of DAA, 80 g of water, and an appropriate amount of water and a dispersant were ball milled in the same manner as in Reference Example 1 to prepare 100 g of a VN dispersion (liquid K). A benzotriazole ultraviolet absorber Tinuvin 384 manufactured by Ciba Specialty Chemicals Co., Ltd., a normal temperature curable resin XS-66 manufactured by Toshiba Silicone Co., Ltd., and ethanol were mixed and stirred in the liquid K, and a VN concentration of 1.0% and Tinuvin 384 was mixed. A coating solution was prepared so that the concentration was 4.5% and the concentration of XS-66 was 30% (L solution). 15 g of this L solution was applied onto a substrate with a spin coater and allowed to stand at room temperature for 24 hours to obtain the desired film.
[0042]
From the transmission profile of the film, the maximum value of transmittance was 622 nm, the minimum value was 975 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) was 1.2%. Moreover, the haze of the coating film was 1.9%. This film has a 19-point difference between the maximum value and minimum value of the transmittance, has a high transmittance at the visible light wavelength, and a low transmittance at the near-infrared wavelength, and has an excellent heat shielding effect. Is clear. Moreover, the ultraviolet rays are also blocked by 98.8% and have an excellent solar filter function.
[0043]
(Example 2)
Ball mill mixing of 8 g of NbN fine particles having an average particle size of 55 nm, 80 g of DAA, water and an appropriate amount of a dispersant was conducted in the same manner as in Reference Example 1 to prepare 100 g of an NbN dispersion (liquid M). The M solution was mixed and stirred with a benzophenone-based UV absorber SEESORB100 manufactured by Sipro Kasei Co., Ltd., a normal temperature curable resin XS-66 manufactured by Toshiba Silicone Co., Ltd., and ethanol, and the NbN concentration was 1.0% and the concentration of SEESORB100 was 4. A coating solution was prepared so that the concentration of 0% and XS-66 was 30% (N solution). Using 15 g of this N solution, a film was formed and evaluated in the same procedure as in Example 1.
[0044]
From the transmission profile of the film, the maximum value of transmittance was 615 nm, the minimum value was 963 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) was 2.1%. Moreover, the haze of the coating film was 1.3%. This film has a 18-point difference between the maximum value and minimum value of the transmittance, has a high transmittance at the visible light wavelength, and a low transmittance at the near infrared wavelength, and has an excellent heat shielding effect. Is clear. Moreover, the ultraviolet rays are also shielded by 97.9% and have an excellent solar filter function.
[0045]
(Example 3)
Ball mill mixing of 20 g of zinc oxide ZnO fine particles having an average particle diameter of 25 nm, 70 g of DAA, water and an appropriate amount of a dispersant was conducted in the same manner as in Reference Example 1 to prepare 100 g of a ZnO dispersion (O solution). Mixing and stirring the F solution prepared in Reference Example 2 with the O solution, the benzotriazole ultraviolet absorber Tinuvin 384 manufactured by Ciba Specialty Chemicals, the normal temperature curable resin XS-66 manufactured by Toshiba Silicone, and ethanol, the HfN concentration was A coating solution was prepared so that the concentration of 1.0%, the concentration of ZnO was 5%, the concentration of tinuvin 384 was 2.5%, and the concentration of XS-66 was 30% (P solution). Using 15 g of this P solution, a film was formed and evaluated in the same procedure as in Example 1.
[0046]
From the transmission profile of the film, the maximum value of transmittance was 470 nm, the minimum value was 775 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) 1.5% was obtained. Moreover, the haze of the coating film was 1.8%. This film has a 16-point difference between the maximum value and minimum value of transmittance, has a high transmittance at visible wavelengths, and a low transmittance at near infrared wavelengths, and has an excellent heat shielding effect. Is clear. Moreover, the ultraviolet rays are also shielded by 98.2% and have an excellent solar filter function.
[0047]
Example 4
Ball mill mixing of 8 g of TaN fine particles having an average particle size of 43 nm, 80 g of DAA, water and an appropriate amount of a dispersant was performed in the same manner as in Reference Example 1 to prepare 100 g of TaN dispersion (Q solution). The C solution prepared in Reference Example 1 was mixed with the Q solution, the benzotriazole ultraviolet absorber Tinuvin 384 manufactured by Ciba Specialty Chemicals, the room temperature curable resin XS-66 manufactured by Toshiba Silicone, and ethanol, and the TaN concentration was A coating solution was prepared so that the concentration of 1.0%, the FeOOH concentration was 0.4%, the concentration of Tinuvin 384 was 2.5%, and the concentration of XS-66 was 30% (R solution). Using this R solution, a film was formed and evaluated in the same procedure as in Example 1.
[0048]
From the transmission profile of the film, the maximum value of transmittance was 585 nm, the minimum value was 1071 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) was 1.7%. Moreover, the haze of the coating film was 1.8%. This film has a 17-point difference between the maximum and minimum transmittance values, has a high transmittance at visible wavelengths, and a low transmittance at near-infrared wavelengths, and has an excellent heat shielding effect. Is clear. In addition, ultraviolet rays are also shielded by 98.3% and have an excellent solar filter function.
[0049]
(Example 5)
The liquid C produced in Reference Example 1 was mixed and stirred with the liquid C produced in Reference Example 1, the benzophenone-based ultraviolet absorber SEESORB100 manufactured by Cypro Kasei Co., Ltd., the room temperature curable resin XS-66 manufactured by Toshiba Silicone Co., and ethanol. A coating solution was prepared so that the ZrN concentration was 1.0%, the FeOOH concentration was 0.4%, the SEESORB100 concentration was 2.5%, and the XS-66 concentration was 30% (S solution). Using this S solution, a film was formed and evaluated in the same procedure as in Example 1.
[0050]
From the transmission profile of the film, the maximum value of transmittance was 435 nm, the minimum value was 736 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) was 1.3%. Moreover, the haze of the coating film was 1.9%. This film has a 18-point difference between the maximum value and minimum value of the transmittance, has a high transmittance at the visible light wavelength, and a low transmittance at the near infrared wavelength, and has an excellent heat shielding effect. Is clear. Moreover, the ultraviolet rays are also shielded by 98.2% and have an excellent solar filter function.
[0051]
(Comparative Example 1)
ZrN and CeO as in Reference Example 3 2 A liquid and a film containing were produced and evaluated. However, coarse ZrN having an average particle diameter of 221 nm was used.
[0052]
From the transmission profile of the film, the maximum value of transmittance was 438 nm, the minimum value was 751 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) was 7.1%. Moreover, the haze of the coating film was 11.3%. This film has a difference between the maximum and minimum transmittances of 17 points, and has a profile with high transmittance at visible wavelengths and low transmittance at near infrared wavelengths. However, since the coarse particles are used, the cloudiness of the film is as high as 11.3%, which is not suitable for practical use.
[0053]
(Comparative Example 2)
The CeO produced in Reference Example 3 was used for the HfN dispersion (E liquid) and silicate liquid (B liquid) produced in Reference Example 2. 2 Add the dispersion (Liquid I) and add HfN: CeO 2 The ratio is 1:21, HfN: SiO 2 The mixture was mixed and stirred at a ratio of 4: 1, and further diluted with ethanol to prepare a coating solution so that the HfN concentration was 1.0% and the CeO2 concentration was 21.0% (T solution). ). Using 15 g of this T solution, a film was formed and evaluated in the same procedure as in Example 1.
[0054]
From the transmission profile of the film, the maximum value of transmittance was 475 nm, the minimum value was 778 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) was 2.1%. Further, the haze of the coating film was 3.8%. This film has a 16-point difference between the maximum value and minimum value of transmittance, has a high transmittance at visible wavelengths, and a low transmittance at near infrared wavelengths, and has an excellent heat shielding effect. Is clear. Further, although the ultraviolet ray was 97.9%, which was a good level, the film was cloudy and uneven film thickness was observed.
[0055]
(Comparative Example 3)
The TiN dispersion (liquid A) prepared in Reference Example 1 was mixed and stirred with benzotriazole-based ultraviolet absorber Tinuvin 384 manufactured by Ciba Specialty Chemicals, room temperature curable resin XS-66 manufactured by Toshiba Silicone, and ethanol. A coating solution was prepared so that the TiN concentration was 1.0%, the tinuvin 384 concentration was 8.0%, and the XS-66 concentration was 30% (U solution). Using this U solution 15g, a film was formed and evaluated in the same procedure as in Example 1.
[0056]
From the transmission profile of the film, the maximum value of transmittance was 432 nm, the minimum value was 732 nm, the maximum value of reflectance was around 1000 nm, and the ultraviolet transmittance (τUV) was 1.5%. Moreover, the haze of the coating film was 1.8%. This film has a 18-point difference between the maximum value and minimum value of the transmittance, has a high transmittance at the visible light wavelength, and a low transmittance at the near infrared wavelength, and has an excellent heat shielding effect. Is clear. Further, although 98.2% of ultraviolet rays were shielded, the effect of shielding heat rays and ultraviolet rays was sufficient, but after standing for 1 day, the benzotriazole component was whitened on the film surface and the film was whitened.
[0057]
Table 1 shows the results of Reference Examples 1 to 3, Examples 1 to 5, and Comparative Examples 1 to 3.
[0058]
[Table 1]
Figure 0004058850
[0059]
(Reference Example 4)
LaB with an average particle size of 67 nm 6 8 g of fine particles, 80 g of DAA, water and an appropriate amount of dispersant were mixed in a ball mill in the same manner as in Reference Example 1 to obtain LaB. 6 A dispersion 100 g was prepared (A ′ solution). 6 g of ethyl silicate 40 manufactured by Tama Chemical Industry Co., Ltd. having an average polymerization degree of 4 to 5 mer, 31 g of ethanol, 8 g of 5% hydrochloric acid aqueous solution, 50 g of ethyl silicate solution prepared with 5 g of water, 800 g of water, and 300 g of ethanol By thoroughly mixing and stirring, 1150 g of an ethylsilicate mixed solution was prepared (B ′ solution). In addition, iron oxide Fe having an average particle diameter of 50 nm 2 O 3 In the same manner as in Reference Example 1, 10 g of fine particles, 80 g of DAA, water and an appropriate amount of dispersant were mixed in a ball mill, and Fe 2 O 3 100 g of a dispersion was prepared (C ′ solution).
[0060]
Liquid A ', liquid B' and liquid C ' 6 : Fe 2 O 3 The ratio is 1: 1.5 (LaB 6 + Fe 2 O 3 ): SiO 2 Mix and stir at a ratio of 4: 1, then dilute with ethanol, LaB 6 Concentration is 0.5%, Fe 2 O 3 A coating solution was prepared so that the concentration was 0.75% (D ′ solution). 15 g of this D ′ solution was dropped from a beaker onto a 200 × 200 × 3 mm substrate rotating at 145 rpm, and after shaking for 3 minutes, the rotation was stopped. This was put in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the intended film.
[0061]
Visible light transmittance (τV) 63.5%, solar radiation transmittance (τe) 42.5%, and ultraviolet transmittance (τUV) 1.6% were obtained. Moreover, the haze of the coating film was 0.8%. It is clear that this film has an excellent heat shielding effect with a solar transmittance of 21% lower than the visible light transmittance. Moreover, the ultraviolet rays are also shielded by 98.4% and have an excellent solar filter function.
[0062]
(Reference Example 5)
CeB with an average particle size of 46 nm 6 8 g of fine particles, 80 g of DAA, water and an appropriate amount of a dispersant were mixed in a ball mill in the same manner as in Reference Example 1 to obtain CeB. 6 Dispersion 100g was produced (E 'liquid). An iron oxide hydroxide FeOOH fine particle having an average particle size of 30 nm, DAA 80 g, water and a suitable amount of a dispersant were ball milled in the same manner as in Reference Example 1 to prepare 100 g of an FeOOH dispersion (F ′ solution).
[0063]
The E ′ and F ′ solutions are added to the B ′ solution prepared in Reference Example 4 to obtain CeB. 6 : FeOOH ratio is 1: 2, (CeB 6 + FeOOH): SiO 2 Mix and stir at a ratio of 4: 1, then dilute with ethanol, CeB 6 A coating solution was prepared so that the concentration was 0.5% and the FeOOH concentration was 1.0% (G ′ solution).
[0064]
Using 15 g of this G ′ solution, a film was formed and evaluated in the same procedure as in Reference Example 4. τV = 58.3%, τe = 34.6%, τUV = 2.5%, and haze was 1.3%. It is clear that this film has an excellent solar shading effect with a solar transmittance of 23% lower than the visible light transmittance. Moreover, the ultraviolet rays are also shielded by 97.5% and have an excellent solar filter function.
[0065]
(Reference Example 6)
PrB with an average particle size of 53 nm 6 8 g of fine particles, 80 g of DAA, water and an appropriate amount of dispersant were mixed in a ball mill in the same manner as in Reference Example 1 to obtain LaB. 6 100 g of a dispersion was prepared (H ′ solution). Also, cerium oxide CeO having an average particle size of 12 nm 2 In the same manner as in Reference Example 1, 10 g of fine particles, 80 g of DAA, water and a suitable amount of a dispersant were mixed in a ball mill, and CeO. 2 100 g of a dispersion liquid was prepared (I ′ liquid).
[0066]
The H ′ and I ′ liquids were added to the B ′ and C ′ liquids prepared in Reference Example 4, and PrB 6 : Fe 2 O 3 : CeO 2 The ratio is 1: 0.5: 10 (PrB 6 + Fe 2 O 3 + CeO 2 ): SiO 2 Mix and stir at a ratio such that the ratio is 4: 1, further dilute with ethanol, PrB 6 Concentration is 0.5%, Fe 2 O 3 Concentration is 0.25%, CeO 2 A coating solution was prepared so as to have a concentration of 5% (J ′ solution). Using 15 g of this J ′ solution, a film was formed and evaluated in the same procedure as in Reference Example 4.
[0067]
τV = 68.6%, τe = 45.1%, τUV = 1.3%, and haze was 0.5%. It is clear that this film has an excellent heat shielding effect with a solar transmittance of 23% lower than the visible light transmittance. Moreover, the ultraviolet rays are also blocked by 98.7%, and it has an excellent solar filter function.
[0068]
(Example 6)
NdB with an average particle size of 66 nm 6 8 g of fine particles, 80 g of DAA, water and an appropriate amount of dispersant were mixed in a ball mill in the same manner as in Reference Example 1 to obtain NdB 6 100 g of a dispersion was prepared (K ′ solution). This K ′ solution was mixed and stirred with benzotriazole ultraviolet absorber Tinuvin 384 manufactured by Ciba Specialty Chemicals, room temperature curable resin XS-66 manufactured by Toshiba Silicone Co., and ethanol. 6 A coating solution was prepared so that the concentration was 0.5%, the concentration of tinuvin 384 was 4.5%, and the concentration of XS-66 was 30% (L ′ solution). 15 g of this L ′ solution was dropped from a beaker onto a 200 × 200 × 3 mm substrate rotating at 145 rpm, and after shaking for 3 minutes, the rotation was stopped. This was left at room temperature for 24 hours to obtain the intended film.
[0069]
τV = 72.3%, τe = 49.1%, τUV = 0.3%, and haze was 0.4%. It is clear that this film has an excellent heat shielding effect with a solar transmittance of 24% lower than the visible light transmittance. In addition, ultraviolet rays are also shielded by 99.7% and have an excellent solar filter function.
[0070]
(Example 7)
GdB with an average particle size of 41 nm 6 8 g of fine particles, 80 g of DAA, water and a suitable amount of a dispersant were mixed in a ball mill in the same manner as in Reference Example 1 to obtain GdB 6 100 g of a dispersion was prepared (M ′ solution). The M ′ solution was mixed and stirred with a benzophenone UV absorber SEESORB100 manufactured by Sipro Kasei Co., Ltd., a normal temperature curable resin XS-66 manufactured by Toshiba Silicone Co., Ltd., and ethanol. 6 A coating solution was prepared so that the concentration was 0.5%, the concentration of SEESORB100 was 5.0%, and the concentration of XS-66 was 30% (N ′ solution). Using 15 g of this N ′ solution, a film was formed and evaluated in the same procedure as in Reference Example 4.
[0071]
τV = 72.8%, τe = 49.0%, τUV = 0.4%, and haze was 0.8%. It is clear that this film has an excellent heat shielding effect with a solar transmittance of 24% lower than the visible light transmittance. Moreover, the ultraviolet rays are also shielded by 98.6% and have an excellent solar filter function.
[0072]
(Example 8)
TbB with an average particle size of 47 nm 6 8 g of fine particles, 80 g of DAA, water and an appropriate amount of a dispersant were mixed in a ball mill in the same manner as in Reference Example 1, and TbB 6 100 g of a dispersion was prepared (O ′ solution). Ball mill mixing of 10 g of zinc oxide ZnO fine particles having an average particle diameter of 25 nm, 80 g of DAA, water and an appropriate amount of a dispersant was conducted in the same manner as in Reference Example 1 to prepare 100 g of ZnO dispersion (P ′ solution). Ob solution and P 'solution were mixed and stirred with Ciba Specialty Chemicals' benzotriazole UV absorber Tinuvin 384, Toshiba Silicone's room temperature curable resin XS-66, and ethanol. 6 A coating solution was prepared so that the concentration was 0.5%, the ZnO concentration was 6%, the tinuvin 384 concentration was 2.5%, and the XS-66 concentration was 30% (Q 'solution). Using 15 g of this Q ′ solution, a film was formed and evaluated in the same procedure as in Reference Example 4.
[0073]
τV = 71.0%, τe = 48.3%, τUV = 0.1%, and haze was 1.0%. It is clear that this film has an excellent heat shielding effect with a solar transmittance of 22% lower than the visible light transmittance. Moreover, the ultraviolet rays are also shielded by 99.9% and have an excellent solar filter function.
[0074]
Example 9
DyB with an average particle size of 58 nm 6 8 g of fine particles, 80 g of DAA, water and an appropriate amount of a dispersant were mixed in a ball mill in the same manner as in Reference Example 1 to obtain DyB 6 100 g of a dispersion was prepared (R ′ solution). This R ′ solution, the C ′ solution prepared in Reference Example 4, Ciba Specialty Chemicals benzotriazole UV absorber Tinuvin 384, Toshiba Silicone normal temperature curable resin XS-66, and ethanol were mixed and stirred. DyB 6 Concentration is 0.5%, Fe 2 O 3 A coating solution was prepared so that the concentration was 0.4%, the concentration of tinuvin 384 was 2.5%, and the concentration of XS-66 was 30% (S ′ solution). Using this S ′ solution, a film was formed and evaluated in the same procedure as in Reference Example 4.
[0075]
τV = 64.2%, τe = 39.6%, τUV = 0.2%, and haze was 1.4%. It is clear that this film has an excellent heat shielding effect with a solar transmittance of 24% lower than the visible light transmittance. Moreover, the ultraviolet rays are also shielded by 99.8% and have an excellent solar filter function.
[0076]
(Example 10 to Example 16)
XB with initial particle sizes of 63, 72, 48, 50, 49, 67 and 65 nm, respectively 6 (X = Y, Sm, Eu, Er, Yb, Sr, Ca) A ′, E ′, H ′, K ′, M ′, O ′, R ′ liquid in Reference Examples 4 to 15 using fine particles. XB in the same procedure as 6 A dispersion was prepared. Using these, the solar radiation shielding component was changed to XB in the same manner as in Example 9. 6 And the inorganic ultraviolet absorbing component is Fe 2 O 3 Then, a coating solution was prepared in which the organic ultraviolet absorbing component was benzotriazole-based tinuvin 384. These were formed and evaluated in the same manner as in Example 9. It was confirmed that both showed excellent heat ray / ultraviolet ray shielding effect.
[0077]
(Comparative Example 4)
In the same manner as in Reference Example 1, 20 g of ITO fine particles having an average particle diameter of 20 nm, 70 g of DAA, water and an appropriate amount of a dispersant were mixed by ball mill to prepare an ITO dispersion liquid 100 g (T ′ liquid). The T ′ solution and the P ′ solution prepared in Example 8 were mixed and stirred with Ciba Specialty Chemicals' benzotriazole UV absorber Tinuvin 384, Toshiba Silicone's room temperature curing resin XS-66, and ethanol. A coating solution was prepared so that the concentration was 8.0%, the ZnO concentration was 5.0%, the tinuvin 384 concentration was 4.5%, and the XS-66 concentration was 30% (U ′ solution). Using 15 g of this U ′ solution, a film was formed and evaluated in the same procedure as in Reference Example 4.
[0078]
τV = 88.5%, τe = 84.0%, and τUV = 0.3% were obtained. This film blocks 99.7% of ultraviolet rays, but has insufficient solar radiation shielding function, and has a haze value as high as 3.8% and slightly cloudy. Therefore, when ITO is used as the solar radiation shielding material, the heat ray shielding function is insufficient when the content is 8% or less.
[0079]
(Comparative Example 5)
CeB as in Reference Example 5 6 And a liquid and a film containing FeOOH were prepared and evaluated. However, CeB having a coarse size with an average particle diameter of 212 nm 6 Was used.
[0080]
The visible light transmittance of this film was 64.5%, the solar radiation transmittance was 44.7%, and the ultraviolet light transmittance was 2.5%. The heat ray and ultraviolet light shielding functions were sufficient, but coarse particles were used. In addition, the cloudiness of the film is as high as 10.5%, which is judged to be unsuitable for practical use.
[0081]
(Comparative Example 6)
LaB produced in Reference Example 4 6 CeO prepared in Reference Example 5 in dispersion (A ′ liquid) and silicate liquid (B ′ liquid) 2 Add dispersion (I ') and add LaB 6 : CeO 2 The ratio is 1:42, LaB 6 : SiO 2 Mix and stir at a ratio of 4: 1, then dilute with ethanol, LaB 6 Concentration is 0.5%, CeO 2 A coating solution was prepared so that the concentration was 21.0% (V ′ solution). Using 15 g of this V ′ solution, a film was formed and evaluated in the same procedure as in Reference Example 4.
[0082]
τV = 65.8%, τe = 44.7%, τUV = 5.7%, and haze was 2.7%. This film has an excellent heat shielding effect in which the solar radiation transmittance is 21% lower than the visible light transmittance, and the ultraviolet light shielding ratio is a good level of 94.3%, but the film is cloudy, Film thickness unevenness was observed.
[0083]
(Comparative Example 7)
LaB produced in Reference Example 4 6 A dispersion solution (A ′ liquid) was mixed and stirred with Ciba Specialty Chemicals' benzotriazole UV absorber Tinuvin 384, Toshiba Silicone's room temperature curable resin XS-66, and ethanol. 6 A coating solution was prepared so that the concentration was 0.5%, the concentration of tinuvin 384 was 8.0%, and the concentration of XS-66 was 30% (W ′ solution). Film formation and evaluation were performed in the same procedure as in Reference Example 4 using 15 g of this W ′ solution. τV = 71.5%, τe = 46.3%, τUV = 0.1%, and haze was 0.5%. This film has a sufficient shielding effect against heat rays and ultraviolet rays, but after being allowed to stand for 1 day, the benzotriazole component whitened on the film surface and the film was whitened.
[0084]
Table 2 shows the results of Reference Examples 4 to 6, Examples 6 to 16, and Comparative Examples 4 to 7.
[0085]
[Table 2]
Figure 0004058850
[0086]
【The invention's effect】
As described above, by using the coating liquid of the present invention, a solar filter film that shields heat rays and ultraviolet rays can be formed by a simple and inexpensive coating method without using a high-cost physical film forming method. Industrial utility is high in terms of cost and large area film.

Claims (5)

窒化物からなる平均粒径200nm以下の微粒子と、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクチルオキシベンゾフェノン、5−クロロ−2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトアリゾールから選ばれる1種の有機紫外線吸収成分とを含有し、前記微粒子の含有量が0.02〜8.0重量%であり、前記有機紫外線吸収成分の含有量が5重量%以下の日射フィルター膜形成用塗布液であって、該塗布液を用いて得られる日射フィルター膜の可視光透過率τVは45.9〜59.3%、紫外線透過率τUVは1.2〜2.1%となることを特徴とする日射フィルター膜形成用塗布液。Fine particles made of nitride having an average particle diameter of 200 nm or less, 2,4-dihydroxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 5-chloro-2- (2′-hydroxy-3 ′, 5′-di- tert-butylphenyl) benzotriazole and one kind of organic ultraviolet absorbing component selected from 2- (2′-hydroxy-5′-methylphenyl) benzotoarizole, and the content of the fine particles is 0.02 to A solar radiation filter film-forming coating solution having a weight of 8.0% by weight and an organic ultraviolet absorbing component content of 5% by weight or less, and a visible light transmittance τV of the solar filter film obtained using the coating solution Is 45.9 to 59.3%, and the ultraviolet light transmittance τUV is 1.2 to 2.1%. 前記窒化物が、Ti、Zr、Hf、V、 Nb、及び、Taの群から選択される1種以上の金属の窒化物であることを特徴とする請求項1記載の日射フィルター膜形成用塗布液。2. The solar filter film-forming coating according to claim 1, wherein the nitride is a nitride of one or more metals selected from the group consisting of Ti, Zr, Hf, V, Nb, and Ta. liquid. 6ホウ化物からなる平均粒径200nm以下の微粒子と、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクチルオキシベンゾフェノン、5−クロロ−2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトアリゾールから選ばれる1種の有機紫外線吸収成分とを含有し、前記微粒子の含有量が0.02〜8.0重量%であり、前記有機紫外線吸収成分の含有量が5重量%以下の日射フィルター膜形成用塗布液であって、該塗布液を用いて得られる日射フィルター膜の可視光透過率τVは57.9〜72.8%、紫外線透過率τUVは0.1〜0.4%となることを特徴とする日射フィルター膜形成用塗布液。Fine particles of hexaboride having an average particle diameter of 200 nm or less, 2,4-dihydroxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 5-chloro-2- (2′-hydroxy-3 ′, 5′-di) -Tert-butylphenyl) benzotriazole and one type of organic ultraviolet ray absorbing component selected from 2- (2'-hydroxy-5'-methylphenyl) benzotoarizole, and the content of the fine particles is 0.02 A visible light transmittance of a solar filter film obtained by using the coating liquid, which is a coating liquid for forming a solar filter film having a content of the organic ultraviolet absorbing component of 5% by weight or less. τV is 57.9 to 72.8%, and ultraviolet transmittance τUV is 0.1 to 0.4%. 前記6ホウ化物が、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、及び、Caの群から選択される1種以上の金属の6ホウ化物であることを特徴とする請求項3記載の日射フィルター膜形成用塗布液。The hexaboride is one or more selected from the group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca. The coating solution for forming a solar filter film according to claim 3, which is a hexaboride of the above metal. 更に、酸化鉄、酸化水酸化鉄、酸化セリウム、及び、酸化亜鉛の群から選択される1種以上の無機紫外線吸収成分を含有したことを特徴とする請求項1〜4のいずれか1項記載の日射フィルター膜形成用塗布液。Furthermore, 1 or more types of inorganic ultraviolet absorption components selected from the group of iron oxide, iron oxide hydroxide, cerium oxide, and zinc oxide were contained, The any one of Claims 1-4 characterized by the above-mentioned. Coating solution for solar filter film formation.
JP22700099A 1999-08-11 1999-08-11 Coating solution for solar filter film formation Expired - Lifetime JP4058850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22700099A JP4058850B2 (en) 1999-08-11 1999-08-11 Coating solution for solar filter film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22700099A JP4058850B2 (en) 1999-08-11 1999-08-11 Coating solution for solar filter film formation

Publications (2)

Publication Number Publication Date
JP2001049190A JP2001049190A (en) 2001-02-20
JP4058850B2 true JP4058850B2 (en) 2008-03-12

Family

ID=16853948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22700099A Expired - Lifetime JP4058850B2 (en) 1999-08-11 1999-08-11 Coating solution for solar filter film formation

Country Status (1)

Country Link
JP (1) JP4058850B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319683B1 (en) * 2001-12-11 2007-08-15 Asahi Glass Co., Ltd. Heat radiation blocking fluororesin film
WO2006001801A1 (en) * 2004-06-14 2006-01-05 Temptime Corporation Product shelf life monitoring systems
EP1783185B1 (en) * 2004-08-26 2009-11-11 Idemitsu Kosan Co., Ltd. Coating composition and resin multilayer body
DE112006000365T5 (en) * 2005-02-17 2008-01-17 Idemitsu Kosan Co. Ltd. Thermoplastic resin composition capable of absorbing light having a wavelength of 420 nm and a body molded therefrom
US8900693B2 (en) 2005-07-13 2014-12-02 Sabic Global Technologies B.V. Polycarbonate compositions having infrared absorbance, method of manufacture, and articles prepared therefrom
WO2008075752A1 (en) 2006-12-21 2008-06-26 Teijin Chemicals Ltd. Polycarbonate resin composition and molded article thereof
WO2009017104A1 (en) * 2007-07-30 2009-02-05 Yohei Tanaka Protective agent against damage of biological tissue caused by near-infrared ray, and product comprising the same
JP5864959B2 (en) * 2011-08-31 2016-02-17 富士フイルム株式会社 Gray composition
JP6503203B2 (en) * 2015-03-13 2019-04-17 帝人株式会社 Method for preventing damage to living tissue by near infrared light
KR102294518B1 (en) 2016-09-30 2021-08-27 후지필름 가부시키가이샤 Metal nitride-containing particles, dispersion composition, curable composition, cured film, and their manufacturing method and color filter, solid-state imaging device, solid-state imaging device, infrared sensor
CN112521025A (en) * 2020-12-25 2021-03-19 浙江关爱云健康产业(集团)有限责任公司 Method for shielding harmful ultraviolet light by coating film on glass with rare earth material

Also Published As

Publication number Publication date
JP2001049190A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
JP3982466B2 (en) Heat ray shielding component dispersion, method for producing the same, heat ray shielding film forming coating solution, heat ray shielding film and heat ray shielding resin molding obtained by using this dispersion
KR101507186B1 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
KR101536803B1 (en) Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
JP4096278B2 (en) Solar shading film coating solution and solar shading film using the same
JP4058822B2 (en) Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
AU736327B2 (en) Film for cutting off heat rays and a coating liquid for forming the same
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP4058850B2 (en) Coating solution for solar filter film formation
US20120168666A1 (en) Coating composition and uses thereof
CN108250928A (en) A kind of aqueous glass nano paint of nuclear particle of nanometer containing composition metal and preparation
KR102042751B1 (en) Near-infrared absorption filter and image pickup element
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP6201152B2 (en) Heat ray shielding film, heat ray shielding transparent base material, automobile and building
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP5343604B2 (en) Method for producing titanium oxide photocatalyst thin film
JP4826126B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP2010075775A (en) Wavelength selective barrier film and wavelength selective barrier
JP4415953B2 (en) Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
JP2006213576A (en) Boride microparticle for insolation shield, dispersion for forming insolation shield body using the boride microparticle and insolation shield body, and method of manufacturing boride microparticle for insolation shield and method of manufacturing dispersion for forming insolation shield body
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP3760671B2 (en) Heat ray / ultraviolet shielding film forming coating liquid and heat ray / ultraviolet shielding film using the same
JP4058878B2 (en) Coating liquid for forming room temperature curable solar radiation shielding film, solar radiation shielding film using the same, and substrate having solar radiation shielding function
JP2009046609A (en) Coating liquid for forming heat ray and uv ray shielding film, heat ray and uv ray shielding film, and heat ray and uv ray shielding substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4058850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

EXPY Cancellation because of completion of term