JP4051700B2 - Organochlorine compound processing equipment - Google Patents

Organochlorine compound processing equipment Download PDF

Info

Publication number
JP4051700B2
JP4051700B2 JP2002206492A JP2002206492A JP4051700B2 JP 4051700 B2 JP4051700 B2 JP 4051700B2 JP 2002206492 A JP2002206492 A JP 2002206492A JP 2002206492 A JP2002206492 A JP 2002206492A JP 4051700 B2 JP4051700 B2 JP 4051700B2
Authority
JP
Japan
Prior art keywords
treatment tank
primary
organic chlorine
tank
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002206492A
Other languages
Japanese (ja)
Other versions
JP2004042000A (en
Inventor
俊彦 三浦
博 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2002206492A priority Critical patent/JP4051700B2/en
Publication of JP2004042000A publication Critical patent/JP2004042000A/en
Application granted granted Critical
Publication of JP4051700B2 publication Critical patent/JP4051700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トリクロロエチレンなどの揮発性有機塩素化合物を含む汚染水を無害化するための処理装置に関する。
【0002】
【従来の技術】
工場跡地内の土壌には、発ガン性物質であるトリクロロエチレン、テトラクロロエチレンなどの揮発性有機塩素化合物が含まれていることがあり、このような土壌をそのまま放置すると地下水等を介して揮発性有機塩素化合物を含む汚染水が環境に拡散するおそれがある。そのため、このような汚染水に対しては所定の浄化処理を行わなければならない。
【0003】
かかる揮発性有機塩素化合物を含む汚染水の処理方法としては、従来、揮散法や活性炭吸着法が用いられてきた。ここで、揮散法は、汚染水中に空気を曝気させて水中の揮発性有機塩素化合物を揮散させ、しかる後、揮散した揮発性有機塩素化合物を活性炭等で回収して除去する方法である。一方、活性炭吸着法は、汚染水を活性炭層へ通水させることによって、水中の揮発性有機塩素化合物を活性炭に吸着させる方法である。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の処理方法では、いずれの方法にしろ揮発性有機塩素化合物を活性炭で吸着除去しているため、揮発性有機塩素化合物の濃度が大きくなるほど、揮発性有機塩素化合物を処理する活性炭への負荷が大きくなる。
【0005】
そのため、汚染水中の揮発性有機塩素化合物の濃度が高い場合には、活性炭の交換頻度が高くなり非常に処理コストがかかるという問題を生じていた。
【0006】
一方、近年では、揮発性有機塩素化合物を含む汚染水を電気分解により無害化する方法も研究されるようになってきたが、電気分解による処理は、濃度の大小に関わらず、一定の分解率を示すため、濃度が低下しても分解に必要なコストは低下しない。
【0007】
したがって、例えば、環境基準以下に揮発性有機塩素化合物の濃度を低下させようとすると、電気分解による処理だけでは、結果として処理コストが非常に高くなるという問題を生じていた。
【0008】
本発明は、上述した事情を考慮してなされたもので、揮発性有機塩素化合物の初期濃度が高い場合であっても、該揮発性有機塩素化合物の濃度を低コストでかつ十分に低下させることが可能な有機塩素化合物の処理装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る有機塩素化合物の処理装置は請求項1に記載したように、所定の揮発性有機塩素化合物を含む汚染水を処理する有機塩素化合物の処理装置において、
気密に構成され内部を隔壁で仕切られてなる所定の処理槽と、前記隔壁の一方の側に設けられ前記汚染水が貯留される一次処理槽と、該一次処理槽内に対向配置された一対の電極と、該電極に電気接続された電源と、前記隔壁の他方の側に設けられ前記一次処理槽で電気分解処理された一次処理水が移送貯留される二次処理槽と、該二次処理槽に移送貯留された一次処理水内に水浸されるように配置される散気手段と、該散気手段に接続された気体圧送手段と、前記処理槽に接続された捕集吸着手段とから構成するとともに、前記一次処理槽及び前記二次処理槽の上方を前記処理槽内で互いに連通させて共有揮散空間とし、該共有揮散空間に前記捕集吸着手段を連通させてなるものである。
【0015】
本発明に係る有機塩素化合物の処理装置においては、まず、所定の揮発性有機塩素化合物を含む汚染水を電気分解し、これを一次処理水とする。
【0016】
電気分解処理を行うにあたっては、例えば、所定の揮発性有機塩素化合物を含む汚染水を一次処理槽に貯留し、かかる状態で該一次処理槽内に対向配置された一対の電極間に通電するようにすればよい。
【0017】
このようにすると、トリクロロエチレン、テトラクロロエチレンといった有害な揮発性有機塩素化合物は、電極での酸化還元反応によって無害物質に分解される。例えば、陰極での還元反応であれば、塩素イオン等の塩化物と、エチレン、エタンなどの炭化水素に電気分解される。そして、これらの塩化物や炭化水素はいずれも無害物質であるため、結局、有害な有機塩素化合物が無害化されることとなる。
【0018】
かかる電気分解は、一次処理槽内の汚染水に含まれる揮発性有機塩素化合物の濃度が所定の基準濃度以下に低下するまで行う。
【0019】
所定の基準濃度を定めるにあたっては、電気分解処理に必要なコストと次工程である揮散処理及び吸着処理に必要なコストとを比較考慮し、例えば、揮発性有機塩素化合物の濃度低下に伴って揮散処理及び吸着処理に必要なコストが電気分解処理に必要なコストよりも小さくなったときの濃度をもって所定の基準濃度とすることができる。
【0020】
このように汚染水を電気分解処理して一次処理水とした後、該一次処理水を揮散処理し、該揮散処理により、一次処理水に残留している揮発性有機塩素化合物の濃度を所望の基準、例えば環境基準まで低下させ、これを二次処理水とする。
【0021】
揮散処理を行うにあたっては、例えば、一次処理水を二次処理槽に移送貯留し、次いで、気体圧送手段を作動させることによって、二次処理槽内に配置された散気手段から空気等の気体を散気させればよい。
【0022】
次に、揮散した揮発性有機塩素化合物を吸着処理する。
【0023】
揮発性有機塩素化合物を吸着処理するにあたっては、例えば、二次処理槽又は処理槽に接続された捕集吸着手段で揮発性有機塩素化合物を捕集吸着するようにすればよい。
【0024】
このようにすると、揮発性有機塩素化合物を含む汚染水は、一次処理槽での電気分解によって所定の基準濃度以下まで揮発性有機塩素化合物の濃度が低下した一次処理水となり、次いで、該一次処理水は、二次処理槽での揮散処理によって所望の基準以下まで揮発性有機塩素化合物の濃度が低下した二次処理水となる。
【0025】
ここで、電気分解による処理は、濃度の大小に関わらず、一定の分解率を示すため、濃度が低下しても分解に必要なコストは低下しないのに対し、揮散処理及び吸着処理は、濃度が低くなるにつれて該揮散処理及び吸着処理に必要なコストも低下する。
【0026】
そのため、濃度が高いときには電気分解による処理の方が、濃度が低いときは揮散処理及び吸着処理の方が全体のコストが低くなる。
【0027】
したがって、本発明においては、まず電気分解による処理を行うことで揮発性有機塩素化合物の濃度を所定の基準濃度以下に低下させ、しかる後、揮散処理及び吸着処理を行って揮発性有機塩素化合物の濃度を所望の基準以下に低下させることにより、揮発性有機塩素化合物の初期濃度が高い場合であっても、これを低コストで例えば環境基準以下に低下させることが可能となる。
【0028】
また、電気分解による処理を行う際に発生する熱によって水温が上昇するため、揮発性有機塩素化合物の揮発性が高まることとなり、電気分解による処理の後に行う揮散処理において、揮発性有機塩素化合物の揮散が促進される。
【0029】
散気手段及び気体圧送手段は、二次処理槽内で揮散処理を行うことができるのであればどのように構成するかは任意であり、例えば、散気手段としての散気管と気体圧送手段としてのブロワとから構成される市販の揮散処理装置を適宜用いることができる。
【0030】
捕集吸着手段は、二次処理槽で揮散した揮発性有機塩素化合物を捕集して吸着できるのであればどのように構成するかは任意であり、例えば内部に活性炭を充填してなる活性炭吸着装置で構成することが考えれる。
【0031】
二次処理槽は、一次処理水を移送貯留して揮散処理することができるのであればどのように構成するかは任意であるが、揮散した揮発性有機塩素化合物を捕集吸着手段で捕集することができるよう、該二次処理槽自体を気密に構成しておくか、又は、該二次処理槽が内部に設けられた処理槽を気密に構成することによって間接的に気密に構成しておく。
【0032】
ここで、本発明においては、互いに隔壁で隔てられた一次処理槽及び二次処理槽の上方を処理槽内で互いに連通させて共有揮散空間とし、該共有揮散空間に捕集吸着手段を連通させた構成としてある。
【0033】
このようにすると、電気分解で発生した熱によって一次処理槽内の水温が上昇し、揮発性有機塩素化合物が電気分解されずに揮散した場合であっても、かかる有機塩素化合物をも捕集吸着手段で捕集して吸着処理できるとともに、電気分解によって発生した塩化物や炭化水素といった反応生成物も捕集吸着手段で回収することが可能となる。
【0034】
なお、一次処理水を二次処理槽に移送貯留するにあたり、一次処理水を一次処理槽から二次処理槽にどのように移送するかは任意であり、例えば、ポンプを使用して移送するようにしてもかまわないし、水位差を利用できるような場合には該水位差による圧力を利用して移送するようにしてもかまわない。
【0035】
また、参考発明に係る有機塩素化合物の処理方法及び装置においては、まず、所定の揮発性有機塩素化合物を含む汚染水を電気分解し、これを一次処理水とする。
【0036】
電気分解処理を行うにあたっては、例えば、所定の揮発性有機塩素化合物を含む汚染水を一次処理槽に貯留し、かかる状態で該一次処理槽内に対向配置された一対の電極間に通電するようにすればよい。
【0037】
このようにすると、トリクロロエチレン、テトラクロロエチレンといった有害な揮発性有機塩素化合物は、電極での酸化還元反応によって無害物質に分解される。例えば、陰極での還元反応であれば、塩素イオン等の塩化物と、エチレン、エタンなどの炭化水素に電気分解される。そして、これらの塩化物や炭化水素はいずれも無害物質であるため、結局、有害な有機塩素化合物が無害化されることとなる。
【0038】
かかる電気分解は、一次処理槽内の汚染水に含まれる揮発性有機塩素化合物の濃度が所定の基準濃度以下に低下するまで行う。
【0039】
所定の基準濃度を定めるにあたっては、電気分解処理に必要なコストと次工程である吸着処理に必要なコストとを比較考慮し、例えば、揮発性有機塩素化合物の濃度低下に伴って吸着処理に必要なコストが電気分解処理に必要なコストよりも小さくなったときの濃度をもって所定の基準濃度とすることができる。
【0040】
このように汚染水を電気分解処理して一次処理水とした後、該一次処理水に対して吸着処理を行い、該吸着処理によって一次処理水に残留する揮発性有機塩素化合物の濃度を所望の基準、例えば環境基準まで低下させ、これを二次処理水とする。
【0041】
吸着処理を行うにあたっては、例えば、一次処理水を捕集吸着槽に通水することで一次処理水に残留している揮発性有機塩素化合物を捕集吸着槽内に充填された吸着材に吸着させるようにすればよい。
【0042】
このようにすると、揮発性有機塩素化合物を含む汚染水は、一次処理槽での電気分解によって所定の基準濃度以下まで揮発性有機塩素化合物の濃度が低下した一次処理水となり、次いで、該一次処理水は、捕集吸着槽での吸着処理によって所望の基準以下まで揮発性有機塩素化合物の濃度が低下した二次処理水となる。
【0043】
ここで、電気分解による処理は、濃度の大小に関わらず、一定の分解率を示すため、濃度が低下しても分解に必要なコストは低下しないのに対し、吸着処理は、濃度が低くなるにつれて該吸着処理に必要なコストも低下する。
【0044】
そのため、濃度が高いときには電気分解による処理の方が、濃度が低いときは吸着処理の方が全体のコストが低くなる。
【0045】
したがって、参考発明においては、まず電気分解による処理を行うことで揮発性有機塩素化合物の濃度を所定の基準濃度以下に低下させ、しかる後、吸着処理を行って揮発性有機塩素化合物の濃度を所望の基準以下に低下させることにより、揮発性有機塩素化合物の初期濃度が高い場合であっても、これを低コストで例えば環境基準以下に低下させることが可能となる。
【0046】
捕集吸着槽は、一次処理槽で電気分解処理された一次処理水が通水されかつ内部に所定の吸着材を充填してあれば、どのように構成するかは任意である。吸着材としては、例えば活性炭を使用することが考えれる。
【0047】
一次処理槽と捕集吸着槽は、それぞれ独立して設置するとともに所定の連通管を介して互いに連通するようにしてもかまわないし、所定の処理槽の内部を隔壁で仕切って該隔壁の一方の側を一次処理槽、他方の側を捕集吸着槽とするようにしてもかまわない。
【0048】
また、一次処理水を捕集吸着槽に通水するにあたり、一次処理水を一次処理槽から捕集吸着槽にどのように通水するかは任意であり、例えば、ポンプの圧力を利用して通水するようにしてもかまわないし、水位差を利用できるような場合には該水位差による圧力を利用して通水するようにしてもかまわない。
【0049】
【発明の実施の形態】
以下、本発明及び参考発明に係る有機塩素化合物の処理装置の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0050】
(第1実施形態)
【0051】
図1は、本実施形態に係る有機塩素化合物の処理装置1を示した概念図である。同図に示すように、本実施形態に係る有機塩素化合物の処理装置1は、気密に構成され内部を隔壁10で仕切られてなる処理槽2と、隔壁10の一方の側に設けられ揮発性有機塩素化合物を含む汚染水が貯留される一次処理槽3と、該一次処理槽内に対向配置された一対の電極としての陽極5a及び陰極5bと、これらの陽極5a及び陰極5bに電気接続された電源6と、隔壁10の他方の側に設けられ一次処理槽3で電気分解処理された一次処理水が移送貯留される二次処理槽4と、該二次処理槽内に配置された散気手段である散気管7と、該散気管に接続された気体圧送手段であるブロワ8と、処理槽2に接続された捕集吸着手段である活性炭吸着装置9とで構成してある。
【0052】
隔壁10は、その高さが処理槽2の内部高さよりも低くなるように構成してあり、隔壁10の上方に開口11を形成することによって、一次処理槽3及び二次処理槽4の上方を処理槽2内で互いに連通させて共有揮散空間16を形成するようになっている。
【0053】
一次処理槽3には、底面近傍に汚染水が流入する汚染水流入口12が設けてあり、該汚染水流入口に接続されたポンプ13を用いて一次処理槽3内に汚染水を供給することができるようになっている。
【0054】
陽極5a及び陰極5bは、例えば数cm〜数十cm離間して配置し、電源6は、例えば10〜30ボルト程度の直流電圧を印加できるように構成しておくのがよい。
【0055】
散気管7は、有孔管で構成してあるとともに、二次処理槽4内に移送貯留された一次処理水内に水浸されるように該二次処理槽の底面近傍に配置してあり、ブロワ8から圧送された気体としての空気を二次処理槽4内に供給するようになっている。
【0056】
すなわち、散気管7及びブロワ8は、二次処理槽4内に移送貯留された一次処理水を揮散処理するための揮散処理装置を構成する。
【0057】
ここで、二次処理槽4には、二次処理水が排出される二次処理水排出口14を底面近傍に設けてあり、バルブ15を開くことによって二次処理槽4内の二次処理水を排水できるようになっている。
【0058】
活性炭吸着装置9は、共有揮散空間16に連通するように処理槽2に接続してあり、二次処理槽4での揮散処理により揮散した揮発性有機塩素化合物のみならず、一次処理槽3での電気分解処理による熱で揮散した揮発性有機塩素化合物をも捕集して吸着できるようになっている。
【0059】
ここで、活性炭吸着装置9は、内部に活性炭を充填してあり、揮散した揮発性有機塩素化合物を捕集して該活性炭で吸着し無害化してから排気するようになっている。
【0060】
本実施形態に係る有機塩素化合物の処理装置1を用いて本実施形態に係る有機塩素化合物の処理方法を実施するには、まず、揮発性有機塩素化合物を含む汚染水を一次処理槽3内に貯留する。
【0061】
汚染水を貯留するには、ポンプ13を作動させて汚染水を汚染水流入口12から一次処理槽3内に流入させる。なお、汚染水は、例えば汚染土壌から揚水されたものや、工場内の洗浄に使った後の洗浄水などが対象となる。
【0062】
次に、電源6を作動させて陽極5a及び陰極5b間に10〜30ボルト程度の直流電圧を通電することによって、一次処理槽3内に貯留された汚染水を電気分解処理し、これを一次処理水とする。
【0063】
このようにすると、トリクロロエチレン、テトラクロロエチレンといった有害な揮発性有機塩素化合物は、電極での酸化還元反応によって無害物質に分解される。例えば、陰極での還元反応であれば、塩素イオン等の塩化物と、エチレン、エタンなどの炭化水素に電気分解される。そして、これらの塩化物や炭化水素はいずれも無害物質であるため、結局、有害な有機塩素化合物が無害化されることとなる。
【0064】
かかる電気分解は、一次処理槽3内の汚染水に含まれる揮発性有機塩素化合物の濃度が所定の基準濃度以下に低下するまで行う。
【0065】
所定の基準濃度を定めるにあたっては、電気分解処理に必要なコストと次工程である揮散処理及び吸着処理に必要なコストとを比較考慮して定める。図2は、揮発性有機塩素化合物の初期濃度と単位水量当たりのコストとの関係を示したグラフであり、同図に示すように、揮発性有機塩素化合物の濃度低下に伴って揮散処理及び吸着処理に必要なコストが電気分解処理に必要なコストよりも小さくなったときの濃度をもって所定の基準濃度aとする。
【0066】
次に、一次処理槽3で電気分解処理された一次処理水を二次処理槽4に移送貯留する。二次処理槽4に移送貯留するにあたっては、図3(a)に示すように、ポンプ13を作動させて汚染水流入口12から新たな汚染水を供給することによって、一次処理槽3内の一次処理水を隔壁10の上方に形成された開口11を介してオーバーフローさせ、二次処理槽4内に移送貯留する。
【0067】
次に、同図(b)に示すように、二次処理槽4内の一次処理水を揮散処理し、該揮散処理により、一次処理水に残留している揮発性有機塩素化合物の濃度を所望の基準、例えば環境基準まで低下させ、これを二次処理水とする。揮散処理を行うにあたっては、ブロワ8を作動させることによって、二次処理槽4内に配置された散気管7から空気を散気させればよい。このようにすると、一次処理水に溶け込んでいた揮発性有機塩素化合物は、共有揮散空間16に揮散する。
【0068】
一方、上述した揮散処理と同時に又は相前後して、一次処理槽3内に新たに貯留された汚染水に対し、上述したと同様の電気分解処理を行う。
【0069】
ここで、一次処理槽3においても、電気分解処理で発生した熱によって水温が上昇するため、揮発性有機塩素化合物が電気分解されずに共有揮散空間16に揮散する。
【0070】
次に、共有揮散空間16内に揮散した揮発性有機塩素化合物を吸着処理する。揮発性有機塩素化合物を吸着処理するにあたっては、処理槽2に接続された活性炭吸着装置9で、共有揮発空間16に揮散した揮発性有機塩素化合物を捕集吸着するようにすればよい。
【0071】
なお、揮発性有機塩素化合物を吸着処理した後のガスは無害化しているため、適宜大気中に排気すればよい。
【0072】
このように一次処理槽3での電気分解処理及び二次処理槽4での揮散処理が終了するとともに共有揮散空間16に揮散した揮発性有機塩素化合物の吸着処理が終了したならば、バルブ15を開いて二次処理槽4内の二次処理水を排出する一方、ポンプ13を作動させることによって新たな汚染水を一次処理槽3に貯留するとともに、そのときのポンプ圧力によって電気分解処理が終わった一次処理槽3内の一次処理水をオーバーフローさせて二次処理槽4に移送貯留する。以上、上述したバッチ処理を必要なだけ繰り返す。
【0073】
なお、バルブ15を開いて二次処理槽4から排出される二次処理水については、揮散処理により揮発性有機塩素化合物が除去され無害化されているので、適宜河川等に放流すればよい。
【0074】
以上説明したように、本実施形態に係る有機塩素化合物の処理方法及び処理装置1によれば、揮発性有機塩素化合物を含む汚染水を、一次処理槽3での電気分解によって基準濃度a以下まで揮発性有機塩素化合物の濃度が低下した一次処理水とし、次いで、該一次処理水を、二次処理槽4での揮散処理によって所望の基準以下まで揮発性有機塩素化合物の濃度が低下した二次処理水とすることができる。
【0075】
ここで、図2に示したように、電気分解による処理は、濃度の大小に関わらず、一定の分解率を示すため、濃度が低下しても分解に必要なコストは低下しないのに対し、揮散処理及び吸着処理は、濃度が低くなるにつれて該揮散処理及び吸着処理に必要なコストも低下する。
【0076】
そのため、濃度が基準濃度aより高いときには電気分解による処理の方が、濃度が基準濃度aより低いときは揮散処理及び吸着処理の方が全体のコストが低くなる。
【0077】
したがって、本実施形態においては、まず電気分解による処理を行うことで揮発性有機塩素化合物の濃度を基準濃度a以下に低下させ、しかる後、揮散処理及び吸着処理を行って揮発性有機塩素化合物の濃度を所望の基準以下に低下させることにより、揮発性有機塩素化合物の初期濃度が高い場合であっても、これを低コストで例えば環境基準以下に低下させることが可能となる。
【0078】
また、電気分解による処理を行う際に発生する熱によって水温が上昇するため、揮発性有機塩素化合物の揮発性が高まることとなり、電気分解による処理の後に行う揮散処理において、揮発性有機塩素化合物の揮散を促進することができる。
【0079】
また、本実施形態に係る有機塩素化合物の処理装置1によれば、互いに隔壁10で隔てられた一次処理槽3及び二次処理槽4の上方を処理槽2内で互いに連通させて共有揮散空間16とし、該共有揮散空間に活性炭吸着装置9を連通させた構成としたので、二次処理槽4から揮散した揮発性有機塩素化合物のみならず、例えば、電気分解熱による水温上昇によって電気分解されることなく一次処理槽3から揮散した揮発性有機塩素化合物をも活性炭吸着装置9で捕集して吸着処理できるとともに、電気分解によって発生した反応生成物のうち、低分子化して揮発性が高くなった物質、例えば脱塩素されたモノクロ有機物も活性炭吸着装置9で回収することが可能となる。さらに、電気分解により発生した水素ガスと酸素ガスの蓄積が防止されるので、引火の懸念もなくなる。
【0080】
本実施形態では、ポンプ13を設置し、該ポンプを利用して汚染水流入口12から新たに汚染水を供給することによって一次処理水を一次処理槽3から二次処理槽4へオーバーフローさせるように構成したが、一次処理水を一次処理槽から二次処理槽に移送するにあたっては、どのような手段を用いるかは任意であり、例えば、高架槽から汚染水が供給されるような場合にはポンプ13を省略し、水位差による圧力を利用して移送するようにしてもかまわない。また、オーバーフローさせずに、一次処理槽内にポンプを設置し、該ポンプを利用して一次処理水を一次処理槽から二次処理槽に移送するようにしてもかまわない。
【0081】
また、本実施形態では、気密に構成された処理槽2内に隔壁10を配置することによって該処理槽内に一次処理槽3及び二次処理槽4を設けるようにしたが、一次処理槽と二次処理槽は、それぞれ個別に設けるようにしてもかまわない。
【0082】
図4は、かかる変形例における有機塩素化合物の処理装置21を示した概念図であり、同図に示すように、一次処理槽23と二次処理槽24とをそれぞれ個別に設けるとともに、底面近傍に設けた連通管22を介して一次処理槽23と二次処理槽24とを互いに連通接続してある。
【0083】
一次処理槽23は、上部開放となるように構成してあり、上述した実施形態と同様、一次処理槽23内に一対の電極としての陽極5a及び陰極5bを対向配置してあるとともに、これらの陽極5a及び陰極5bに電源6を電気接続してある。
【0084】
一方、二次処理槽24は、気密に構成してあり、上述した実施形態と同様、二次処理槽24内に散気管7を配置してあるとともに、該散気管にブロワ8を接続してある。また、二次処理槽24内の揮散空間27に連通するように活性炭吸着装置9を接続してあり、二次処理槽24で揮散した揮発性有機塩素化合物を捕集して活性炭で吸着することができるようになっている。
【0085】
本変形例にかかる有機塩素化合物の処理装置21を用いて有機塩素化合物の処理方法を実施するには、まず、揮発性有機塩素化合物を含む汚染水を一次処理槽23内に貯留する。貯留するにあたっては、一次処理槽23の上部開口から一次処理槽23内へ汚染水を供給すればよい。
【0086】
次に、汚染水を一次処理槽23内で電気分解処理して一次処理水とする。
【0087】
次に、揮発性有機塩素化合物の濃度が所定の基準濃度a以下に低下したら、一次処理槽23内の一次処理水を二次処理槽24へ移送貯留する。二次処理槽24に移送貯留するにあたっては、新たな汚染水を供給するとともに連通管22に設置されたバルブ25を開き、連通管22を介して一次処理水を二次処理槽24内へ流入させる。
【0088】
次に、二次処理槽24内の一次処理水を揮散処理して二次処理水とするとともに、二次処理槽24内の揮散空間27に揮散した揮発性有機塩素化合物を活性炭吸着装置9で吸着処理する。
【0089】
一方、揮散処理と同時に又は相前後して、一次処理槽23内に新たに貯留された汚染水に対し、上述したと同様の電気分解処理を行う。
【0090】
このように一次処理槽23での電気分解処理及び二次処理槽24での揮散処理が終了するとともに揮散空間27に揮散した揮発性有機塩素化合物の吸着処理が終了したならば、バルブ26を開いて二次処理槽24内の二次処理水を排出する一方、新たな汚染水を一次処理槽23に貯留するとともに、電気分解処理が終わった一次処理槽23内の一次処理水を連通管22を介して二次処理槽24に移送貯留する。以上、上述したバッチ処理を必要なだけ繰り返す。
【0091】
なお、その他の構成及び作用効果は上述した実施形態と同様であるので、ここではその詳しい説明を省略する。
【0092】
本変形例では、一次処理槽23を上部開放となるように構成したが、一次処理槽を気密に構成するとともに、一次処理槽内の揮散空間が二次処理槽内の揮散空間又は捕集吸着手段に連通するように一次処理槽を二次処理槽又は捕集吸着手段に接続するように構成してもかまわない。
【0093】
かかる場合においては、電気分解されることなく一次処理槽内で揮散した揮発性有機塩素化合物や電気分解よって生じた塩化物や炭化水素といった反応生成物も捕集吸着手段で回収することが可能となる。
【0094】
(第2実施形態)
【0095】
次に、第2実施形態に係る有機塩素化合物の処理方法及び装置の実施の形態について説明する。なお、第1実施形態と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0096】
図5は、本実施形態に係る有機塩素化合物の処理装置31を示した概念図である。同図に示すように、本実施形態に係る有機塩素化合物の処理装置31は、内部を隔壁10で仕切られてなる処理槽32と、隔壁10の一方の側に設けられ揮発性有機塩素化合物を含む汚染水が貯留される一次処理槽33と、該一次処理槽内に対向配置された一対の電極としての陽極5a及び陰極5bと、これらの陽極5a及び陰極5bに電気接続された電源6と、隔壁10の他方の側に設けられ一次処理槽33で電気分解処理された一次処理水が通水される捕集吸着槽34とで構成してある。
【0097】
隔壁10は、その高さが処理槽32の内部高さよりも低くなるように構成してあり、隔壁10の上方に開口11が形成されるようになっている。
【0098】
一次処理槽33には、底面近傍に汚染水が流入する汚染水流入口12が設けてあり、該汚染水流入口に接続されたポンプ13を用いて一次処理槽33内に汚染水を供給することができるようになっている。
【0099】
陽極5a及び陰極5bは、例えば数cm〜数十cm離間して配置し、電源6は、例えば10〜30ボルト程度の直流電圧を印加できるように構成しておくのがよい。
【0100】
捕集吸着槽34には、内部に吸着材である活性炭35が充填してあるとともに、該捕集吸着槽で吸着処理された二次処理水が排出される二次処理水排出口14を底面近傍に設けてあり、該二次処理水排出口に貫通接続された排水管36を介して捕集吸着槽34内の二次処理水を排水できるようになっている。
【0101】
本実施形態に係る有機塩素化合物の処理装置31を用いて本実施形態に係る有機塩素化合物の処理方法を実施するには、まず、揮発性有機塩素化合物を含む汚染水を一次処理槽33内に貯留する。
【0102】
汚染水を貯留するには、ポンプ13を作動させて汚染水を汚染水流入口12から一次処理槽33内に流入させる。なお、汚染水は、例えば汚染土壌から揚水されたものや、工場内の洗浄に使った後の洗浄水などが対象となる。
【0103】
次に、電源6を作動させて陽極5a及び陰極5b間に10〜30ボルト程度の直流電圧を通電することによって、一次処理槽33内に貯留された汚染水を電気分解処理し、これを一次処理水とする。
【0104】
このようにすると、トリクロロエチレン、テトラクロロエチレンといった有害な揮発性有機塩素化合物は、電極での酸化還元反応によって無害物質に分解される。例えば、陰極での還元反応であれば、塩素イオン等の塩化物と、エチレン、エタンなどの炭化水素に電気分解される。そして、これらの塩化物や炭化水素はいずれも無害物質であるため、結局、有害な有機塩素化合物が無害化されることとなる。
【0105】
かかる電気分解は、一次処理槽33内の汚染水に含まれる揮発性有機塩素化合物の濃度が所定の基準濃度以下に低下するまで行う。
【0106】
所定の基準濃度を定めるにあたっては、電気分解処理に必要なコストと次工程である吸着処理に必要なコストとを比較考慮して定める。図6は、揮発性有機塩素化合物の初期濃度と単位水量当たりのコストとの関係を示したグラフであり、同図に示すように、揮発性有機塩素化合物の濃度低下に伴って吸着処理に必要なコストが電気分解処理に必要なコストよりも小さくなったときの濃度をもって所定の基準濃度bとする。
【0107】
なお、通電量が増加すると、電気分解による揮発性有機塩素化合物の処理速度が速くなる反面、発生する熱によって水温が上昇し揮発性有機塩素化合物が電気分解されずに揮散する場合があるため、上述した通電作業を行うにあたっては、揮発性有機塩素化合物の揮散が抑制される範囲で電気分解による処理速度ができるだけ向上するよう、電圧や電流の大きさ、通電時間を適宜調整するのが望ましい。
【0108】
次に、一次処理槽33で電気分解された一次処理水を捕集吸着槽34に通水して一次処理水に対して吸着処理を行い、該吸着処理によって一次処理水に残留する揮発性有機塩素化合物の濃度を所望の基準、例えば環境基準まで低下させ、これを二次処理水とする。
【0109】
一次処理水を捕集吸着槽34に通水するにあたっては、ポンプ13を作動させて汚染水流入口12から新たな汚染水を供給することによって、一次処理槽33内の一次処理水を隔壁10の上方に形成された開口11を介してオーバーフローさせ、捕集吸着槽34内に通水する。
【0110】
このようにすると、一次処理水に残留している揮発性有機塩素化合物は、捕集吸着槽34内に充填された活性炭35により吸着される。なお、捕集吸着槽34内の活性炭35は、吸着処理の経過に伴い必要に応じて適宜交換すればよい。
【0111】
なお、捕集吸着槽34に接続された排水管36から排水される二次処理水については、吸着処理により揮発性有機塩素化合物が除去され無害化されているので、適宜河川等に放流すればよい。
【0112】
一方、上述した吸着処理と同時に又は相前後して、一次処理槽33内に新たに貯留された汚染水に対し、上述したと同様の電気分解処理を行う。
【0113】
このように一次処理槽33での電気分解処理が終了したならば、ポンプ13を作動させることによって新たな汚染水を一次処理槽33に貯留するとともに、そのときのポンプ圧力によって電気分解処理が終わった一次処理槽33内の一次処理水をオーバーフローさせて捕集吸着槽34に通水し、該捕集吸着槽で吸着処理された二次処理水を排水管36から排出する。以上、上述したバッチ処理を必要なだけ繰り返す。
【0114】
以上説明したように、本実施形態に係る有機塩素化合物の処理方法及び処理装置31によれば、揮発性有機塩素化合物を含む汚染水を、一次処理槽33での電気分解によって基準濃度b以下まで揮発性有機塩素化合物の濃度が低下した一次処理水とし、次いで、該一次処理水を、捕集吸着槽34での吸着処理によって所望の基準以下まで揮発性有機塩素化合物の濃度が低下した二次処理水とすることができる。
【0115】
ここで、図6に示したように、電気分解による処理は、濃度の大小に関わらず、一定の分解率を示すため、濃度が低下しても分解に必要なコストは低下しないのに対し、吸着処理は、濃度が低くなるにつれて該吸着処理に必要なコストも低下する。
【0116】
そのため、濃度が基準濃度bより高いときには電気分解による処理の方が、濃度が基準濃度bより低いときは吸着処理の方が全体のコストが低くなる。
【0117】
したがって、本実施形態においては、まず電気分解による処理を行うことで揮発性有機塩素化合物の濃度を基準濃度b以下に低下させ、しかる後、吸着処理を行って揮発性有機塩素化合物の濃度を所望の基準以下に低下させることにより、揮発性有機塩素化合物の初期濃度が高い場合であっても、これを低コストで例えば環境基準以下に低下させることが可能となる。
【0118】
本実施形態では、ポンプ13を設置し、該ポンプを利用して汚染水流入口12から新たに汚染水を供給することによって一次処理水を一次処理槽33から捕集吸着槽34へオーバーフローさせるように構成したが、一次処理水を捕集吸着槽に通水するにあたっては、どのような手段を用いるかは任意であり、例えば、高架槽から汚染水が供給されるような場合にはポンプ13を省略し、水位差による圧力を利用するようにしてもかまわない。また、オーバーフローさせずに、一次処理槽内にポンプを設置し、該ポンプを利用して一次処理水を捕集吸着槽に通水するようにしてもかまわない。
【0119】
また、本実施形態では、処理槽32内に隔壁10を配置することによって該処理槽内に一次処理槽33及び捕集吸着槽34を設けるようにしたが、一次処理槽と捕集吸着槽は、それぞれ個別に設けるようにしてもかまわない。
【0120】
図7は、かかる変形例における有機塩素化合物の処理装置41を示した概念図であり、同図に示すように、一次処理槽43と捕集吸着槽44とをそれぞれ個別に設けるとともに、底面近傍に設けた連通管42を介して一次処理槽43と捕集吸着槽44とを互いに連通接続してある。
【0121】
一次処理槽43は、上部開放となるように構成してあり、上述した実施形態と同様、一次処理槽43内に一対の電極としての陽極5a及び陰極5bを対向配置してあるとともに、これらの陽極5a及び陰極5bに電源6を電気接続してある。
【0122】
捕集吸着槽44は、内部に活性炭を充填してあり、揮発性有機塩素化合物を吸着することができるようになっている。
【0123】
本変形例にかかる有機塩素化合物の処理装置41を用いて有機塩素化合物の処理方法を実施するには、まず、揮発性有機塩素化合物を含む汚染水を一次処理槽43内に貯留する。貯留するにあたっては、一次処理槽43の上部開口から一次処理槽43内へ汚染水を供給すればよい。
【0124】
次に、汚染水を一次処理槽43内で電気分解処理して一次処理水とする。
【0125】
次に、揮発性有機塩素化合物の濃度が基準濃度b以下に低下したら、一次処理水を捕集吸着槽44へ通水し、該捕集吸着槽内で一次処理水を吸着処理して二次処理水とする。一次処理水を捕集吸着槽44へ通水するには、新たな汚染水を供給するとともに連通管42に設置されたバルブ45を開き、連通管42を介して一次処理水を捕集吸着槽44内へ流入させればよい。
【0126】
このように一次処理槽43での電気分解処理が終了したならば、新たな汚染水を一次処理槽43に貯留するとともに、電気分解処理が終わった一次処理槽43内の一次処理水を連通管42を介して捕集吸着槽44に通水し、該捕集吸着槽で吸着処理された二次処理水を排水管46から排出する。以上、上述したバッチ処理を必要なだけ繰り返す。
【0127】
なお、その他の構成及び作用効果は上述した実施形態と同様であるので、ここではその詳しい説明を省略する。
【0128】
【発明の効果】
以上述べたように、本発明に係る有機塩素化合物の処理装置によれば、まず電気分解による処理を行うことで揮発性有機塩素化合物の濃度を所定の基準濃度以下に低下させ、しかる後、揮散処理及び吸着処理又は吸着処理を行って揮発性有機塩素化合物の濃度を所望の基準以下に低下させることにより、揮発性有機塩素化合物の初期濃度が高い場合であっても、これを低コストで所望の基準、例えば環境基準以下に低下させることが可能となる。
【0129】
【図面の簡単な説明】
【図1】第1実施形態に係る有機塩素化合物の処理装置を示した全体図。
【図2】第1実施形態に係る有機塩素化合物の処理装置の作用を示したグラフ。
【図3】第1実施形態に係る有機塩素化合物の処理装置の作用を示した図。
【図4】変形例に係る有機塩素化合物の処理装置を示した全体図。
【図5】第2実施形態に係る有機塩素化合物の処理装置を示した全体図。
【図6】第2実施形態に係る有機塩素化合物の処理装置の作用を示したグラフ。
【図7】変形例に係る有機塩素化合物の処理装置を示した全体図。
【符号の説明】
1,21,31,41 有機塩素化合物の処理装置
2 処理槽
3,23,33,43 一次処理槽
4,24 二次処理槽
5a 陽極(電極)
5b 陰極(電極)
6 電源
7 散気管(散気手段)
8 ブロワ(気体圧送手段)
9 活性炭吸着装置(捕集吸着手段)
10 隔壁
16 共有揮散空間
27 揮散空間
34,44 捕集吸着槽
35 活性炭(吸着材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a treatment apparatus for detoxifying contaminated water containing a volatile organic chlorine compound such as trichlorethylene.
[0002]
[Prior art]
The soil in the site of the factory may contain volatile organic chlorine compounds such as carcinogenic substances such as trichlorethylene and tetrachloroethylene. If such soil is left as it is, volatile organic chlorine will be introduced via groundwater. Contaminated water containing compounds may diffuse into the environment. Therefore, a predetermined purification process must be performed for such contaminated water.
[0003]
As a method for treating contaminated water containing such a volatile organic chlorine compound, a volatilization method and an activated carbon adsorption method have been conventionally used. Here, the volatilization method is a method in which air is aerated in contaminated water to volatilize volatile organic chlorine compounds in the water, and then the volatilized volatile organic chlorine compounds are recovered and removed with activated carbon or the like. On the other hand, the activated carbon adsorption method is a method of adsorbing volatile organic chlorine compounds in water to activated carbon by passing contaminated water through the activated carbon layer.
[0004]
[Problems to be solved by the invention]
However, in any of the conventional treatment methods, the volatile organic chlorine compound is adsorbed and removed by activated carbon in any method. Therefore, as the concentration of the volatile organic chlorine compound increases, the activated carbon to be treated with the volatile organic chlorine compound is increased. The load increases.
[0005]
Therefore, when the concentration of the volatile organic chlorine compound in the contaminated water is high, there is a problem that the replacement frequency of the activated carbon is high and the treatment cost is very high.
[0006]
On the other hand, in recent years, methods for detoxifying contaminated water containing volatile organochlorine compounds by electrolysis have been studied. However, electrolysis treatment has a constant decomposition rate regardless of the concentration. Therefore, even if the concentration decreases, the cost required for decomposition does not decrease.
[0007]
Therefore, for example, if the concentration of the volatile organochlorine compound is lowered below the environmental standard, there is a problem that the treatment cost becomes very high as a result only by the treatment by electrolysis.
[0008]
The present invention has been made in consideration of the above-mentioned circumstances, and even when the initial concentration of the volatile organic chlorine compound is high, the concentration of the volatile organic chlorine compound can be sufficiently reduced at a low cost. It is an object of the present invention to provide an organochlorine compound processing apparatus capable of performing the above-mentioned.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, an organic chlorine compound processing apparatus according to the present invention is an organic chlorine compound processing apparatus for processing contaminated water containing a predetermined volatile organic chlorine compound, as described in claim 1,
A predetermined treatment tank that is hermetically configured and partitioned inside by a partition, a primary treatment tank that is provided on one side of the partition and stores the contaminated water, and a pair disposed opposite to each other in the primary treatment tank An electrode, a power source electrically connected to the electrode, a secondary treatment tank provided on the other side of the partition wall, in which primary treated water electrolyzed in the primary treatment tank is transferred and stored, and the secondary treatment tank Aeration means disposed so as to be immersed in the primary treated water transferred and stored in the treatment tank, a gas pressure means connected to the diffusion means, and a collection adsorption means connected to the treatment tank And the upper part of the primary treatment tank and the secondary treatment tank communicate with each other in the treatment tank to form a shared volatilization space, and the collection and adsorption means communicate with the shared volatilization space. is there.
[0015]
In the organochlorine compound treatment apparatus according to the present invention, first, the polluted water containing a predetermined volatile organochlorine compound is electrolyzed and used as primary treated water.
[0016]
In performing the electrolysis treatment, for example, contaminated water containing a predetermined volatile organic chlorine compound is stored in a primary treatment tank, and in such a state, current is passed between a pair of electrodes arranged opposite to each other in the primary treatment tank. You can do it.
[0017]
In this way, harmful volatile organic chlorine compounds such as trichlorethylene and tetrachloroethylene are decomposed into harmless substances by an oxidation-reduction reaction at the electrode. For example, in the case of a reduction reaction at the cathode, it is electrolyzed into chlorides such as chloride ions and hydrocarbons such as ethylene and ethane. And since all of these chlorides and hydrocarbons are harmless substances, harmful organochlorine compounds are eventually rendered harmless.
[0018]
Such electrolysis is performed until the concentration of the volatile organic chlorine compound contained in the contaminated water in the primary treatment tank is reduced to a predetermined reference concentration or less.
[0019]
In determining the predetermined reference concentration, the costs required for the electrolysis process and the costs required for the volatilization process and adsorption process, which are the next steps, are compared and considered. For example, volatilization occurs as the concentration of volatile organochlorine compounds decreases. The concentration when the cost required for the treatment and the adsorption treatment is smaller than the cost required for the electrolysis treatment can be set as the predetermined reference concentration.
[0020]
After electrolyzing the contaminated water into primary treated water in this way, the primary treated water is volatilized, and the volatilization treatment allows the concentration of the volatile organochlorine compound remaining in the primary treated water to be a desired level. It is reduced to a standard, for example, an environmental standard, and this is used as secondary treated water.
[0021]
In performing the volatilization treatment, for example, the primary treatment water is transferred and stored in the secondary treatment tank, and then the gas pressure feeding means is operated, whereby the gas such as air is discharged from the aeration means arranged in the secondary treatment tank. You can diffuse.
[0022]
Next, the volatilized volatile organic chlorine compound is subjected to an adsorption treatment.
[0023]
In the adsorption treatment of the volatile organic chlorine compound, for example, the volatile organic chlorine compound may be collected and adsorbed by a secondary treatment tank or a collection adsorption means connected to the treatment tank.
[0024]
In this way, the contaminated water containing the volatile organic chlorine compound becomes primary treated water in which the concentration of the volatile organic chlorine compound is reduced to a predetermined reference concentration or less by electrolysis in the primary treatment tank, and then the primary treatment. The water becomes secondary treated water in which the concentration of the volatile organochlorine compound is reduced to a desired standard or less by the volatilization treatment in the secondary treatment tank.
[0025]
Here, since the treatment by electrolysis shows a constant decomposition rate regardless of the concentration, the cost required for the decomposition does not decrease even if the concentration is reduced, whereas the volatilization treatment and the adsorption treatment are the concentrations. The cost required for the volatilization process and the adsorption process also decreases as the value decreases.
[0026]
For this reason, the total cost is lower for the electrolysis process when the concentration is high, and for the volatilization process and the adsorption process when the concentration is low.
[0027]
Therefore, in the present invention, the concentration of the volatile organic chlorine compound is first reduced to a predetermined reference concentration or less by performing a treatment by electrolysis, and then the volatilization treatment and the adsorption treatment are performed to remove the volatile organic chlorine compound. By reducing the concentration below the desired standard, even if the initial concentration of the volatile organochlorine compound is high, it can be reduced at a low cost, for example, below the environmental standard.
[0028]
In addition, since the water temperature rises due to the heat generated during the electrolysis treatment, the volatility of the volatile organic chlorine compound is increased, and in the volatilization treatment performed after the electrolysis treatment, the volatile organic chlorine compound Volatilization is promoted.
[0029]
As long as the aeration unit and the gas pressure feeding unit can perform the volatilization process in the secondary treatment tank, any configuration may be used. For example, as the aeration tube and the gas pressure feeding unit as the aeration unit. A commercially available volatilization treatment apparatus composed of the above blower can be used as appropriate.
[0030]
The collecting and adsorbing means is arbitrary as long as it can collect and adsorb the volatile organic chlorine compounds volatilized in the secondary treatment tank, for example, activated carbon adsorption formed by filling activated carbon inside. It is conceivable to configure the apparatus.
[0031]
As long as the secondary treatment tank can volatilize by transferring and storing the primary treated water, it is optional how it is configured, but the volatilized volatile organic chlorine compound is collected by the collection and adsorption means. The secondary processing tank itself is configured to be airtight so that the secondary processing tank can be configured to be airtight, or indirectly configured by forming a secondary processing tank in an airtight manner. Keep it.
[0032]
Here, in the present invention, the upper part of the primary treatment tank and the secondary treatment tank separated from each other by the partition walls communicate with each other in the treatment tank to form a shared volatilization space, and the collection and adsorption means communicate with the shared volatilization space. As a configuration.
[0033]
In this way, even when the water temperature in the primary treatment tank rises due to the heat generated by the electrolysis and the volatile organic chlorine compound is volatilized without being electrolyzed, the organic chlorine compound is also collected and adsorbed. In addition to being collected by the means and adsorbing treatment, reaction products such as chlorides and hydrocarbons generated by electrolysis can be recovered by the collecting and adsorbing means.
[0034]
In transferring and storing the primary treated water in the secondary treatment tank, it is arbitrary how the primary treated water is transferred from the primary treatment tank to the secondary treatment tank, for example, using a pump. However, when the water level difference can be used, the pressure may be transferred using the pressure due to the water level difference.
[0035]
In the method and apparatus for treating an organic chlorine compound according to the reference invention, first, the polluted water containing a predetermined volatile organic chlorine compound is electrolyzed and used as primary treated water.
[0036]
In performing the electrolysis treatment, for example, contaminated water containing a predetermined volatile organic chlorine compound is stored in a primary treatment tank, and in such a state, current is passed between a pair of electrodes arranged opposite to each other in the primary treatment tank. You can do it.
[0037]
In this way, harmful volatile organic chlorine compounds such as trichlorethylene and tetrachloroethylene are decomposed into harmless substances by an oxidation-reduction reaction at the electrode. For example, in the case of a reduction reaction at the cathode, it is electrolyzed into chlorides such as chloride ions and hydrocarbons such as ethylene and ethane. And since all of these chlorides and hydrocarbons are harmless substances, harmful organochlorine compounds are eventually rendered harmless.
[0038]
Such electrolysis is performed until the concentration of the volatile organic chlorine compound contained in the contaminated water in the primary treatment tank is reduced to a predetermined reference concentration or less.
[0039]
In determining the predetermined reference concentration, the cost required for the electrolysis process and the cost required for the adsorption process, which is the next process, are compared and considered. For example, it is necessary for the adsorption process as the concentration of volatile organochlorine compounds decreases. The density at which the cost is lower than the cost required for the electrolysis process can be used as the predetermined reference density.
[0040]
After the contaminated water is electrolyzed in this way into primary treated water, the primary treated water is subjected to adsorption treatment, and the concentration of volatile organochlorine compounds remaining in the primary treated water by the adsorption treatment is set to a desired value. It is reduced to a standard, for example, an environmental standard, and this is used as secondary treated water.
[0041]
In performing the adsorption treatment, for example, by passing the primary treated water through the collection adsorption tank, the volatile organic chlorine compound remaining in the primary treatment water is adsorbed to the adsorbent filled in the collection adsorption tank. You can make it.
[0042]
In this way, the contaminated water containing the volatile organic chlorine compound becomes primary treated water in which the concentration of the volatile organic chlorine compound is reduced to a predetermined reference concentration or less by electrolysis in the primary treatment tank, and then the primary treatment. The water becomes secondary treated water in which the concentration of the volatile organochlorine compound is lowered to a desired standard or less by the adsorption treatment in the collection adsorption tank.
[0043]
Here, since the treatment by electrolysis shows a constant decomposition rate regardless of the concentration, the cost required for the decomposition does not decrease even if the concentration decreases, whereas the concentration in the adsorption treatment decreases. As a result, the cost required for the adsorption treatment also decreases.
[0044]
For this reason, the total cost of the electrolysis process is low when the concentration is high, and the adsorption process is low when the concentration is low.
[0045]
Therefore, in the reference invention, the concentration of the volatile organochlorine compound is first lowered by reducing the concentration of the volatile organochlorine compound to a predetermined reference concentration or less by performing an electrolysis treatment, and then the concentration of the volatile organochlorine compound is obtained by performing an adsorption treatment By reducing it to below the standard, even if the initial concentration of the volatile organic chlorine compound is high, it can be reduced at a low cost, for example, below the environmental standard.
[0046]
The collection and adsorption tank can be configured in any manner as long as the primary treated water electrolyzed in the primary treatment tank is passed through and a predetermined adsorbent is filled therein. As the adsorbent, for example, it is conceivable to use activated carbon.
[0047]
The primary treatment tank and the collection / adsorption tank may be installed independently and may communicate with each other through a predetermined communication pipe. The interior of the predetermined treatment tank may be partitioned by a partition wall, and one of the partition walls may be separated. The side may be a primary treatment tank and the other side may be a collection and adsorption tank.
[0048]
In addition, in passing the primary treated water through the collection and adsorption tank, it is arbitrary how the primary treated water is passed from the primary treatment tank to the collection and adsorption tank. For example, using the pressure of the pump Water may be allowed to flow, or when a water level difference can be used, water may be passed using the pressure due to the water level difference.
[0049]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an apparatus for treating an organic chlorine compound according to the present invention and a reference invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0050]
(First embodiment)
[0051]
FIG. 1 is a conceptual diagram showing an organochlorine compound processing apparatus 1 according to this embodiment. As shown in the figure, an organochlorine compound treatment apparatus 1 according to the present embodiment is hermetically configured and has a treatment tank 2 that is partitioned by a partition wall 10 and a volatile property provided on one side of the partition wall 10. A primary treatment tank 3 in which contaminated water containing an organic chlorine compound is stored, an anode 5a and a cathode 5b as a pair of electrodes disposed opposite to each other in the primary treatment tank, and the anode 5a and the cathode 5b are electrically connected. Power supply 6, secondary treatment tank 4 provided on the other side of partition wall 10 for transferring and storing primary treated water electrolyzed in primary treatment tank 3, and a dispersion pipe disposed in the secondary treatment tank An air diffusion pipe 7 as a gas means, a blower 8 as a gas pumping means connected to the air diffusion pipe, and an activated carbon adsorption device 9 as a collection adsorption means connected to the treatment tank 2 are configured.
[0052]
The partition wall 10 is configured such that the height thereof is lower than the internal height of the treatment tank 2, and the opening 11 is formed above the partition wall 10, so that the partition wall 10 is located above the primary treatment tank 3 and the secondary treatment tank 4. Are communicated with each other in the treatment tank 2 to form a shared volatilization space 16.
[0053]
The primary treatment tank 3 is provided with a contaminated water inlet 12 through which contaminated water flows in the vicinity of the bottom surface, and the contaminated water can be supplied into the primary treatment tank 3 using a pump 13 connected to the contaminated water inlet. It can be done.
[0054]
The anode 5a and the cathode 5b are preferably arranged, for example, separated by several centimeters to several tens of centimeters, and the power source 6 is preferably configured to be able to apply a DC voltage of about 10 to 30 volts, for example.
[0055]
The diffuser pipe 7 is formed of a perforated pipe, and is arranged in the vicinity of the bottom surface of the secondary treatment tank so as to be immersed in the primary treatment water transferred and stored in the secondary treatment tank 4. The air as gas fed from the blower 8 is supplied into the secondary treatment tank 4.
[0056]
That is, the air diffuser 7 and the blower 8 constitute a volatilization processing device for volatilizing the primary treated water transferred and stored in the secondary treatment tank 4.
[0057]
Here, in the secondary treatment tank 4, a secondary treatment water discharge port 14 through which the secondary treatment water is discharged is provided in the vicinity of the bottom surface, and the secondary treatment in the secondary treatment tank 4 is performed by opening the valve 15. The water can be drained.
[0058]
The activated carbon adsorption device 9 is connected to the treatment tank 2 so as to communicate with the shared volatilization space 16, and not only the volatile organic chlorine compound volatilized by the volatilization process in the secondary treatment tank 4 but also the primary treatment tank 3. Volatile organic chlorine compounds volatilized by heat generated by the electrolysis treatment of can also be collected and adsorbed.
[0059]
Here, the activated carbon adsorbing device 9 is filled with activated carbon, collects the volatilized volatile organic chlorine compound, adsorbs the activated carbon, renders it harmless, and then exhausts it.
[0060]
In order to perform the organic chlorine compound processing method according to the present embodiment using the organic chlorine compound processing apparatus 1 according to the present embodiment, first, contaminated water containing a volatile organic chlorine compound is placed in the primary treatment tank 3. Store.
[0061]
In order to store the contaminated water, the pump 13 is operated to cause the contaminated water to flow into the primary treatment tank 3 from the contaminated water inlet 12. The contaminated water is, for example, water pumped up from contaminated soil or washed water after being used for washing in the factory.
[0062]
Next, the power supply 6 is operated and a DC voltage of about 10 to 30 volts is applied between the anode 5a and the cathode 5b to electrolyze the contaminated water stored in the primary treatment tank 3, and this is subjected to primary treatment. Use treated water.
[0063]
In this way, harmful volatile organic chlorine compounds such as trichlorethylene and tetrachloroethylene are decomposed into harmless substances by an oxidation-reduction reaction at the electrode. For example, in the case of a reduction reaction at the cathode, it is electrolyzed into chlorides such as chloride ions and hydrocarbons such as ethylene and ethane. And since all of these chlorides and hydrocarbons are harmless substances, harmful organochlorine compounds are eventually rendered harmless.
[0064]
Such electrolysis is performed until the concentration of the volatile organochlorine compound contained in the contaminated water in the primary treatment tank 3 falls below a predetermined reference concentration.
[0065]
In determining the predetermined reference concentration, the cost required for the electrolysis process is determined in consideration of the costs required for the volatilization process and the adsorption process, which are the next steps. FIG. 2 is a graph showing the relationship between the initial concentration of the volatile organic chlorine compound and the cost per unit amount of water. As shown in the figure, as the concentration of the volatile organic chlorine compound decreases, the volatilization treatment and adsorption are performed. The density when the cost required for the treatment is lower than the cost required for the electrolysis process is defined as a predetermined reference density a.
[0066]
Next, the primary treated water electrolyzed in the primary treatment tank 3 is transferred and stored in the secondary treatment tank 4. When transporting and storing in the secondary treatment tank 4, as shown in FIG. 3A, the pump 13 is operated and new contaminated water is supplied from the contaminated water inlet 12, whereby the primary in the primary treatment tank 3. The treated water is overflowed through the opening 11 formed above the partition wall 10 and transferred and stored in the secondary treatment tank 4.
[0067]
Next, as shown in FIG. 4B, the primary treatment water in the secondary treatment tank 4 is volatilized, and the volatilization treatment is used to set the concentration of the volatile organochlorine compound remaining in the primary treatment water. To the standard, for example, environmental standard, and this is used as the secondary treated water. In performing the volatilization process, the blower 8 is operated to diffuse air from the diffuser pipe 7 disposed in the secondary treatment tank 4. In this way, the volatile organic chlorine compound dissolved in the primary treated water is volatilized in the shared volatilization space 16.
[0068]
On the other hand, the same electrolysis treatment as described above is performed on the contaminated water newly stored in the primary treatment tank 3 simultaneously with or after the above-described volatilization treatment.
[0069]
Here, also in the primary treatment tank 3, the water temperature rises due to the heat generated in the electrolysis treatment, so that the volatile organic chlorine compound is volatilized in the common volatilization space 16 without being electrolyzed.
[0070]
Next, the volatile organic chlorine compound volatilized in the shared volatilization space 16 is adsorbed. In performing the adsorption treatment of the volatile organic chlorine compound, the activated carbon adsorption device 9 connected to the treatment tank 2 may collect and adsorb the volatile organic chlorine compound volatilized in the shared volatile space 16.
[0071]
Note that the gas after the adsorption treatment of the volatile organic chlorine compound is detoxified, and may be appropriately exhausted to the atmosphere.
[0072]
Thus, when the electrolysis process in the primary treatment tank 3 and the volatilization process in the secondary treatment tank 4 are completed and the adsorption process of the volatile organic chlorine compound volatilized in the shared volatilization space 16 is completed, the valve 15 is turned on. While the secondary treatment water in the secondary treatment tank 4 is opened and discharged, new contaminated water is stored in the primary treatment tank 3 by operating the pump 13, and the electrolysis process is terminated by the pump pressure at that time. Then, the primary treatment water in the primary treatment tank 3 is overflowed and transferred and stored in the secondary treatment tank 4. The batch processing described above is repeated as necessary.
[0073]
In addition, about the secondary treated water discharged | emitted from the secondary processing tank 4 by opening the valve | bulb 15, since the volatile organic chlorine compound is removed and detoxified by the volatilization process, it should just discharge to a river etc. suitably.
[0074]
As described above, according to the organochlorine compound treatment method and treatment apparatus 1 according to the present embodiment, the contaminated water containing the volatile organochlorine compound is electrolyzed in the primary treatment tank 3 to a reference concentration a or less. The primary treated water in which the concentration of the volatile organochlorine compound is reduced, and then the primary treated water is subjected to the volatilization treatment in the secondary treatment tank 4 to obtain the secondary treated water in which the concentration of the volatile organochlorine compound is lowered to a desired standard or less. It can be treated water.
[0075]
Here, as shown in FIG. 2, the process by electrolysis shows a constant decomposition rate regardless of the size of the concentration, so that the cost required for the decomposition does not decrease even if the concentration is lowered, In the volatilization process and the adsorption process, the cost required for the volatilization process and the adsorption process decreases as the concentration decreases.
[0076]
For this reason, when the concentration is higher than the reference concentration a, the cost of the electrolysis process is lower, and when the concentration is lower than the reference concentration a, the volatilization process and the adsorption process are lower.
[0077]
Therefore, in the present embodiment, the concentration of the volatile organic chlorine compound is first reduced to the reference concentration a or lower by performing the treatment by electrolysis, and then the volatilization treatment and the adsorption treatment are performed to remove the volatile organic chlorine compound. By reducing the concentration below the desired standard, even if the initial concentration of the volatile organochlorine compound is high, it can be reduced at a low cost, for example, below the environmental standard.
[0078]
In addition, since the water temperature rises due to the heat generated during the electrolysis treatment, the volatility of the volatile organic chlorine compound is increased, and in the volatilization treatment performed after the electrolysis treatment, the volatile organic chlorine compound Volatilization can be promoted.
[0079]
In addition, according to the organochlorine compound treatment apparatus 1 according to the present embodiment, the upper part of the primary treatment tank 3 and the secondary treatment tank 4 separated from each other by the partition wall 10 is communicated with each other in the treatment tank 2, and the shared volatilization space. 16 and the activated carbon adsorbing device 9 is connected to the shared volatilization space, so that not only the volatile organic chlorine compound volatilized from the secondary treatment tank 4 but also electrolysis is caused by, for example, an increase in water temperature due to electrolysis heat. The volatile organic chlorine compound volatilized from the primary treatment tank 3 can be collected and adsorbed by the activated carbon adsorbing device 9, and the reaction product generated by electrolysis has a low molecular weight and high volatility. The activated substance, for example, the dechlorinated monochrome organic substance, can be recovered by the activated carbon adsorption device 9. Furthermore, since accumulation of hydrogen gas and oxygen gas generated by electrolysis is prevented, there is no fear of ignition.
[0080]
In this embodiment, the pump 13 is installed, and the primary treatment water is overflowed from the primary treatment tank 3 to the secondary treatment tank 4 by newly supplying the contaminated water from the contaminated water inlet 12 using the pump 13. Although configured, it is optional what kind of means is used in transferring the primary treated water from the primary treatment tank to the secondary treatment tank. For example, when contaminated water is supplied from an elevated tank The pump 13 may be omitted, and the transfer may be performed using the pressure due to the water level difference. Further, a pump may be installed in the primary treatment tank without overflowing, and the primary treatment water may be transferred from the primary treatment tank to the secondary treatment tank using the pump.
[0081]
Further, in the present embodiment, the primary treatment tank 3 and the secondary treatment tank 4 are provided in the treatment tank by disposing the partition wall 10 in the treatment tank 2 configured to be airtight. You may make it provide a secondary processing tank separately, respectively.
[0082]
FIG. 4 is a conceptual diagram showing an organochlorine compound treatment device 21 in such a modification. As shown in FIG. 4, a primary treatment tank 23 and a secondary treatment tank 24 are provided separately, and near the bottom surface. The primary treatment tank 23 and the secondary treatment tank 24 are connected to each other via a communication pipe 22 provided in the pipe.
[0083]
The primary treatment tank 23 is configured to be open at the top. Like the above-described embodiment, the anode 5a and the cathode 5b as a pair of electrodes are disposed in the primary treatment tank 23 so as to face each other. A power source 6 is electrically connected to the anode 5a and the cathode 5b.
[0084]
On the other hand, the secondary treatment tank 24 is configured to be airtight, and the diffuser pipe 7 is arranged in the secondary treatment tank 24 and the blower 8 is connected to the diffuser pipe as in the above-described embodiment. is there. Moreover, the activated carbon adsorption device 9 is connected so as to communicate with the volatilization space 27 in the secondary treatment tank 24, and the volatile organic chlorine compound volatilized in the secondary treatment tank 24 is collected and adsorbed by the activated carbon. Can be done.
[0085]
In order to implement the organic chlorine compound processing method using the organic chlorine compound processing apparatus 21 according to this modification, first, contaminated water containing a volatile organic chlorine compound is stored in the primary processing tank 23. In storing, the contaminated water may be supplied from the upper opening of the primary treatment tank 23 into the primary treatment tank 23.
[0086]
Next, the contaminated water is electrolyzed in the primary treatment tank 23 to obtain primary treated water.
[0087]
Next, when the concentration of the volatile organic chlorine compound is lowered to a predetermined reference concentration a or less, the primary treated water in the primary treatment tank 23 is transferred and stored in the secondary treatment tank 24. When transferring and storing in the secondary treatment tank 24, new contaminated water is supplied and the valve 25 installed in the communication pipe 22 is opened, and the primary treatment water flows into the secondary treatment tank 24 through the communication pipe 22. Let
[0088]
Next, the primary treated water in the secondary treatment tank 24 is volatilized into secondary treated water, and the volatile organic chlorine compound volatilized in the volatilization space 27 in the secondary treatment tank 24 is removed by the activated carbon adsorption device 9. Adsorption treatment.
[0089]
On the other hand, the same electrolysis treatment as described above is performed on the contaminated water newly stored in the primary treatment tank 23 simultaneously with or after the volatilization treatment.
[0090]
Thus, when the electrolysis process in the primary treatment tank 23 and the volatilization process in the secondary treatment tank 24 are completed and the adsorption process of the volatile organic chlorine compound volatilized in the volatilization space 27 is completed, the valve 26 is opened. While the secondary treated water in the secondary treatment tank 24 is discharged, new contaminated water is stored in the primary treatment tank 23, and the primary treated water in the primary treatment tank 23 after the electrolysis treatment is connected to the communication pipe 22. Is transferred and stored in the secondary treatment tank 24. The batch processing described above is repeated as necessary.
[0091]
Since other configurations and operational effects are the same as those of the above-described embodiment, detailed description thereof is omitted here.
[0092]
In this modification, the primary treatment tank 23 is configured to be open at the top, but the primary treatment tank is configured to be airtight, and the volatilization space in the primary treatment tank is the volatilization space in the secondary treatment tank or collection adsorption. You may comprise so that a primary processing tank may be connected to a secondary processing tank or a collection adsorption means so that it may communicate with a means.
[0093]
In such a case, it is possible to collect the volatile organochlorine compounds volatilized in the primary treatment tank without being electrolyzed, and reaction products such as chlorides and hydrocarbons generated by electrolysis with the collection and adsorption means. Become.
[0094]
(Second Embodiment)
[0095]
Next, an embodiment of the method and apparatus for treating an organic chlorine compound according to the second embodiment will be described. Note that components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0096]
FIG. 5 is a conceptual diagram showing the organochlorine compound processing apparatus 31 according to the present embodiment. As shown in the figure, an organochlorine compound processing apparatus 31 according to the present embodiment includes a treatment tank 32 having an interior partitioned by a partition 10 and a volatile organochlorine compound provided on one side of the partition 10. A primary treatment tank 33 in which contaminated water is stored, a pair of electrodes 5a and 5b as opposed electrodes disposed in the primary treatment tank, and a power source 6 electrically connected to the anodes 5a and 5b. And a collection adsorption tank 34 through which primary treated water electrolyzed in the primary treatment tank 33 is provided on the other side of the partition wall 10.
[0097]
The partition wall 10 is configured such that its height is lower than the internal height of the treatment tank 32, and an opening 11 is formed above the partition wall 10.
[0098]
The primary treatment tank 33 is provided with a contaminated water inlet 12 through which contaminated water flows in the vicinity of the bottom surface, and the contaminated water can be supplied into the primary treatment tank 33 using a pump 13 connected to the contaminated water inlet. It can be done.
[0099]
The anode 5a and the cathode 5b are preferably arranged, for example, separated by several centimeters to several tens of centimeters, and the power source 6 is preferably configured to be able to apply a DC voltage of about 10 to 30 volts, for example.
[0100]
The collection adsorbing tank 34 is filled with activated carbon 35 as an adsorbent, and the secondary treated water discharge port 14 through which the secondary treated water adsorbed in the collecting adsorbing tank is discharged is provided on the bottom surface. The secondary treated water in the collection adsorption tank 34 can be drained through a drain pipe 36 provided in the vicinity and penetratingly connected to the secondary treated water discharge port.
[0101]
In order to perform the organic chlorine compound processing method according to the present embodiment using the organic chlorine compound processing apparatus 31 according to the present embodiment, first, contaminated water containing a volatile organic chlorine compound is placed in the primary treatment tank 33. Store.
[0102]
In order to store the contaminated water, the pump 13 is operated to cause the contaminated water to flow into the primary treatment tank 33 from the contaminated water inlet 12. The contaminated water is, for example, water pumped up from contaminated soil or washed water after being used for washing in the factory.
[0103]
Next, the power supply 6 is operated and a DC voltage of about 10 to 30 volts is applied between the anode 5a and the cathode 5b to electrolyze the contaminated water stored in the primary treatment tank 33, and this is subjected to primary treatment. Use treated water.
[0104]
In this way, harmful volatile organic chlorine compounds such as trichlorethylene and tetrachloroethylene are decomposed into harmless substances by an oxidation-reduction reaction at the electrode. For example, in the case of a reduction reaction at the cathode, it is electrolyzed into chlorides such as chloride ions and hydrocarbons such as ethylene and ethane. And since all of these chlorides and hydrocarbons are harmless substances, harmful organochlorine compounds are eventually rendered harmless.
[0105]
Such electrolysis is performed until the concentration of the volatile organochlorine compound contained in the contaminated water in the primary treatment tank 33 falls below a predetermined reference concentration.
[0106]
In determining the predetermined reference concentration, the cost required for the electrolysis process and the cost required for the adsorption process, which is the next process, are determined by comparison. FIG. 6 is a graph showing the relationship between the initial concentration of the volatile organic chlorine compound and the cost per unit amount of water. As shown in FIG. 6, it is necessary for the adsorption treatment as the concentration of the volatile organic chlorine compound decreases. The density when the cost is lower than the cost required for the electrolysis process is set as a predetermined reference density b.
[0107]
As the energization amount increases, the treatment speed of the volatile organic chlorine compound by electrolysis increases, but the water temperature rises due to the generated heat, and the volatile organic chlorine compound may volatilize without being electrolyzed, When performing the above-described energization operation, it is desirable to appropriately adjust the magnitude of voltage and current and the energization time so that the treatment speed by electrolysis is improved as much as possible within a range where volatilization of the volatile organic chlorine compound is suppressed.
[0108]
Next, the primary treated water electrolyzed in the primary treatment tank 33 is passed through the collection and adsorption tank 34 to perform adsorption treatment on the primary treated water, and the volatile organic remaining in the primary treated water by the adsorption treatment. The concentration of the chlorine compound is reduced to a desired standard, for example, an environmental standard, and this is used as secondary treated water.
[0109]
In passing the primary treated water through the collection / adsorption tank 34, the pump 13 is operated to supply new contaminated water from the contaminated water inlet 12, thereby bringing the primary treated water in the primary treatment tank 33 into the partition wall 10. The water is allowed to overflow through the opening 11 formed on the upper side, and is passed through the collection / adsorption tank 34.
[0110]
In this way, the volatile organic chlorine compound remaining in the primary treated water is adsorbed by the activated carbon 35 filled in the collection adsorption tank 34. In addition, what is necessary is just to replace | exchange the activated carbon 35 in the collection adsorption tank 34 suitably as needed with progress of adsorption processing.
[0111]
In addition, about the secondary treated water drained from the drain pipe 36 connected to the collection adsorption tank 34, the volatile organic chlorine compound is removed and detoxified by the adsorption treatment. Good.
[0112]
On the other hand, the same electrolysis process as described above is performed on the contaminated water newly stored in the primary treatment tank 33 simultaneously with or before or after the above-described adsorption process.
[0113]
When the electrolysis process in the primary treatment tank 33 is completed as described above, the contaminated water is stored in the primary treatment tank 33 by operating the pump 13, and the electrolysis process is finished by the pump pressure at that time. The primary treated water in the primary treatment tank 33 is overflowed and passed through the collection / adsorption tank 34, and the secondary treatment water adsorbed in the collection / adsorption tank is discharged from the drain pipe 36. The batch processing described above is repeated as necessary.
[0114]
As described above, according to the organic chlorine compound processing method and processing apparatus 31 according to the present embodiment, the contaminated water containing the volatile organic chlorine compound is electrolyzed in the primary processing tank 33 to a reference concentration b or lower. The primary treated water in which the concentration of the volatile organic chlorine compound is reduced, and then the secondary treated water in which the concentration of the volatile organic chlorine compound is lowered to a desired standard or less by the adsorption treatment in the collection adsorption tank 34. It can be treated water.
[0115]
Here, as shown in FIG. 6, the process by electrolysis shows a constant decomposition rate regardless of the size of the concentration, so that the cost required for the decomposition does not decrease even if the concentration decreases, In the adsorption process, the cost required for the adsorption process decreases as the concentration decreases.
[0116]
For this reason, the total cost is lower for the electrolysis process when the concentration is higher than the reference concentration b, and the adsorption process when the concentration is lower than the reference concentration b.
[0117]
Therefore, in the present embodiment, the concentration of the volatile organic chlorine compound is first reduced to the reference concentration b or lower by performing the treatment by electrolysis, and then the adsorption treatment is performed to obtain the desired concentration of the volatile organic chlorine compound. By reducing it to below the standard, even if the initial concentration of the volatile organic chlorine compound is high, it can be reduced at a low cost, for example, below the environmental standard.
[0118]
In this embodiment, the pump 13 is installed, and the primary treated water is overflowed from the primary treatment tank 33 to the collection adsorption tank 34 by newly supplying contaminated water from the contaminated water inlet 12 using the pump 13. Although it is configured, it is arbitrary what kind of means is used for passing the primary treated water through the collection / adsorption tank. For example, when contaminated water is supplied from the elevated tank, the pump 13 is turned on. It may be omitted and the pressure due to the water level difference may be used. Further, a pump may be installed in the primary treatment tank without overflowing, and the primary treatment water may be passed through the collection and adsorption tank using the pump.
[0119]
In the present embodiment, the partition 10 is disposed in the treatment tank 32 to provide the primary treatment tank 33 and the collection / adsorption tank 34 in the treatment tank. However, the primary treatment tank and the collection / adsorption tank are These may be provided individually.
[0120]
FIG. 7 is a conceptual diagram showing an organochlorine compound processing apparatus 41 in such a modification. As shown in FIG. 7, a primary processing tank 43 and a collection / adsorption tank 44 are provided separately, and in the vicinity of the bottom surface. The primary treatment tank 43 and the collection / adsorption tank 44 are connected to each other through a communication pipe 42 provided in the pipe.
[0121]
The primary treatment tank 43 is configured to be open at the top. Like the above-described embodiment, the anode 5a and the cathode 5b as a pair of electrodes are disposed opposite to each other in the primary treatment tank 43. A power source 6 is electrically connected to the anode 5a and the cathode 5b.
[0122]
The collection adsorbing tank 44 is filled with activated carbon and can adsorb volatile organic chlorine compounds.
[0123]
In order to perform the organic chlorine compound processing method using the organic chlorine compound processing apparatus 41 according to this modification, first, contaminated water containing a volatile organic chlorine compound is stored in the primary processing tank 43. In storing, contaminated water may be supplied from the upper opening of the primary treatment tank 43 into the primary treatment tank 43.
[0124]
Next, the contaminated water is electrolyzed in the primary treatment tank 43 to obtain primary treated water.
[0125]
Next, when the concentration of the volatile organic chlorine compound falls below the reference concentration b, the primary treated water is passed through the collection / adsorption tank 44, and the primary treatment water is adsorbed in the collection / adsorption tank and subjected to the secondary treatment. Use treated water. In order to pass the primary treated water to the collection / adsorption tank 44, new contaminated water is supplied and the valve 45 installed in the communication pipe 42 is opened, and the primary treatment water is collected and adsorbed via the communication pipe 42. What is necessary is just to flow in into 44.
[0126]
Thus, when the electrolysis process in the primary treatment tank 43 is completed, new contaminated water is stored in the primary treatment tank 43 and the primary treatment water in the primary treatment tank 43 after the electrolysis process is connected to the communication pipe. Water is passed through the collection / adsorption tank 44 through 42, and the secondary treated water adsorbed in the collection / adsorption tank is discharged from the drain pipe 46. The batch processing described above is repeated as necessary.
[0127]
Since other configurations and operational effects are the same as those of the above-described embodiment, detailed description thereof is omitted here.
[0128]
【The invention's effect】
As described above, according to the organochlorine compound treatment apparatus of the present invention, first, the concentration of the volatile organochlorine compound is reduced to a predetermined reference concentration or less by performing treatment by electrolysis, and then volatilized. Even if the initial concentration of the volatile organochlorine compound is high by reducing the concentration of the volatile organochlorine compound below the desired standard by performing the treatment and the adsorption treatment or the adsorption treatment, this is desired at a low cost. It is possible to reduce the level to below the environmental standard, for example, the environmental standard.
[0129]
[Brief description of the drawings]
FIG. 1 is an overall view showing an organic chlorine compound processing apparatus according to a first embodiment.
FIG. 2 is a graph showing the operation of the organochlorine compound processing apparatus according to the first embodiment.
FIG. 3 is a diagram showing the operation of the organochlorine compound treatment apparatus according to the first embodiment.
FIG. 4 is an overall view showing an organic chlorine compound processing apparatus according to a modification.
FIG. 5 is an overall view showing an organochlorine compound processing apparatus according to a second embodiment.
FIG. 6 is a graph showing the operation of the organic chlorine compound processing apparatus according to the second embodiment.
FIG. 7 is an overall view showing an organic chlorine compound processing apparatus according to a modification.
[Explanation of symbols]
1,21,31,41 Organochlorine compound processing equipment
2 treatment tank
3, 23, 33, 43 Primary treatment tank
4,24 Secondary treatment tank
5a Anode (electrode)
5b Cathode (electrode)
6 Power supply
7 Air diffuser (air diffuser)
8 Blower (gas pressure feeding means)
9 Activated carbon adsorption device (collection adsorption means)
10 Bulkhead
16 shared volatilization space
27 Volatilization space
34, 44 Collection adsorption tank
35 Activated carbon (adsorbent)

Claims (1)

所定の揮発性有機塩素化合物を含む汚染水を処理する有機塩素化合物の処理装置において、
気密に構成され内部を隔壁で仕切られてなる所定の処理槽と、前記隔壁の一方の側に設けられ前記汚染水が貯留される一次処理槽と、該一次処理槽内に対向配置された一対の電極と、該電極に電気接続された電源と、前記隔壁の他方の側に設けられ前記一次処理槽で電気分解処理された一次処理水が移送貯留される二次処理槽と、該二次処理槽に移送貯留された一次処理水内に水浸されるように配置される散気手段と、該散気手段に接続された気体圧送手段と、前記処理槽に接続された捕集吸着手段とから構成するとともに、前記一次処理槽及び前記二次処理槽の上方を前記処理槽内で互いに連通させて共有揮散空間とし、該共有揮散空間に前記捕集吸着手段を連通させてなることを特徴とする有機塩素化合物の処理装置。
In the organic chlorine compound processing apparatus for processing contaminated water containing a predetermined volatile organic chlorine compound,
A predetermined treatment tank that is hermetically configured and partitioned inside by a partition, a primary treatment tank that is provided on one side of the partition and stores the contaminated water, and a pair disposed opposite to each other in the primary treatment tank An electrode, a power source electrically connected to the electrode, a secondary treatment tank provided on the other side of the partition wall, in which primary treated water electrolyzed in the primary treatment tank is transferred and stored, and the secondary treatment tank Aeration means disposed so as to be immersed in the primary treated water transferred and stored in the treatment tank, a gas pressure means connected to the diffusion means, and a collection adsorption means connected to the treatment tank And the upper part of the primary treatment tank and the secondary treatment tank communicate with each other in the treatment tank to form a shared volatilization space, and the collection and adsorption means communicate with the shared volatilization space. An organochlorine compound processing device.
JP2002206492A 2002-07-16 2002-07-16 Organochlorine compound processing equipment Expired - Fee Related JP4051700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206492A JP4051700B2 (en) 2002-07-16 2002-07-16 Organochlorine compound processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206492A JP4051700B2 (en) 2002-07-16 2002-07-16 Organochlorine compound processing equipment

Publications (2)

Publication Number Publication Date
JP2004042000A JP2004042000A (en) 2004-02-12
JP4051700B2 true JP4051700B2 (en) 2008-02-27

Family

ID=31711460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206492A Expired - Fee Related JP4051700B2 (en) 2002-07-16 2002-07-16 Organochlorine compound processing equipment

Country Status (1)

Country Link
JP (1) JP4051700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333265B (en) * 2011-05-20 2014-02-19 南京大学 Replay method of sound fields in three-dimensional local space based on continuous sound source concept

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259930A (en) * 2007-04-10 2008-10-30 Hitachi Plant Technologies Ltd Method for treating organic solvent-containing waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333265B (en) * 2011-05-20 2014-02-19 南京大学 Replay method of sound fields in three-dimensional local space based on continuous sound source concept

Also Published As

Publication number Publication date
JP2004042000A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP3461328B2 (en) Gas processing apparatus and method
JP3825958B2 (en) Chlorine-containing gas generator and contaminated gas decomposition apparatus using the chlorine-containing gas generator
KR100415216B1 (en) Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
US7108837B2 (en) Polluted soil remediation apparatus and pollutant degrading apparatus
CN114192562B (en) Method for removing polycyclic aromatic hydrocarbons in soil by combining electric remediation with anodic oxidation
JP4051700B2 (en) Organochlorine compound processing equipment
US6521810B2 (en) Contaminant treatment method
US20100251890A1 (en) Treatment of contaminated gases
KR101617616B1 (en) Apparatus for water treatment available of decomposition of non-degradable organic material
JP3834808B2 (en) Organochlorine compound processing apparatus and system
JP4362267B2 (en) Disassembling apparatus and disassembling method
JP2001170204A (en) Contaminant decomposition device and contaminant decomposition method
US7169287B2 (en) Decomposition apparatus and decomposition method
JP3800389B2 (en) Organochlorine compound processing apparatus and system
JP3646301B2 (en) Method and structure for treating organochlorine compounds
JP2001259357A (en) Method for treating exhaust gas and treatment device therefor
JP2000202424A (en) Polluted soil remediation method and device
JP2004141720A (en) Treatment method of waste fluid containing organic harmful substance and treatment equipment therefor
JP3646300B2 (en) Method and structure for treating organochlorine compounds
RU2172531C1 (en) Method and device for electrokinetic decontamination of soil from radioactive and toxic materials
JP3825992B2 (en) Contaminated water and groundwater purification apparatus and method
JP2002219450A (en) Remediation equipment and method of contaminated soil, and decomposition equipment and method of contamination compound
JP2001058177A (en) Apparatus and method for cleaning polluted soil and apparatus and method for decomposing pollutant
JP3624154B2 (en) Method for decomposing pollutants and decomposing apparatus used therefor
JP2002001335A (en) Contaminant decomposing equipment and its method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees