JP4048779B2 - 距離画像処理装置 - Google Patents

距離画像処理装置 Download PDF

Info

Publication number
JP4048779B2
JP4048779B2 JP2001401531A JP2001401531A JP4048779B2 JP 4048779 B2 JP4048779 B2 JP 4048779B2 JP 2001401531 A JP2001401531 A JP 2001401531A JP 2001401531 A JP2001401531 A JP 2001401531A JP 4048779 B2 JP4048779 B2 JP 4048779B2
Authority
JP
Japan
Prior art keywords
distance
image
distance image
difference
reference pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001401531A
Other languages
English (en)
Other versions
JP2003196656A (ja
Inventor
健一 萩尾
栄次 中元
素生 井狩
聡 古川
裕司 高田
究 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001401531A priority Critical patent/JP4048779B2/ja
Publication of JP2003196656A publication Critical patent/JP2003196656A/ja
Application granted granted Critical
Publication of JP4048779B2 publication Critical patent/JP4048779B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、距離画像を用いて監視空間における検知対象物の存否の判断あるいは検知対象物の特徴量の抽出に用いる距離画像処理装置に関するものである。
【0002】
【従来の技術】
従来より、監視空間の画像に基づいて監視空間内における検知対象物の存否を判断したり検知対象物の特徴量を抽出したりするために各種の画像処理技術が提案されている。この種の画像処理技術では、濃淡画像またはカラー画像に基づいて検知対象物を背景から分離する方法が広く採用されている。
【0003】
しかしながら、濃淡画像やカラー画像では、監視空間の画像を撮影する撮影手段と検知対象物との位置関係や外乱光の存在などによって、同じ検知対象物であって画像内の濃度変化や色変化に差異が生じ、とくに検知対象物の周辺での影の領域が変化するから、撮影手段に対する検知対象物の位置関係や外乱光が変動しやすい用途では誤検出を生じやすいという問題がある。この問題を解決するために種々の提案がなされているものの、濃淡画像やカラー画像では原理上、外乱光の影響を十分に除去することはできない。
【0004】
これに対して、規定の基準点から監視空間内における当該画素に対応する物体までの距離に画像内の各画素の画素値を対応付けた距離画像を用いることが提案されている。基準点は検知対象物までの距離を求める3次元位置測定装置の設置位置に基づいて設定される。監視空間内で上記基準点から物体までの距離を求める技術は、検知光を監視空間に投光する能動型と検知光を投光しない受動型とがあり、能動型としては線状あるいは扇状の光ビームを監視空間内で走査する形式が広く知られており、受動形としては複数台のTVカメラを用いるステレオ画像法が広く知られている。いずれの方法も三角測量の原理を用いることによって監視空間内の物体までの距離を求めることができる。この種の距離画像は外乱光の影響を受けにくいから、距離画像を用いると検知対象物に関する情報が正確に得られ、外乱光の影響による誤検出が生じにくくなる。
【0005】
ところで、ステレオ画像法によって距離画像を生成する技術では、複数の画像の対応点を発見することが必要であって、対応点を発見するために画像内において濃度変化の大きいエッジ部分を抽出して対応付けを行っているのが現状である。つまり、エッジ部分については距離を比較的正確に求めることができるから、エッジ部分から得られる3次元情報を、あらかじめ登録されている検知対象物の3次元モデルのエッジと比較し、両者の一致度によって検知対象物のエッジか否かを判断している。
【0006】
【発明が解決しようとする課題】
上述したように、画像内のエッジ部分の情報を用いて検知対象物に関する情報を得る技術を採用しているのは、ステレオ画像法では検知対象物の平面部分のように画像内での濃度変化が小さい領域については距離を直接求めるのが難しいからであって、画像内にはエッジ部分以外の情報も含まれているにもかかわらず、この種の情報を有効に利用することができない。
【0007】
一方、上述した能動型の技術を用いれば、検知対象物の平面部分のようなエッジ部分以外であっても距離を直接求めることができるから、この種の技術を採用すれば距離画像に基づいて検知対象物に関する情報をより正確に求めることができる。
【0008】
しかしながら、あらかじめ登録されている3次元モデルと距離画像から得られる検知対象物に関する情報との一致度については、濃淡画像やカラー画像において採用されている画像処理技術と同様のパターンマッチングの手法をそのまま採用することができない。つまり、距離画像では各画素の画素値が上記基準点からの距離であるから、濃淡画像やカラー画像のように2次元平面内での位置合わせ(平行移動と回転移動)だけではパターンマッチングを行うことができず、登録されている3次元モデルを距離画像から得られる検知対象物に対して3次元空間で位置合わせをしなければならない。つまり、3次元モデルの距離および向きを3次元空間内で調節しなければ検知対象物とのパターンマッチングを行うことができず、3次元空間内で距離および向きを調節するには膨大な演算が必要になり、実時間で処理することが困難である。
【0009】
本発明は上記事由に鑑みて為されたものであり、その目的は、距離画像を用いながらも比較的少ない演算で検知対象物の存否の判断や検知対象物の特徴量の抽出を正確に検出可能な距離画像処理装置を提供することにある。
【0010】
【課題を解決するための手段】
請求項1の発明は、監視空間内の全領域について物体までの距離を測定する3次元位置測定装置と、監視空間を撮影した画面上の各画素の画素値が3次元位置測定装置により測定した距離である距離画像を記憶する画像取込手段と、検知対象物について3次元位置測定装置からの距離の分布パターンを基準パターンとして記憶するパターン記憶手段と、前記距離画像内で基準パターンを走査するとともに距離画像内での基準パターンの各位置において距離画像と基準パターンとの差分の画素値からなる差画像を抽出する差画像抽出手段と、差画像抽出手段により抽出した差画像の画素値と一定値との差分を残差として求め、残差の絶対値の総和の大きさを距離画像と基準パターンとの一致度として求める一致度演算手段と、一致度演算手段により求めた一致度を閾値と大小比較し一致度が規定の閾値より小さいときに監視空間内で基準パターンの検知対象物が存在すると判定する判定手段とを備えることを特徴とする。
【0011】
請求項2の発明は、請求項1の発明において、前記パターン記憶手段には前記検知対象物について大きさの異なる相似形状の複数種類の基準パターンが登録されていることを特徴とする。
【0012】
請求項3の発明は、請求項1の発明において、前記距離画像内から前記検知対象物に対応する領域を抽出する領域選択手段が付加され、前記距離画像から領域選択手段により抽出された領域が基準パターンとしてパターン記憶手段に格納されることを特徴とする。
【0013】
請求項4の発明は、請求項3の発明において、前記監視空間内を移動する前記検知対象物に適用する距離画像処理装置であって、前記領域選択手段が、監視空間内に検知対象物が存在している時間内の異なる時刻の2つの距離画像から差分である差分距離画像を求める差分計算手段と、差分距離画像において画素値が0ではない規定の閾値範囲内に属する画素からなる領域を前記距離画像から抽出し基準パターンとしてパターン記憶手段に格納する変化領域抽出手段とを備えることを特徴とする。
【0019】
【発明の実施の形態】
(第1の実施の形態)
本実施形態は、図1に示すように、室内Rを監視空間とするために3次元位置測定装置1を天井Cに取り付けている例を示す。3次元位置測定装置1は、従来の技術として説明した能動型を用いることを想定しており、線状あるいは扇状の光ビームを投光手段から監視空間に投光するとともに監視空間内で光ビームを走査し、PSDのような半導***置検知素子やTVカメラを受光手段に用いて光ビームにより形成される輝点または輝線の位置を監視することにより、輝点または輝線が形成されている部位までの距離を求めるように構成される。監視空間内において輝点または輝線が形成されている部位までの距離を求める技術については周知であるから詳しく説明しないが、投光手段と受光手段との位置関係が既知であって、かつ光ビームの投光方向と、投光手段の位置と、受光手段に形成される輝点または輝線の像の位置との関係を用いて三角測量の原理により距離を幾何学的に算出することができる。したがって、上述したように光ビームを監視空間で走査することにより、監視空間の全体について輝点または輝線が形成されている物体までの距離を求めることができる。
【0020】
3次元位置測定装置1によって求められた距離は画像取込手段2に入力され、画像取込手段2に一時的に記憶される。画像取込手段2では、距離を格納する領域が光ビームの投光方向に対応付けられており、画像取込手段2に記憶されたデータが距離画像になる。つまり、画像内の各画素に相当するアドレスにそれぞれ3次元位置測定装置1で求めた距離が格納され、結果的に各画素の画素値を距離とする距離画像が得られる。
【0021】
本実施形態では、画像取込手段2に格納された距離画像に検知対象物が含まれるか否かを判定するためにパターンマッチング技術を用いている。そこで、画像取込手段2に格納された距離画像と比較すべき基準パターンを格納するパターン記憶手段3と、距離画像と基準パターンとの差画像を抽出する差画像抽出手段4とを設けている。
【0022】
パターン記憶手段3に格納された基準パターンは、検知対象物に関する3次元データであって本実施形態ではCADデータを用いて作成されている。つまり、CADデータを適宜の向きの投影面に投影すれば、投影面を画面とし3次元位置測定装置1からの距離を画素値とする距離画像と等価な基準パターンが得られる。このようにして得られる基準パターンは2次元平面内の各位置に距離を対応付けた3次元データであって、検知対象物について3次元位置測定装置1からの距離の分布パターンになる。基準パターン記憶部3には、監視空間内で検知対象物が投影されると予想されるあらゆる向きの投影面についてCADデータを投影することによって生成した基準パターンが登録される。差画像抽出手段4では、画像取込手段2に格納された距離画像と基準パターン記憶部3に格納された複数個の基準パターンとの差分を画素値とした差画像を求める。差画像を求めるにあたっては、各基準パターンを画像取込手段2に格納された距離画像内で走査し、濃淡画像やカラー画像に対するパターンマッチングの場合と同様に、2次元平面内での基準パターンの走査になるから、1つの基準パターンに対する処理は比較的短時間で終了する。
【0023】
いま、画像取込手段2に格納された距離画像において検知対象物が含まれる部位に基準パターンが一致したとすれば、差画像における各画素の画素値はすべて等しくなると考えられる。つまり、基準パターン記憶部4における基準データを生成するCADデータにより表された検知対象物の向きが、監視空間における検知対象物の向きに一致したことになり、距離画像内で両者を相対的に回転させることなく平行移動させるだけで重ね合わせることができる状態とみなすことができる。
【0024】
そこで、上述のようにして差画像抽出手段4において抽出した差画像内の各画素の画素値のばらつきの程度を評価すれば、監視空間内での検知対象物のデータと基準パターンとの一致度を評価することができ、監視空間内での検知対象物の存否を判定することができる上に、監視空間内での検知対象物の向きを特徴量として知ることが可能になる。差画像内の各画素の画素値のばらつきの程度を評価する方法としては、ばらつきの程度を評価する一般的な手法を用いることができる。本実施形態では、各画素値と一定値との差分を残差として求め、残差の絶対値の総和(「残差絶対和」と呼ぶ)の大きさをばらつきの程度として評価する。この一定値は適宜に設定することが可能であるが、差画像の画素値の平均値を用いるのが望ましい。残差絶対和は、一致度演算手段5により求められ、求めた残差絶対和を判定手段6に入力して規定の閾値と大小判定することにより監視空間内での検知対象物の存否を判定することができる。また、残差絶対和が最小になるときの基準パターンによって監視空間内での検知対象物の向きを知ることができる。ここに、本実施形態では画像取込手段2に格納された距離画像に対して基準パターンの拡大・縮小は不要な場合を想定しているが、監視空間が比較的広く距離画像と基準パターンとの比率が異なる場合には、距離画像と基準パターンとの一方に対して拡大・縮小を行ってもよい。
【0025】
以下では、上述した構成の動作をまとめて簡単に説明する。なお、説明を簡単にするために距離画像を2次元データではなく1次元データとして説明する。つまり、直線上の位置について距離が得られているものとする。画像取込手段2に格納された距離画像(イで示す)とパターン記憶手段3に格納された基準パターン(ロ,ロ′で示す)とは図2(a)のような関係になる。基準パターン(ロ)(ロ′)は距離画像(イ)に対して走査され、たとえば基準パターン(ロ)の位置から基準パターン(ロ′)の位置まで移動するものとする。差画像抽出手段4は、基準パターン(ロ)(ロ′)の位置を一定画素数ずつずらして距離画像との差画像を求める。図2(b)に示すように、差画像における各画素値(つまり、距離画像(イ)と基準パターン(ロ)(ロ′)との差分)は、基準パターン(ロ)に対してばらつきが少なく、基準パターン(ロ′)に対してばらつきが大きくなっている。
【0026】
差画像における画素値のばらつきの程度を評価するために、一致度演算手段5では、差画像における画素値の平均値を求め、図2(c)のように、差画像における各画素値と求めた平均値との差分を残差として求める。さらに、一致度演算手段5では、残差の絶対値の和である残差絶対和を求める。差画像における画素値の平均値は、3次元位置測定装置1と検知対象物との間の距離と基準パターンを生成する際にCADデータを投影した投影面までの距離との差に相当するオフセットとみなすことができ、一致度演算手段5では、差画像の画素値からオフセットを除去するとみなすことができる。判定手段6では、上述のようにして求めた残差絶対和があらかじめ設定した規定の閾値よりも小さいときには、基準パターンにより表された検知対象物が監視空間に存在すると判定する。
【0027】
図2から明らかなように、基準パターンとの一致度が低い場合のほうが一致度の高い場合よりも差画像の画素値の総和が小さくなることがあるが、差画像の画素値の総和ではなく差画像の画素値からオフセットに相当する一定値を減算した残差の絶対値の総和を用いることによって、画素値のばらつきが大きいほど大きくなり、基準パターンとの一致度を正確に評価することができる。
【0028】
(第2の実施の形態)
第1の実施の形態においても説明したように、3次元位置測定装置1から検知対象物までの距離が変化すれば距離画像内において検知対象物の大きさが変化するから、検知対象物までの距離が比較的大きく変化する場合には基準パターンとの一致度を正確に求めることができなくなる。そこで、本実施形態では、同じ検知対象物に対して大きさの異なる複数個の基準パターンをパターン記憶部3に格納している。
【0029】
すなわち、図3に示すように、CADデータを投影する投影面PL1,PL2,PL3までの距離が異なると、同じCADデータから得られる基準パターンの大きさS1,S2,S3が異なる。そこで、図4(a)(b)(c)に示すように、あらかじめ大きさの異なる複数個(図示例では3個)の基準パターンB1,B2,B3をパターン記憶手段3に登録しておき、画像読込手段2に格納された距離画像に対する各基準パターンB1,B2,B3の一致度を求めるのである。
【0030】
したがって、図5(a)に示すような距離画像が画像取込手段2に格納されているものとし、図5(b)(c)(d)にそれぞれ線aとして示す基準パターンB3,B2,B1がパターン記憶手段3に登録されているものとすれば、残差は図5(b)(c)(d)にそれぞれ線bとして示すようになる。つまり、残差絶対和は基準パターンB2に対してもっとも小さくなり、基準パターンB2との一致度がもっとも高いと言える。このようにして距離画像内で検知対象物が占める領域の大きさが変化しても基準パターンとの一致度を正確に求めることが可能になる。
【0031】
本実施形態の構成では、相似形状の複数個の基準パターンをパターン記憶手段3に格納しているから、検知対象物までの距離の変化が比較的大きい場合や相似であるが大きさの異なる複数個の検知対象物が存在する場合であっても、距離画像と基準パターンとの一致度を求めて検知対象物の存否の判定の抽出が可能になる。他の構成および動作は第1の実施の形態と同様である。
【0032】
(第3の実施の形態)
本実施形態は、図6に示すように、第1の実施の形態の構成に領域選択手段7を付加したものである。領域選択手段7は、画像取込手段2に格納された距離画像を2値化することにより、距離画像内から検知対象物が存在する領域を抽出し、距離画像から抽出した領域のデータを基準パターンとしてパターン記憶手段3に登録する機能を有する。領域選択手段7は基準パターンをパターン記憶手段3に登録する際に用いられ、距離画像と基準パターンとのパターンマッチングにより検知対象物の存否を判定したり特徴量を抽出したりする際には用いない。
【0033】
基準パターンをパターン記憶手段3に登録する際の領域選択手段7の動作をさらに詳しく説明する。領域選択手段7には距離に関して2つの閾値Lt1,Lt2(Lt1<Lt2)が設定されており、画像取込手段2に格納されている距離画像から両閾値Lt1,Lt2の間の距離範囲に属する画素を抽出する。つまり、距離画像の各画素の座標を(x,y)で表し、各画素の画素値をD(x,y)で表すものとすれば、Lt1<D(x,y)<Lt2を満たす画素(x,y)の集合を抽出し、集合に属する画素(x,y)が白画素(画素値が1)、残りが黒画素(画素値が0)となるように2値化する。このように距離画像の2値化によりマスクを形成することができるから、このマスクを距離画像に重ねることによって、距離画像から白画素に対応する領域のみを抽出する。このようにして領域選択手段7において距離画像から一部領域の画素の集合を抜き出すことができるのであって、この画素の集合を基準パターンとしてパターン記憶手段3に格納するのである。
【0034】
すなわち、図7(a)に示すような距離画像が画像取込手段2に格納されているとすれば、領域選択手段7では、まず距離画像を2値化して図7(b)に示すような2値画像を生成する。この2値画像のうちの白画素の領域を距離画像から抽出すると、図7(c)に示すような基準パターンを生成することができるのである。
【0035】
パターン記憶手段3に登録された基準パターンは第1の実施の形態と同様であって、差画像抽出手段4において画像取込手段2に格納された距離画像と基準パターンとの差画像を抽出し、一致度演算手段5において差画像の画素値のばらつきの程度を評価し、判定手段6では差画像の画素値のばらつきの程度が規定の閾値よりも小さいときに、距離画像内に基準パターンと一致度の高い領域が存在すると判定する。他の構成および動作は第1の実施の形態と同様である。
【0036】
本実施形態の構成では、抽出しようとする検知対象物についてCADデータによって基準パターンを設定する必要がなく、実際に3次元位置測定装置1で検出される検知対象物に関する距離画像から基準パターンを抽出することになり、検知対象物の形状が複雑であっても基準パターンを容易に生成することができるとともに、基準パターンの変更が容易になる。しかも、3次元位置測定装置1により得られる距離画像から基準パターンを生成するから、検知対象物に合致した形状の基準パターンを設定することができ、特定の検知対象物が監視空間内で移動するような場合でも他の物体と明確に区別して追跡することが可能になる。
【0037】
(第4の実施の形態)
本実施形態は、第3の実施の形態と同様に、領域選択手段7を備えるものであるが、領域選択手段7として図8に示すように、逐次入力される2つの距離画像の差分を求める差分計算手段7aと、差分計算手段7aにより求めた距離画像の差分によって距離画像内で変化の生じた領域を抽出する変化領域抽出手段7bとを備えたものを用いる。変化領域抽出手段7bは、距離画像の差分を2値化するとともに、2値化により得られた白画素の領域に対して膨張処理および収縮処理を施すことによって白画素の領域の穴埋めを行い、白画素の連続した領域を有するマスクを形成する。さらに、変化領域抽出手段7bでは、領域選択手段7に入力された2つの距離画像のうち後から入力された距離画像にマスクを重ねることによって距離画像から白画素に対応する領域を基準パターンとして抽出する。
【0038】
基準パターンをパターン記憶手段3に登録する際の領域選択手段7の動作をさらに詳しく説明する。領域選択手段7に設けた差分計算手段7aには、検知対象物が監視空間内に存在している時間内の異なる時刻において得られた2つの距離画像が画像取込手段2から入力される。両距離画像の時間差は短いほどマスクを小さく設定できる点で望ましいが、両距離画像の時間差が大きいほど演算量は低減されるから、両距離画像の時間差は所望の演算量に応じて適宜に設定する。
【0039】
差分計算手段7aでは、両距離画像間の差分である差分距離画像を求める。監視空間内で移動する物体が存在しなければ差分距離画像の全画素の画素値が0になるが、移動する物体が存在すれば画素値が0ではない画素が生じることになる。つまり、監視空間内で検知対象物が移動すれば、差分距離画像では入力された2つの距離画像において検知対象物が存在する領域に対応する画素の画素値が0ではない値になる。
【0040】
変化領域抽出手段7bでは、第3の実施の形態における領域選択手段7と同様に距離に関して2つの閾値Lt3,Lt4(Lt3<Lt4)が設定されており、差分距離画像から両閾値Lt3,Lt4の間の範囲に属する画素を抽出する。つまり、差分距離画像において各画素の座標を(x,y)で表し、各画素の画素値をS(x,y)で表すものとすれば、Lt3<S(x,y)<Lt4を満たす画素(x,y)の集合を抽出し、集合に属する画素(x,y)が白画素(画素値が1)、残りが黒画素(画素値が0)となるように2値化する。このようにして2値化すれば、差分距離画像のうち画素値が0ではない画素の集合を白画素として抽出することができるから、白画素の領域は監視空間内で移動する物体が存在していた領域を表すことになる。ここで、白画素の領域は必ずしも連続した1つの領域にはならないから、白画素の連続する1つの領域が形成されるように穴埋めを行ってマスクを生成する。
【0041】
上述したように2つの距離画像のうち後から入力された距離画像に対してマスクを重ね合わせ、白画素に対応する領域の画素を抽出すれば、抽出された画素を基準パターンとして用いることが可能になる。つまり、抽出された画素をパターン記憶手段3に基準パターンとして格納するのである。
【0042】
すなわち、図9(a)(b)に示すような2つの距離画像が画像取込手段2に逐次格納されるとすれば、領域選択手段7の差分計算手段7aでは、両距離画像の各画素値の差を求めて図9(c)のような差分距離画像を求める。次に、変化領域抽出手段7bでは、差分距離画像を2値化して図9(d)に示すような2値画像を生成する。このようにして求めた2値画像では白画素が分布している領域に検知対象物が含まれると考えられるが、白画素内に黒画素が入り交じっているから、検知対象物が存在すると考えられる領域内の全画素が白画素になるように白画素による穴埋めを行い、結果的に図9(e)のようなマスクを生成する。こうして求めたマスクを、後から入力された図9(b)の距離画像に重ね合わせると、図9(f)に示す基準パターンを生成することができる。
【0043】
パターン記憶手段3に登録された基準パターンは第1の実施の形態と同様であって、差画像抽出手段4において画像取込手段2に格納された距離画像と基準パターンとの差画像を抽出し、一致度演算手段5において差画像の画素値のばらつきの程度を評価し、判定手段6では差画像の画素値のばらつきの程度が規定の閾値よりも小さいときに、距離画像内に基準パターンと一致度の高い領域が存在すると判定する。他の構成および動作は第1の実施の形態と同様である。
【0044】
しかして、本実施形態の構成では、監視空間内で検知対象物が移動する場合に、検知対象物の移動によって生じた2つの距離画像間の差を利用して基準パターンを設定するから、監視空間内で移動した検知対象物について基準パターンを自動的に生成することができ、基準パターンの設定後には検知対象物の検出や追跡を容易に行うことができる。
【0045】
参考例1
上述した各実施形態では、主として監視空間内における検知対象物の存否の判定を行う例を示したが、本例は、主として検知対象物の特徴量を抽出することを目的にしている。以下では、室内Rにおいて床面F(図10参照)からの検知対象物の代表点の高さ寸法を求める例について説明する。
【0046】
本例では、検知対象物について基準パターンとの一致度を判定する必要がないから距離画像内において検知対象物の存在する領域を抽出すれば十分であって、図10に示すように、第3の実施の形態と同様の領域選択手段7を設けている。また、第3の実施の形態において基準パターンとの一致度を求めるために必要であった構成、すなわち、パターン記憶手段3、差画像抽出手段4、一致度演算手段5、判定手段6は設けず、後述する代表距離計算手段8と領域特徴抽出手段9とを設けている。
【0047】
領域選択手段7は画像取込手段2に格納されている距離画像から検知対象物の存在する領域を抽出するためのマスクを生成する。つまり、距離画像について2つの閾値の間の画素値を持つ領域を抽出する2値化を行い、2値化により得られた2値画像の白画素の領域を検知対象物の存在する領域とする。
【0048】
代表距離計算手段8は、領域選択手段7により得られた2値画像における白領域の重心の座標(xsi,ysi)を求めるとともに、距離画像における座標(xsi,ysi)の画素値D(xsi,ysi)を3次元位置測定装置1の位置に応じて設定した基準点から検知対象物の代表点までの代表距離Lとして求める。ここで、基準点は3次元位置測定装置1の設置位置に基づいて設定されているから基準点の位置は既知であり、また基準点と代表点とを結ぶ方向も3次元位置測定装置1からの光ビームの投光方向によって既知であるから、代表距離Lが求められたことによって、床面Fからの代表点の高さを領域特徴抽出手段9において求めることができる。
【0049】
すなわち、図11(a)に示すような距離画像が画像取込手段2に格納されているとすれば、領域選択手段7では、まず距離画像を2値化して図11(b)に示すような2値画像を生成する。次に、図11(c)のように、2値画像のうちの白画素の領域の重心の座標(xsi,ysi)を求め、図11(d)のように、距離画像における座標(xsi,ysi)の画素値D(xsi,ysi)を代表距離Lとして求めるのである。
【0050】
以下では、領域特徴抽出手段9において代表距離Lに基づいて代表点の高さを算出する方法について図12および図13に基づいて説明する。ここで、距離画像の画面内での2次元の座標系を画面座標系Ciと呼び、実空間において設定した座標系を世界座標系Cwと呼ぶことにする。画面座標系Ciでは画面の中心を原点Oiとする。世界座標系Cwは監視空間である室内Rの床面に対して鉛直上向きをZw軸方向とし、床面上で3次元位置測定装置1の直下を原点Owに設定する。つまり、3次元位置測定装置1の床面からの高さをZswとすると、装置座標系Ccの原点Ocは世界座標系CwのZw軸上であってZw軸方向に高さZcwだけずれて位置することになる。また、装置座標系CcのZc軸は世界座標系CwのZw軸に対して角度θをなすものとする。世界座標系CwにおいてXw軸方向およびYw軸方向は監視空間の形状に応じて適宜に設定する。さらに、3次元位置測定装置1の視野において距離画像の画面のX軸方向とY軸方向とに一致する方向をXc軸方向およびYc軸方向とし、かつ3次元位置測定装置1の前方をZc軸方向とする座標系を装置座標系Ccと呼ぶことにする。装置座標系Ccの原点は3次元位置測定装置1の視野の中心線上であって距離の測定の基準点となる位置に設定する。たとえば、3次元位置測定装置1の受光手段としてTVカメラを用いるとすれば、撮影用のレンズの焦点位置を装置座標系Ccの原点Ocに設定する。つまり、レンズの焦点距離をfcとすれば、画面座標系Ciの原点Oiは装置座標系Ccの原点Ocからfcの距離に位置することになる。
【0051】
ところで、距離画像について検知対象物の代表点(白画素の領域の重心)の座標(xsi,ysi)を求めると座標値は画素数を単位として求められるのであるが、画面座標系Ciでの代表点の座標(xsi,ysi)に基づいて世界座標系Cwでの代表点の床面Fからの高さを求めるには、単位を長さの単位に変換する必要がある。たとえば、3次元位置測定手段1の受光手段にTVカメラを用いるものとして、受光面の物理サイズがSxr×Syr〔mm〕であって、画素数がSxi×Syi〔画素〕であるとすれば、受光面上ではX軸方向の画素間のピッチはSxr/Sxi〔mm〕になり、Y軸方向の画素間のピッチはSyr/Syi〔mm〕になる。したがって、検知対象物の代表点の受光面上で単位をミリメートルとするときの座標(xsc,ysc)は、以下のように求めることができる。
xsc=xsi×(Sxr/Sxi)
ysc=ysi×(Syr/Syi)
ここで、画面座標系Ciの座標をミリメートル単位で表せば、装置座標系Ccとは原点の位置をZ軸方向にfcだけ変位させているから、画面座標系Ciにおける座標(xsc,ysc)に対応する装置座標系Ccでの座標(Xsc、Ysc,Zsc)は、(Xsc、Ysc,Zsc)=(xsc,ysc,fc)になる。
【0052】
上述したように、装置座標系CcのZc軸は世界座標系CwのZw軸に対して角度θをなすから、装置座標系Ccでの座標(Xsc、Ysc,Zsc)と、世界座標系Cwでの座標(Xsw,Ysw,Zsw)との関係は、数1のようになる。つまり、数1によって装置座標系Ccから世界座標系Cwへの座標変換を行うことになる。
【0053】
【数1】
Figure 0004048779
【0054】
求めた点Rの座標(Xsw,Ysw,Zsw)に対応する世界座標系Cwにおける検知対象物Obの代表点Pの座標(Xpw,Ypw,Zpw)は、図13に示す直角三角形OcPQと、直角三角形OcRTとの相似を利用して求めることができる。点Ocと点Pとの距離は上述した代表距離Lであり、点Ocと点Rの距離Lcは直角三角形OcOiRの斜辺の長さであることに着目すれば、次式によって求めることができる。
Lc=(Xsc2 +Ysc2 +fc2 1/2
したがって、点Pの高さZpwは次式のように求められる。
Zpw=L(Zcw−Zsw)/Lc
つまり、あらかじめ3次元位置測定装置1の高さを定数として与えておけば、検知対象物Obの代表点Pについて床面Fからの高さ求めることができる。要するに、3次元位置測定装置1の物理仕様(受光面の物理サイズ、画素数、床面Fからの高さ、光軸の向きなど)と代表距離Lとを用いて画面座標系Ciから世界座標系Cwへの座標変換が可能になるのである。なお、3次元位置測定装置1および画像取込手段2の機能は第1の実施の形態と同様である。
【0055】
参考例2
本例は図10に示した参考例1と同様の構成を用いるが、参考例1では検知対象物の代表点として距離画像を2値化して抽出した白画素の領域の重心位置を用いたのに対して、本例では検知対象物について2個の代表点を求め、両代表点間の距離を求めることによって検知対象物の大きさを特徴量として抽出するものである。
【0056】
すなわち、本例における代表距離計算手段8は、図14(a)のような距離画像を領域選択手段7で2値化して得た図14(b)のような2値画像における白画素の領域において、図14(c)のように2個の代表点の座標(xs1,ys1)(xs2,ys2)を求める。両代表点間の距離が検知対象物の大きさに対応するように、両代表点は白画素の周縁の離れた2点として設定する。本例では白画素の領域の重心を通り距離画像の画面の水平方向(y軸方向)に延長した直線と黒画素の領域との交点で白画素内の画素を代表点として抽出している。要するに、重心を求めた後に2値画像内を水平方向に走査し、画素値が黒画素(画素値=0)になれば、1つ前の白画素を代表点の画素とする。このようにして求めた代表点の座標は距離画像に照合され、図14(d)のように各代表点に対応する画素の画素値が検知対象物までの代表距離L1,L2として求められる。
【0057】
2個の代表点と各代表点に対応する代表距離L1,L2が求まると、領域特徴抽出手段9において参考例1と同様にして、各代表点の座標(xs1,ys1)(xs2,ys2)を装置座標系Ccに変換して(Xsc1,Ysc1,Zsc1)(Xsc2,Ysc2,Zsc2)とし、さらに、世界座標系Cwにおける検知対象物Obの代表点P1(Xp1w,Yp1w,Zp1w)および代表点P2(Xp2w,Yp2w,Zp2w)を、以下の形で求めることができる。
Xp1w=L1(Zcw−Zs1w)/xsc1
Yp1w=L1(Zcw−Zs1w)/ysc1
Zp1w=L1(Zcw−Zs1w)/Lc
Xp2w=L2(Zcw−Zs2w)/xsc2
Yp2w=L2(Zcw−Zs2w)/ysc2
Zp2w=L2(Zcw−Zs2w)/Lc
ただし、Zs1wは、参考例1において説明した数1を用い、(Xsc,Ysc,Zsc)を(Xsc1,Ysc1,Zsc1)に置き換えたときのZswの値であり、Zs2wは、(Xsc,Ysc,Zsc)を(Xsc2,Ysc2,Zsc2)に置き換えたときのZswの値である。他の値は参考例1において説明した通りである。
【0058】
上述のようにして検知対象物Obの2つの代表点P1,P2の座標を求めることができるから、両代表点P1,P2の間の距離は以下の形で求めることができる。
((Xp1w−Xp2w)+(Yp1w−Yp2w)+(Zp1w−Zp2w)1/2
上述のようにして検知対象物Obの2つの代表点P1,P2の間の距離によって検知対象物Obの大きさを推定することができる。また、距離画像内での代表点の求め方は規則的であるから、上述のようにして求めた距離は検知対象物Obの大きさを評価する値として用いることができる。なお、本例では2値画像における白画素の領域の重心から水平方向に直線を延長して代表点を求めたが、重心から垂直方向に直線を延長して代表点を求めてもよい。他の構成および動作は参考例1と同様である。なお、本例では2個の代表点を用いているが、3個以上の代表点を用いる場合も同様であって、たとえば重心から水平方向と垂直方向とに延長した直線上での白画素の領域の端点を用いれば4点の代表点を用いて同様に処理することができる。
【0059】
参考例3
本例は、図15に示すように、図10に示した参考例1の構成に加えて領域特徴抽出手段9の出力を受けて検知対象物の存否を判断する検知判断手段10を設けたものである。3次元位置測定装置1、画像取込手段2、領域選択手段7は参考例1と同様の構成であって同様に機能する。
【0060】
ところで、本例の代表距離計算手段8は、距離画像から得た2値画像における白画素の領域の代表点の座標として、参考例1と同様に重心の座標(xsi,ysi)を求めるとともに、参考例2と同様に白画素の領域の周縁の2点(端点)の座標(xs1,ys1)(xs2,ys2)を求める。つまり、本例では3個の代表点に対応する代表距離L,L1,L2を距離画像から求める。代表距離L,L1,L2の求め方は参考例1および参考例2の手順を用いる。すなわち、本例における代表距離計算手段8は、図16(a)のような距離画像を領域選択手段7で2値化して得た図16(b)のような2値画像における白画素の領域から、図16(c)のように重心となる代表点の座標(xsi,ysi)と端点である2個の代表点の座標(xs1,ys1)(xs2,ys2)とを求め、各代表点の座標(xsi,ysi)(xs1,ys1)(xs2,ys2)を距離画像に照合することによって、図16(d)のように各代表点に対応する代表距離L,L1,L2を求める。
【0061】
代表距離計算手段8において代表距離L,L1,L2が求まると、領域特徴抽出手段9において参考例1および参考例2と同様にして座標変換を行い、検知対象物Obの代表点Pについて床面Fからの高さZpwを求める。この演算は参考例1と同様の演算になり、代表点Pの高さZpwは次式で表される。
Zpw=L(Zcw−Zsw)/Lc
ただし、Lc=(Xsc+Ysc+fc1/2
また、領域特徴抽出手段9では、検知対象物Obの代表点P1,P2について距離d12を求める。この演算は参考例2と同様の演算になり、距離d12(つまり、検知対象物の幅)は次式で表される。
d12=((Xp1w−Xp2w)+(Yp1w−Yp2w)+(Zp1w−Zp2w)1/2
上述のようにして、領域特徴抽出手段9によって検知対象物の高さZpwおよび幅d12を求めることができるから、検知判断手段10では、高さZpwおよび幅d12がともに規定した判別範囲内であるときに想定した検知対象物が監視空間に存在すると判定する。
【0062】
いま、検知対象物を人体と想定すると、代表点Pは検知対象物の中心付近に位置するから頭部または肩部と考えられ、代表点P1,P2の距離は肩幅に相当すると考えられる。そこで、高さZpwに対する判別範囲を80〜200cm程度に設定するとともに、幅d12に対する判別範囲を20〜50cm程度に設定すれば、監視空間内における人体の存否を検知することが可能になる。なお、本例において代表点として3点を用いているが、4点以上であってもよく、また検知対象物の大きさを評価するための2点を代表点とし、高さについては一方の代表点の高さを用いることも可能である。
【0063】
参考例4
本例は基本的には図15に示した参考例3と同様の構成であるが、代表距離計算手段8において重心を代表点として求める代わりに、領域選択手段7により得られた2値画像の白画素の領域内で距離画像の画素値が最小になる画素の座標を求める。この画素は白画素の領域内であるから、検知対象物の範囲内の画素である可能性が高く、かつ白画素の領域内で距離画像における画素値が最小になる画素であるから、検知対象物において3次元位置測定装置1からの距離が最小になる部位と考えられる。すなわち、検知対象物においてもっとも高い部位に対応している可能性が高いといえる。
【0064】
そこで、3次元位置測定装置1を視野の中心線が鉛直下向きになるようにして天井Cに設置し、3次元位置測定装置1の下を通過する人体の頭部を検出する目的に使用するとすれば、本例では検知判断手段10において高さに関して設定する判別範囲を参考例3よりも狭い範囲に設定することが可能になる。これは、参考例3では距離画像から求めた2値画像における白画素の領域の代表点として重心を用いていることにより、代表点が検知対象物におけるもっとも高い部位になる可能性が十分に高いとは言えないのに対して、本例の構成では代表点として3次元位置測定装置1からの距離が最小になる部位を選択したことにより、検知対象物におけるもっとも高い部位に対応している可能性が高くなるからである。しかして、検知判断手段10において高さに関して設定する判別範囲を、参考例3では80〜200cmに設定しているとすれば、本例では、たとえば120〜200cmに設定することが可能になる。他の構成および動作は参考例3と同様であって、本例の構成を採用すれば、参考例3に比較して判別範囲を狭くしたことによって、誤検出の可能性を低減することができる。
【0065】
参考例5
本例は、図17に示すように、基本的には図15に示した参考例3と同様の構成を有する。ただし、本例の検知判断手段10には、人体である検知対象物の代表点の高さについて時間変化を追跡することによって人体である検知対象物の転倒を検知する転倒検知手段10aを備える点が相違する。追跡する代表点としては参考例3のように距離画像を2値化した2値画像における白領域の重心または参考例4のように白画素の領域内で3次元位置測定装置1からの距離が最小になる点を用いる。
【0066】
本例の特徴である転倒検知手段10aでは、領域特徴抽出手段9において求めた代表点の床面からの高さを逐次記憶する。すなわち、3次元位置測定装置1において一定時間毎に距離画像を生成し、生成された距離画像に基づいて代表点の高さの変化を追跡する。ところで、人の頭部の高さの時間変化は、人が座るときには図18にイで示す変化になり、人が転倒したときには図18にロで示す変化になる。つまり、図18によれば、人が転倒するときには短時間で頭部の高さが大きく減少することがわかる。ちなみに、図示例では人が座るときの1秒間の高さ変化は最大で70cm程度であるのに対して、人が転倒するときの1秒間の高さ変化は120cm以上になっている。そこで、たとえば3次元位置測定装置1において距離画像を1秒毎に生成し、距離画像から得られる代表点の高さの変化が100cmを越えたときに検知対象物である人体が転倒したと判定するように転倒検知手段9を構成すれば、座る行為と転倒とを区別しながらも転倒を検知することが可能になる。
【0067】
なお、上述した各例において示した数値は一例であって、目的に応じて適宜に設定すればよく、とくに参考例5においては、転倒の判断に1秒毎の高さの変化率を用いるとしても、距離画像を生成する時間間隔をより短い時間(たとえば、0.1秒)に設定することによって転倒の瞬間をより確実に捉えることが可能になる。要するに、転倒検知手段10aでは代表点の単位時間あたりの高さの変化幅が規定値を越えたときには検知対象物が転倒したと判断するのである。
【0068】
【発明の効果】
請求項1の発明は、監視空間内の全領域について物体までの距離を測定する3次元位置測定装置と、監視空間を撮影した画面上の各画素の画素値が3次元位置測定装置により測定した距離である距離画像を記憶する画像取込手段と、検知対象物について3次元位置測定装置からの距離の分布パターンを基準パターンとして記憶するパターン記憶手段と、前記距離画像内で基準パターンを走査するとともに距離画像内での基準パターンの各位置において距離画像と基準パターンとの差分の画素値からなる差画像を抽出する差画像抽出手段と、差画像抽出手段により抽出した差画像の画素値と一定値との差分を残差として求め、残差の絶対値の総和の大きさを距離画像と基準パターンとの一致度として求める一致度演算手段と、一致度演算手段により求めた一致度を閾値と大小比較し一致度が規定の閾値より小さいときに監視空間内で基準パターンの検知対象物が存在すると判定する判定手段とを備えるものであり、距離画像に対する基準パターンのパターンマッチングを行うことに相当するから、距離画像を用いながらも比較的少ない演算処理で検知対象物の存否を正確に判断することが可能になる。とくに、一致度には差画像の画素値のばらつきの程度を用いているから、四則演算程度の簡単な演算によって少ない演算量で一致度を求めることが可能になる。
【0069】
請求項2の発明は、請求項1の発明において、前記パターン記憶手段には前記検知対象物について大きさの異なる相似形状の複数種類の基準パターンが登録されているものであり、監視空間内で検知対象物までの距離が比較的大きく変化したり相似であるが大きさの異なる検知対象物が監視空間に存在する場合であっても、監視空間内での検知対象物の存否を容易に抽出することができる。
【0070】
請求項3の発明は、請求項1の発明において、前記距離画像内から前記検知対象物に対応する領域を抽出する領域選択手段が付加され、前記距離画像から領域選択手段により抽出された領域が基準パターンとしてパターン記憶手段に格納されるものであり、現実の検知対象物を用いて基準パターンを設定することになるから、検知対象物に合致した形状の基準パターンを設定することができ、特定の検知対象物が監視空間内を移動するような場合でも他の物体と区別して追跡することが可能になる。
【0071】
請求項4の発明は、請求項3の発明において、前記監視空間内を移動する前記検知対象物に適用する距離画像処理装置であって、前記領域選択手段が、監視空間内に検知対象物が存在している時間内の異なる時刻の2つの距離画像から差分である差分距離画像を求める差分計算手段と、差分距離画像において画素値が0ではない規定の閾値範囲内に属する画素からなる領域を前記距離画像から抽出し基準パターンとしてパターン記憶手段に格納する変化領域抽出手段とを備えるものであり、監視空間内で検知対象物が移動する場合に、検知対象物の移動によって生じた2つの距離画像間の差を利用して基準パターンを設定しているから、監視空間内で移動した検知対象物について基準パターンを自動的に生成することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態を示すブロック図である。
【図2】 同上の動作説明図である。
【図3】 本発明の第2の実施の形態の原理説明図である。
【図4】 同上の動作説明図である。
【図5】 同上の動作説明図である。
【図6】 本発明の第3の実施の形態を示すブロック図である。
【図7】 同上の動作説明図である。
【図8】 本発明の第4の実施の形態を示す要部のブロック図である。
【図9】 同上の動作説明図である。
【図10】 本発明の参考例1を示すブロック図である。
【図11】 同上の動作説明図である。
【図12】 同上の原理説明図である。
【図13】 同上の原理説明図である。
【図14】 本発明の参考例2の動作説明図である。
【図15】 本発明の参考例3を示すブロック図である。
【図16】 同上の動作説明図である。
【図17】 本発明の参考例5を示すブロック図である。
【図18】 同上の原理説明図である。
【符号の説明】
1 3次元位置測定装置
2 画像取込手段
3 パターン記億手段
4 差画像抽出手段
5 一致度演算手段
6 判定手段
7 領域選択手段
7a 差分計算手段
7b 変化領域抽出手段
8 代表距離抽出手段
9 領域特徴抽出手段
10 検知判断手段
10a 転倒検知手段

Claims (4)

  1. 監視空間内の全領域について物体までの距離を測定する3次元位置測定装置と、監視空間を撮影した画面上の各画素の画素値が3次元位置測定装置により測定した距離である距離画像を記憶する画像取込手段と、検知対象物について3次元位置測定装置からの距離の分布パターンを基準パターンとして記憶するパターン記憶手段と、前記距離画像内で基準パターンを走査するとともに距離画像内での基準パターンの各位置において距離画像と基準パターンとの差分の画素値からなる差画像を抽出する差画像抽出手段と、差画像抽出手段により抽出した差画像の画素値と一定値との差分を残差として求め、残差の絶対値の総和の大きさを距離画像と基準パターンとの一致度として求める一致度演算手段と、一致度演算手段により求めた一致度を閾値と大小比較し一致度が規定の閾値より小さいときに監視空間内で基準パターンの検知対象物が存在すると判定する判定手段とを備えることを特徴とする距離画像処理装置。
  2. 前記パターン記憶手段には前記検知対象物について大きさの異なる相似形状の複数種類の基準パターンが登録されていることを特徴とする請求項1記載の距離画像処理装置。
  3. 前記距離画像内から前記検知対象物に対応する領域を抽出する領域選択手段が付加され、前記距離画像から領域選択手段により抽出された領域が基準パターンとしてパターン記憶手段に格納されることを特徴とする請求項1記載の距離画像処理装置。
  4. 前記監視空間内を移動する前記検知対象物に適用する距離画像処理装置であって、前記領域選択手段が、監視空間内に検知対象物が存在している時間内の異なる時刻の2つの距離画像から差分である差分距離画像を求める差分計算手段と、差分距離画像において画素値が0ではない規定の閾値範囲内に属する画素からなる領域を前記距離画像から抽出し基準パターンとしてパターン記憶手段に格納する変化領域抽出手段とを備えることを特徴とする請求項3記載の距離画像処理装置。
JP2001401531A 2001-12-28 2001-12-28 距離画像処理装置 Expired - Fee Related JP4048779B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401531A JP4048779B2 (ja) 2001-12-28 2001-12-28 距離画像処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401531A JP4048779B2 (ja) 2001-12-28 2001-12-28 距離画像処理装置

Publications (2)

Publication Number Publication Date
JP2003196656A JP2003196656A (ja) 2003-07-11
JP4048779B2 true JP4048779B2 (ja) 2008-02-20

Family

ID=27605438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401531A Expired - Fee Related JP4048779B2 (ja) 2001-12-28 2001-12-28 距離画像処理装置

Country Status (1)

Country Link
JP (1) JP4048779B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4333457B2 (ja) * 2004-04-14 2009-09-16 トヨタ自動車株式会社 画像処理装置および画像処理方法
WO2006011593A1 (ja) * 2004-07-30 2006-02-02 Matsushita Electric Works, Ltd. 個体検出器及び共入り検出装置
JP2006236184A (ja) * 2005-02-28 2006-09-07 Nec Engineering Ltd 画像処理による人体検知方法
JP4539388B2 (ja) * 2005-03-16 2010-09-08 パナソニック電工株式会社 障害物検出装置
JP4848166B2 (ja) * 2005-09-30 2011-12-28 株式会社トプコン 三次元計測用投影装置及びシステム
DE102006002794A1 (de) * 2006-01-20 2007-07-26 Wash Tec Holding Gmbh Verfahren und Vorrichtung zur Steuerung einer Fahrzeugwaschanlage
CN101496032B (zh) * 2006-02-27 2011-08-17 普莱姆传感有限公司 使用斑纹解相关的距离映射的方法及设备
JP4766269B2 (ja) * 2007-03-06 2011-09-07 株式会社安川電機 物体検出方法、物体検出装置、及びそれを備えたロボット
JP5065744B2 (ja) * 2007-04-20 2012-11-07 パナソニック株式会社 個体検出器
US10182223B2 (en) * 2010-09-03 2019-01-15 California Institute Of Technology Three-dimensional imaging system
EP2761533A4 (en) 2011-09-30 2016-05-11 Intel Corp RECOGNITION OF A HUMAN HEAD ON DEPTH PICTURES
JP5997463B2 (ja) * 2012-03-07 2016-09-28 綜合警備保障株式会社 転倒検知装置および転倒検知方法
JP2013200137A (ja) * 2012-03-23 2013-10-03 Omron Corp 赤外線温度測定装置、赤外線温度測定方法、および、赤外線温度測定装置の制御プログラム
JP2015014514A (ja) * 2013-07-04 2015-01-22 パイオニア株式会社 識別装置
JP2017131375A (ja) * 2016-01-27 2017-08-03 コニカミノルタ株式会社 血管内皮機能検査装置
JP7091673B2 (ja) * 2018-01-25 2022-06-28 富士通株式会社 可動自由度推定装置、及び可動自由度推定プログラム
JP2020183900A (ja) * 2019-05-08 2020-11-12 オムロン株式会社 光学計測装置及び光学計測方法
JP6806845B2 (ja) * 2019-06-11 2021-01-06 ファナック株式会社 ロボットシステムおよびロボット制御方法

Also Published As

Publication number Publication date
JP2003196656A (ja) 2003-07-11

Similar Documents

Publication Publication Date Title
JP4048779B2 (ja) 距離画像処理装置
US9087258B2 (en) Method for counting objects and apparatus using a plurality of sensors
CN105339980B (zh) 具有嵌入辅助图案的条纹的绝对相位测量方法和***
TWI419081B (zh) 提供擴增實境的標籤追蹤方法、系統與電腦程式產品
JP4205825B2 (ja) 対象物認識装置
EP3153816B1 (en) Method, device and computer programme for extracting information about one or more spatial objects
CN103900494B (zh) 用于双目视觉三维测量的同源点快速匹配方法
US20100328308A1 (en) Three Dimensional Mesh Modeling
JP2004340840A (ja) 距離測定装置、距離測定方法、及び距離測定プログラム
WO2007015059A1 (en) Method and system for three-dimensional data capture
CN104567758B (zh) 立体成像***及其方法
JP7480833B2 (ja) 計測装置、計測システムおよび車両
JP2006012178A (ja) 駐車車両検知方法及び駐車車両検知システム
JP2020056644A (ja) 情報処理装置、情報処理方法、及びプログラム
CN109886064A (zh) 确定可驾驶空间的边界的方法
US6804380B1 (en) System and method for acquiring tie-point location information on a structure
CN109839628A (zh) 一种障碍物确定方法及移动机器人
JP2015059768A (ja) 段差計測装置、段差計測方法及びプログラム
KR20140114594A (ko) 사람 객체 추적을 통한 자동 카메라 보정 방법
JPH11257931A (ja) 物体認識装置
JP6096601B2 (ja) 駅ホーム転落検知装置
JP5981284B2 (ja) 対象物検出装置、及び対象物検出方法
JP4101478B2 (ja) 人体端点検出方法及び装置
JP2008293504A (ja) 対象物認識装置
JP2004021496A (ja) 駐車車両検知方法、検知システム及び駐車車両検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees