JP2004023930A - Method of estimating temperature of rotor of eddy current system speed reducer, and brake controller, and eddy current system speed reducer - Google Patents

Method of estimating temperature of rotor of eddy current system speed reducer, and brake controller, and eddy current system speed reducer Download PDF

Info

Publication number
JP2004023930A
JP2004023930A JP2002177657A JP2002177657A JP2004023930A JP 2004023930 A JP2004023930 A JP 2004023930A JP 2002177657 A JP2002177657 A JP 2002177657A JP 2002177657 A JP2002177657 A JP 2002177657A JP 2004023930 A JP2004023930 A JP 2004023930A
Authority
JP
Japan
Prior art keywords
temperature
rotor
braking
change rate
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002177657A
Other languages
Japanese (ja)
Other versions
JP4045869B2 (en
Inventor
Hiroyuki Yamaguchi
山口 博行
Masahira Tasaka
田坂 誠均
Yasutaka Noguchi
野口 泰隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002177657A priority Critical patent/JP4045869B2/en
Publication of JP2004023930A publication Critical patent/JP2004023930A/en
Application granted granted Critical
Publication of JP4045869B2 publication Critical patent/JP4045869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate the temperature of a rotor with accuracy by detecting the actually-measured temperature of an eddy current system of speed reducer or its vicinity thereby computing the initial temperature of the rotor, and further, using an approximate expression. <P>SOLUTION: This is a method of estimating the temperature of the rotor of the eddy current system speed reducer, which switches off the braking just before the rotor reaches the tolerable upper limit value. The actually measured temperature of the eddy current system speed reducer at switching or its vicinity is detected. The initial temperature of the rotor at brake ON switching is computed based on the correlative relation between this actually measured temperature and the rotor temperature. The rate of change of the initial temperature and the first temperature change rate approximate expression are decided from this rotor's initial temperature, and the estimated temperature of the rotor from the time of brake ON switching to the time of switching off the braking is computed, using the above rotor initial temperature, the first temperature change rate approximate expression, and the second temperature change rate approximate expression decided beforehand. This way, the rotor temperature can be estimated with accuracy by appropriately correcting the rate of temperature change, considering the influence of the temperature at brake switching or the influence of the number of revolutions. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、渦電流式減速装置におけるロータの温度変化を精度よく推定できる渦電流式減速装置のロータ温度推定方法、及び、このロータ温度推定方法を用い、例えば連続使用の際にもロータの温度上昇を抑えて長時間制動効果を発揮させることのできる制動制御装置、並びに、この制動制御装置を備えた渦電流式減速装置に関するものである。
【0002】
【従来の技術】
近年、バスやトラック等の大型自動車には、長い降坂時等において、安定した減速を行い、フットブレーキの使用回数を減少させて、ライニングの異常摩耗やフェード現象を防止すると共に、制動停止距離の短縮を目的として、主ブレーキであるフットブレーキや補助ブレーキである排気ブレーキの他に渦電流式減速装置が取付けられるようになってきた。
【0003】
この渦電流式減速装置は、現在では永久磁石式のものが主流となっており、以下の4つの方式がある。
▲1▼ 例えば図11に示すような、回転軸1に取付けられたドラム状のロータ2の内周面側に、非磁性体の支持体3間にその周方向に所定の間隔を存して配置した強磁性体のスイッチ板4群を介して、前記スイッチ板4と同じ間隔でN極、S極を周方向に交互に配置した永久磁石5群をその外周面に取付けた強磁性体の支持リング6を配置し、この支持リング6を前記永久磁石5群がスイッチ板4群と全面対向する位置から全面離脱する位置までアクチュエータ7によって密閉ケース8内を進退可能に設けた軸スライド方式(例えば特開平1−234043号)。
【0004】
▲2▼ 例えば図12に示すような、ロータ2の内周面側にこれに対向して配置した支持リング6を、スイッチ板4と支持リング6の外周面に取付けた永久磁石5とが重なり合うと位置と、一つの永久磁石5が隣接するスイッチ板4を跨いで半分ずつ重なり合う位置とを、選択できるように旋回移動可能に設けた単列旋回方式(例えば特開平1−298948号)。
【0005】
▲3▼ 例えば図13に示すような、外周面にその周方向に沿って所定の間隔でN極、S極を交互に配置した永久磁石群を有する支持リングを2個並列に配置し、一方の支持リングは固定で(以下、「固定支持リング6a」という。)、他方の支持リングは所定角度回動可能に構成し(以下、「可動支持リング6b」という。)、可動支持リング6bの旋回移動によって、可動支持リング6bの永久磁石5bと隣合う固定支持リング6aの永久磁石5aが同極になる位置と、隣合う可動支持リング6bの永久磁石5bと固定支持リング6aの永久磁石5aが異極になる位置とを選択できるように構成した複列旋回方式(例えば特開平4−12659号)。
【0006】
▲4▼ 図11〜13はドラム型ロータを使用した場合の例であるが、これらと異なり、例えば図14に示すような、回転軸1に取り付けられたディスク型のロータ2と対向する位置に、非磁性支持体3の間にその周方向に所定の間隔を存して配置した強磁性体のスイッチ板4群を介して、前記スイッチ板4と同じ間隔でN極、S極を周方向に交互に配置した永久磁石5群を側面に取り付けた強磁性体の支持リング6を配置し、この支持リング6を前記永久磁石5群がスイッチ板4群と全面対向する位置から全面離脱する位置までアクチュエータ7によって密閉ケース内を進退可能に設けたディスク型ロータによる軸スライド方式。
【0007】
ところで、上記したような渦電流式減速装置にあっては、いずれの方式であっても、例えば長い下り坂で使用する場合にはロータ2の温度が高温になる。そして、ロータ2の許容上限温度を超えた状態が長く続くと、ロータ2が熱変形を起こしたり、熱亀裂が発生する虞がある。従って、ロータ2が熱変形を起こしたり、熱亀裂が発生しないように、ロータ2の温度を検知し、ロータ2が許容上限温度に達する直前に、渦電流式減速装置の制動動作を中断させるように制御する必要がある。
【0008】
そこで、上記したロータの温度を監視するための技術として、例えば特開平4−251600号では、ロータの内表面に面した固定側に温度センサを固定配置し、ロータ近傍の雰囲気温度を監視することで、間接的にロータの温度を推定するものが提案されている。
【0009】
【発明が解決しようとする課題】
しかしながら、渦電流式減速装置は、その特性上、車速が変化すると制動トルクが変化するため、ロータの発熱量も変化する。通常、車速が増加するとロータの発熱量も高くなり、短時間でロータの温度が許容上限温度に達する。従って、特開平4−251600号で開示された技術のように、ロータと温度センサとの間に空気層が介在すると、ロータの急激な温度上昇が、空気層の熱抵抗によって妨げられ、温度センサの温度上昇がロータの温度上昇に対して遅れるといった問題が生じ、高速時のロータの急激な温度上昇を考慮して、例えば温度センサの温度上限温度を低く設定するといった配慮が必要であった。
【0010】
ところが、高速時と低速時とでは、温度センサの測定温度とロータ温度との相関関係が異なるので、温度センサの温度上限温度を低く設定すると、低速時にはロータの温度が許容上限温度よりかなり低い温度であるにも拘わらず、温度センサの測定温度が上限温度に達して制動が中断され、その結果、渦電流式減速装置の本来の能力を十分に発揮できないという問題が生じる。
【0011】
本発明は、上記した従来の問題点に鑑みてなされたものであり、ロータの温度変化を精度よく推定できる渦電流式減速装置のロータ温度推定方法、及び、このロータ温度推定方法を用い、例えば連続使用の際にもロータの温度上昇を抑えて長時間制動効果を発揮させることのできる制動制御装置、並びに、この制動制御装置を備えた渦電流式減速装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る渦電流式減速装置のロータ温度推定方法は、制動オン切替え時の渦電流式減速装置或いはその近傍の実測温度を検出し、この実測温度とロータ温度の相関関係に基づいて制動オン切替え時のロータ初期温度を算出し、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、前記のロータ初期温度及び第1温度変化率近似式と予め定めた第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出することとしている。このようにすることで、ロータ温度を精度良く推定できるようになる。
【0013】
そして、渦電流式減速装置或いはその近傍に設けた温度センサと、この温度センサ取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係と、第2温度変化率近似式を記憶した記憶部と、この記憶部の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、このロータ初期温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、この演算部で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部を備えた本発明に係る制動制御装置を用いて、上記の本発明に係るロータ温度推定方法によりロータ温度を推定すれば、予め設定した許容温度を超える直前に精度良く制動をオフ制御することができる。
【0014】
従って、上記の本発明に係る制動制御装置を備えた渦電流式減速装置では、制動オン、制動オフが最適のタイミングで行えるようになって、本来の能力を十分に発揮できるようになる。
【0015】
【発明の実施の形態】
渦電流式減速装置のある時刻ti のロータ温度Ti は、ひとつ前の時刻ti−1 のロータ温度をTi−1 、時刻ti よりひとつ前の時刻ti−1 間の温度変化量をΔTi−1 とした場合、下記▲1▼、▲2▼式の温度演算基本式で求めることができる。
Ti =Ti−1 +ΔTi−1  …▲1▼
但し、ΔTi−1 =Ki−1 ×(ti −ti−1 ) …▲2▼
Ki−1 :時刻ti−1 の時の温度変化率(℃/秒)
【0016】
ところで、渦電流式減速装置のロータ温度は、制動オン時と同様、制動オフ時も常に変化するため、渦電流式減速装置の運転中は、常時、上記▲1▼、▲2▼式を用いてロータ温度を求めている。そして、計算によって求めた値が、設定値に達した場合に、ロータの制動を自動で切替える制御を行っている。なお、前記Ki−1 は、試験や解析結果をもとに、事前に計算機に値を記憶させておき、ロータ温度に対応する値を常に選択するようにしている。
【0017】
図1は、図13に示した複列旋回方式の渦電流式減速装置を用いたベンチ試験において、制動状態がLow(制動力低減制動)、回転数が1800rpmの一定の条件で制動実験を行った結果を示したもので、ロータ温度を横軸、温度変化率を縦軸にプロットした図である。また、図1中の直線は実測値を一次関数で近似したものである。
【0018】
このベンチ試験では、制動切替え温度を50℃(◆印と太い実線)、100℃(■印と細い実線)、300℃(▲印と細い破線)、500℃(○印と太い破線)の4通り変化させ、ロータ温度が耐熱限界温度である650℃に達するまでの温度変化率の変化を求めた。例えば、制動切替え温度が50℃の時は、図1中の◆印に沿って、温度上昇に伴い温度変化率が低下し、その後、250℃付近から*印に沿って温度変化率は低下していく。
【0019】
以上のベンチ試験より、制動を切替えた時の温度が異なると、ロータ温度が同じであっても、温度変化率は全く異なる値をとることが判明した。例えば図1では、ロータ温度が300℃のときで比べると、切替え温度が100℃の時(■印と細い実線)の温度変化率は7℃/秒であるが、切替え温度が300℃の時(▲印と細い破線)は温度変化率は14℃/秒であった。
【0020】
以上より、本発明者等は、回転数が一定であり、かつ、制動状態が一定であれば、図1の温度変化率の分布を、制動切替え時の初期温度変化率(図1の近似式▲1▼:図1における細い一点鎖線)と、制動前期の第1温度変化率近似式(図1の近似式▲2▼:図1における前記の実線及び破線)と、制動後期の第2温度変化率近似式(図1の近似式▲3▼:図1における太い二点鎖線)の3種類の一次関数近似式で表現することができることを知見した。
【0021】
すなわち、制動切替え(オン)時の温度変化率は、図1の近似式▲1▼上を通ることから、制動を切替えた時のロータ温度が判明していれば、その時の温度変化率(初期温度変化率)は図1の近似式▲1▼(K =A ・T +B )から求めることができる。
【0022】
また、制動開始直後の温度変化率は、切替え温度によって異なった値をとり、このとき、図1の近似式▲2▼の傾きは、切替え温度が高いほど絶対値が大きくなることから、第1温度変化率近似式(図1の近似式▲2▼)は前記初期温度変化率(図1の近似式▲1▼)によって求めた初期値(T 、K )を通り、傾きA の直線で表すことで、制動前期の温度変化率(図1の近似式▲2▼ K =A ・(T −T )+K 、A =A2a・T +A2b)を求めることができる。
【0023】
また、温度変化率は、ロータが高温になるにつれて徐々に同じ値(図1の近似式▲3▼)に近づくことから、ロータ温度が上昇し図1の近似式▲3▼が近似式▲2▼より大きくなった場合には、温度変化率は図1の近似式▲3▼(K =A ・T +B )をとることで、実測値に近い温度変化率を計算で求めることができるようになる。
【0024】
つまり、上記の近似式▲1▼〜近似式▲3▼を使用することで、制動状態と回転数が一定の時の温度変化率を図2に示したようなフローにより計算で求めることができるようになる。
【0025】
以上は制動状態と回転数が一定の場合における温度変化率についての知見であるが、温度変化率は制動切替え温度のみならず、ロータの回転数の影響を強く受ける。従って、ロータ温度の計算に使用する温度変化率をより実際の値に近づけるためには、温度変化率を、制動切替え温度の影響のみならず、ロータの回転数の影響をも考慮して補正する必要がある。
【0026】
そして、温度変化率のロータ回転数による影響は、図3に示したように、ロータの回転数に比例することが判明しているので、時々刻々変化するロータの回転数を考慮して温度変化率を補正するには、例えばある高回転数(例えば3000rpm)とある低回転数(例えば2000rpm)での近似式▲1▼〜近似式▲3▼を構成する定数(A 、B 、A2a、A12b 、A 、B )をベンチ試験によって求め、予め演算装置に記憶させておき、これらの定数から線形補間によってその時のロータ回転数での近似式▲1▼〜近似式▲3▼を構成する定数を決定する方法が最も簡単である。
【0027】
本発明は、上記の知見等に基づいてなされたものであり、本発明に係る第1の渦電流式減速装置のロータ温度推定方法は、
ロータが許容上限温度に達する直前に制動をオフ制御する渦電流式減速装置のロータ温度推定方法であって、
制動オン切替え時の渦電流式減速装置或いはその近傍の実測温度を検出し、この実測温度とロータ温度の相関関係に基づいて制動オン切替え時のロータ初期温度を算出し、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、前記のロータ初期温度及び第1温度変化率近似式と予め定めた第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出するものである。
【0028】
そして、上記の本発明に係る第1のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御は、図4に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
この温度センサ11の取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係と、第2温度変化率近似式を記憶した記憶部12と、
この記憶部12の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、このロータ初期温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部13と、
この演算部13で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部14を備えた本発明に係る第1の渦電流式減速装置の制動制御装置によって実施可能である。
【0029】
また、上記の本発明に係る第1のロータ温度推定方法において、
初期温度変化率を、算出したロータ初期温度に基づいて行うのに代えて、算出したロータ初期温度と検出したロータ初期回転数より決定し、
第1温度変化率近似式の決定を、算出したロータ初期温度に基づいて行うのに代えて、算出したロータ初期温度と検出したロータ回転数に基づいて行うと共に、
第2温度変化率近似式を、予め定めておくのに代えて、前記検出したロータ回転数から決定するようにしても良い。
これが本発明に係る第2の渦電流式減速装置のロータ温度推定方法である。
【0030】
そして、上記の本発明に係る第2のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御は、図5に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
ロータの回転数を検出する回転センサ15と、
前記温度センサ11の取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係を記憶した記憶部16と、
この記憶部16の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータの初期温度と初期回転数から初期温度変化率を、ロータの初期回転数と検出した回転数から第1温度変化率近似式を、また、ロータの検出した回転数から第2温度変化率近似式を夫々決定し、これらのロータ初期温度と第1温度変化率近似式と第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部17と、
この演算部17で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部14を備えた本発明に係る第2の渦電流式減速装置の制動制御装置によって実施可能である。
【0031】
また、本発明に係る第3の渦電流式減速装置のロータ温度推定方法は、
ロータが第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフ制御する渦電流式減速装置のロータ温度推定方法であって、
制動オン切替え時の渦電流式減速装置或いはその近傍の実測温度を検出し、この実測温度とロータ温度の相関関係に基づいて制動オン切替え時のロータ初期温度を算出し、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、前記のロータ初期温度及び第1温度変化率近似式と予め定めた第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出し、前記制動力低減切替え時のロータ推定温度から制動低減切替初期温度変化率及び第3温度変化率近似式を決定し、前記制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と予め定めた第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出するものである。
【0032】
そして、上記の本発明に係る第3のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフする制御は、図6に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
この温度センサ11の取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係と、第2温度変化率近似式及び第4温度変化率近似式を記憶した記憶部18と、
この記憶部18の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、このロータ初期温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出した後、この制動力低減切替え時のロータ推定温度から制動低減切替初期温度変化率及び第3温度変化率近似式を決定し、前記の制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と前記第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部19と、
この演算部19で算出した制動オン切替え時から制動力低減切替え時までのロータ推定温度が第1許容温度に達する直前に制動力低減制御する第1制御部20と、
前記演算部19で算出した制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度が許容上限温度に達する直前に制動をオフ制御する第2制御部21を備えた本発明に係る第3の渦電流式減速装置の制動制御装置によって実施可能である。
【0033】
また、上記の本発明に係る第3のロータ温度推定方法において、
初期温度変化率を、算出したロータ初期温度に基づいて行うのに代えて、算出したロータ初期温度と検出したロータ初期回転数より決定し、
第1温度変化率近似式の決定を、算出したロータ初期温度に基づいて行うのに代えて、算出したロータ初期温度と検出したロータ回転数に基づいて行うと共に、
第2温度変化率近似式を、予め定めておくのに代えて、前記検出したロータ回転数から決定し、
また、制動低減切替初期温度変化率を、制動力低減切替え時のロータ推定温度に基づいて行うのに代えて、制動力低減切替え時のロータ推定温度と検出した制動力低減切替え時のロータ回転数に基づいて決定し、
第3温度変化率近似式の決定を、制動力低減切替え時のロータ推定温度に基づいて行うのに代えて、制動力低減切替え時のロータ推定温度と前記検出したロータ回転数に基づいて行うと共に、
第4温度変化率近似式を、予め定めておくのに代えて、前記検出したロータ回転数から決定するようにしても良い。
これが本発明に係る第4の渦電流式減速装置のロータ温度推定方法である。
【0034】
そして、上記の本発明に係る第4のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御し、許容上限温度に達する直前に制動をオフする制御は、図7に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
ロータの回転数を検出する回転センサ22と、
前記温度センサ11の取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係を記憶した記憶部16と、
この記憶部16の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータの初期温度と検出した回転数から初期温度変化率と第1温度変化率近似式を、また、検出したロータ回転数から第2温度変化率近似式を夫々決定し、これらのロータ初期温度と第1温度変化率近似式と第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出した後、この制動力低減切替え時のロータ推定温度と検出したロータ回転数から制動低減切替初期温度変化率と第3温度変化率近似式を、また、制動力低減切替え時のロータ回転数から第4温度変化率近似式を夫々決定し、前記の制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部23と、
この演算部23で算出した制動オン切替え時から制動力低減切替え時までのロータ推定温度が第1許容温度に達する直前に制動力低減制御する第1制御部24と、
前記演算部23で算出した制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度が許容上限温度に達する直前に制動をオフ制御する第2制御部25を備えた本発明に係る第4の渦電流式減速装置の制動制御装置によって実施可能である。
【0035】
また、ロータが、許容上限温度に達するまでに制動をオフ制御する渦電流式減速装置のロータ温度推定方法は、上記の本発明に係る第1〜第4のロータ温度推定方法に限らず、
制動オフ切替え時のロータ温度(実測値、推定値を問わない)から初期温度変化率と第1温度変化率近似式を決定し、前記の制動オフ切替え時のロータ温度及び第1温度変化率近似式と予め定めた第2温度変化率近似式を用いて、制動オフ切替え時から制動オフ状態にある所期時間経過後のロータ推定温度を算出することによっても可能である。これが、本発明に係る第5の渦電流式減速装置のロータ温度推定方法である。
【0036】
また、上記の本発明に係る第5の渦電流式減速装置のロータ温度推定方法において、
初期温度変化率と第1温度変化率近似式の決定を、制動オフ切替え時のロータ温度に基づいて行うのに代えて、前記ロータ温度と検出したロータ回転数に基づいて行うと共に、
第2温度変化率近似式を、予め定めておくのに代えて、前記検出したロータ回転数から決定するようにしても良い。
これが本発明に係る第6の渦電流式減速装置のロータ温度推定方法である。
【0037】
そして、上記の本発明に係る第1或いは第3のロータ温度推定方法において、制動オン切替え時のロータ初期温度として、本発明に係る第5のロータ温度推定方法を用いたロータ温度推定値を用いることや、また、上記の本発明に係る第2或いは第4のロータ温度推定方法において、制動オン切替え時のロータ初期温度として、本発明に係る第6のロータ温度推定方法を用いたロータ温度推定値を用いることも可能である。これらが本発明に係る第7、第8の渦電流式減速装置のロータ温度推定方法である。
【0038】
上記の本発明に係る第7のロータ温度推定方法のうち、制動オン切替え時のロータ初期温度として、本発明に係る第5の推定方法によるロータ温度推定値を用いた本発明に係る第1のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御は、図4に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
第2温度変化率近似式を記憶した記憶部26と、
制動オフ切替え時のロータ温度から初期温度変化率と第1温度変化率近似式を決定し、前記制動オフ切替え時のロータ温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部27と、
この演算部27で算出したロータ推定温度が許容上限温度を超える直前に制動をオフ制御する制御部28を備えた本発明に係る第5の渦電流式減速装置の制動制御装置によって実施可能である。
【0039】
また、上記の本発明に係る第8のロータ温度推定方法のうち、制動オン切替え時のロータ初期温度として、本発明に係る第6の推定方法によるロータ温度推定値を用いた本発明に係る第2のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御は、図8に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
ロータ回転数を検出する回転センサ15と、
制動オフ切替え時のロータ温度と前記ロータの検出した回転数から初期温度変化率と第1温度変化率近似式を、また、前記ロータの検出した回転数から第2温度変化率近似式を夫々決定し、前記制動オフ切替え時のロータ温度と第1温度変化率近似式と第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部29と、
この演算部29で算出したロータ推定温度が許容上限温度を超える直前に制動をオフ制御する制御部30を備えた本発明に係る第6の渦電流式減速装置の制動制御装置によって実施可能である。
【0040】
また、上記の本発明に係る第7のロータ温度推定方法のうち、制動オン切替え時のロータ初期温度として、本発明に係る第5の推定方法によるロータ温度推定値を用いた本発明に係る第3のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフする制御は、図6に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
第2温度変化率近似式及び第4温度変化率近似式を記憶した記憶部31と、
制動オフ切替え時のロータ温度から初期温度変化率と第1温度変化率近似式を決定し、前記制動オフ切替え時のロータ温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出した後、この制動力低減切替え時のロータ推定温度から制動低減切替初期温度変化率と第3温度変化率近似式を決定し、前記の制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と前記第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部32と、 この演算部32で算出した制動オン切替え時から制動力低減切替え時までのロータ推定温度が第1許容温度に達する直前に制動力低減制御する第1制御部33と、
前記演算部32で算出した制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度が許容上限温度に達する直前に制動をオフ制御する第2制御部34を備えた本発明に係る第7の渦電流式減速装置の制動制御装置によって実施可能である。
【0041】
また、上記の本発明に係る第8のロータ温度推定方法のうち、制動オン切替え時のロータ初期温度として、本発明に係る第6の推定方法によるロータ温度推定値を用いた本発明に係る第4のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフする制御は、図9に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
ロータの回転数を検出する回転センサ22と、
制動オフ切替え時のロータ温度と前記ロータの検出した回転数から初期温度変化率と第1温度変化率近似式を、また、前記ロータの検出した回転数から第2温度変化率近似式を夫々決定し、前記制動オフ切替え時のロータ温度と第1温度変化率近似式と第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出した後、この制動力低減切替え時のロータ推定温度と検出したロータ回転数から制動低減切替初期温度変化率と第3温度変化率近似式を、また、検出したロータ回転数から第4温度変化率近似式を夫々決定し、前記の制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部35と、
この演算部35で算出した制動オン切替え時から制動力低減切替え時までのロータ推定温度が第1許容温度に達する直前に制動力低減制御する第1制御部36と、
前記演算部35で算出した制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度が許容上限温度に達する直前に制動をオフ制御する第2制御部37を備えた本発明に係る第8の渦電流式減速装置の制動制御装置によって実施可能である。
【0042】
上記の本発明に係るロータ温度推定方法では、制動切替え時における温度の影響や、回転数の影響を考慮して温度変化率を適切に補正することができるので、この適切に補正した温度変化率を用いてロータ温度を精度良く推定できるようになる。そして、この本発明に係るロータ温度推定方法によりロータ温度を推定すれば、予め設定した温度を超える直前に精度良く制動制御することができるようになって、例えば連続使用の際にもロータの温度上昇を抑えて長時間制動効果を発揮させることができるようになる。
【0043】
また、上記の本発明に係る制動制御装置を備えた本発明に係る渦電流式減速装置では、制動オン、制動オフが最適のタイミングで行えるようになって、本来の能力を十分に発揮できるようになる。なお、本発明に係る渦電流式減速装置は、軸スライド方式、単列旋回方式、複列旋回方式を問わないことは言うまでもない。
【0044】
【実施例】
以下、本発明の効果を確認するために行なった実験結果について説明する。
実験は図1に示した結果を得たベンチ試験に供したものと同じ複列旋回方式の渦電流式減速装置を使用し、以下の実験条件で請求項4及び請求項8(初期温度として請求項6記載の推定方法を用いた請求項4)の本発明に係るロータ温度推定方法によりロータ温度を推定することにより行った。
【0045】
実験条件:
▲1▼ 制動パターン
ロータの回転数、制動オン・オフの切替え温度をランダムに変化させて行った。
▲2▼ 雰囲気温度
室温(20℃)
▲3▼ 回転数の切替え
手動
▲4▼ 制動オン・オフの切替え
計算値650℃にて自動的に制動オフ。
ランダムに手動で制動オフの状態を解除し、制動復帰。
【0046】
図10に上記実験の結果を示すが、本発明方法による推定値(破線)は、ロータ温度の実測値(実線)に極めて良く一致しており、本発明方法が渦電流式減速装置のロータ温度の推定に極めて有効であることが確認された。
【0047】
このことから、この本発明方法を使用する本発明制御装置では、予め設定した温度を超える直前に精度良く制動制御できるようになること、また、本発明制御装置を備えた本発明渦電流式減速装置では、本来の能力を十分に発揮できるようになることは言うまでもない。
【0048】
なお、本発明は上記の請求項4に係る実施例に限らず、他の請求項に係るものであっても、同様の効果を奏することは言うまでもない。
【0049】
【発明の効果】
以上説明したように、本発明では、制動切替え時における温度の影響や、回転数の影響を考慮して温度変化率を適切に補正することで、ロータ温度を精度良く推定できるようになり、制動オン、制動オフが最適のタイミングで行えるようになって、本来の能力を十分に発揮できるようになる。
【図面の簡単な説明】
【図1】渦電流式減速装置を用いたベンチ試験において、制動状態及び回転数が一定の条件で制動実験を行った結果を示したもので、横軸にロータ温度を、縦軸に温度変化率を示した図である。
【図2】制動状態と回転数が一定の時の温度変化率を求める際のフロー図である。
【図3】温度変化率のロータ回転数による影響を示した図である。
【図4】請求項9及び請求項13の本発明に係る渦電流式減速装置の制御装置の概略構成を示すブロック図である。
【図5】請求項10の本発明に係る渦電流式減速装置の制御装置の概略構成を示すブロック図である。
【図6】請求項11及び請求項15の本発明に係る渦電流式減速装置の制御装置の概略構成を示すブロック図である。
【図7】請求項12の本発明に係る渦電流式減速装置の制御装置の概略構成を示すブロック図である。
【図8】請求項14の本発明に係る渦電流式減速装置の制御装置の概略構成を示すブロック図である。
【図9】請求項16の本発明に係る渦電流式減速装置の制御装置の概略構成を示すブロック図である。
【図10】渦電流式減速装置を使用し、請求項4の本発明に係るロータ温度推定方法によりロータ温度を推定した結果とロータの実測温度を示した図である。
【図11】軸スライド方式の渦電流式減速装置の回転軸方向の断面図である。
【図12】単列旋回方式の渦電流式減速装置の回転軸方向の断面図である。
【図13】複列旋回方式の渦電流式減速装置の回転軸方向の断面図である。
【図14】ディスク型ロータによる軸スライド方式の渦電流式減速装置の回転軸方向の断面図である。
【符号の説明】
2    ロータ
11  温度センサ
12、16、18、26、31  記憶部
13、17、19、23、27、29、32、35  演算部
14、28、30  制御部
15、22  回転センサ
20、24、33、36  第1制御部
21、25、34、37  第2制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotor temperature estimation method for an eddy current speed reducer that can accurately estimate the temperature change of the rotor in the eddy current speed reducer, and the rotor temperature estimation method. The present invention relates to a braking control device capable of suppressing a rise and exhibiting a braking effect for a long time, and an eddy current reduction device including the braking control device.
[0002]
[Prior art]
In recent years, for large vehicles such as buses and trucks, stable deceleration on long downhills, etc., reducing the number of times the foot brake is used, preventing abnormal lining wear and fading, and braking stop distance For the purpose of shortening, an eddy current type speed reducer has been installed in addition to a foot brake as a main brake and an exhaust brake as an auxiliary brake.
[0003]
At present, the eddy current type reduction gears are mainly of a permanent magnet type, and there are the following four types.
(1) For example, as shown in FIG. 11, on the inner peripheral surface side of the drum-like rotor 2 attached to the rotary shaft 1, there is a predetermined interval in the circumferential direction between the nonmagnetic support bodies 3. A ferromagnetic body in which a group of permanent magnets 5 in which N poles and S poles are alternately arranged in the circumferential direction at the same interval as the switch board 4 is attached to the outer peripheral surface of the ferromagnetic switch board 4 group. A shaft slide system in which a support ring 6 is disposed and the support ring 6 is provided so that the inside of the sealed case 8 can be advanced and retracted by an actuator 7 from a position where the permanent magnet 5 group completely faces the switch plate 4 group to a position where it is completely separated from the switch plate 4 group. For example, Unexamined-Japanese-Patent No. 1-234043).
[0004]
(2) For example, as shown in FIG. 12, a support ring 6 arranged on the inner peripheral surface side of the rotor 2 so as to face the rotor ring 4 overlaps a switch plate 4 and a permanent magnet 5 attached to the outer peripheral surface of the support ring 6. And a position where one permanent magnet 5 overlaps half of the adjacent switch plate 4 so as to be able to select a single row turning system (for example, JP-A-1-298948).
[0005]
(3) For example, as shown in FIG. 13, two support rings having permanent magnet groups in which N poles and S poles are alternately arranged at predetermined intervals along the circumferential direction are arranged in parallel on the outer circumferential surface, The support ring is fixed (hereinafter referred to as “fixed support ring 6a”), and the other support ring is configured to be rotatable by a predetermined angle (hereinafter referred to as “movable support ring 6b”). The position of the permanent magnet 5a of the fixed support ring 6a adjacent to the permanent magnet 5b of the movable support ring 6b and the permanent magnet 5a of the adjacent movable support ring 6b and the permanent magnet 5a of the fixed support ring 6a by the turning movement are the same polarity. A double-row swivel system (for example, Japanese Patent Laid-Open No. 4-12659) configured to be able to select a position where the poles are different from each other.
[0006]
(4) FIGS. 11 to 13 are examples in the case where a drum type rotor is used. Unlike these, for example, as shown in FIG. 14, the disk type rotor 2 is attached to the rotary shaft 1 at a position facing the disk type rotor 2. The N and S poles are arranged in the circumferential direction at the same interval as the switch plate 4 through a group of ferromagnetic switch plates 4 arranged between the non-magnetic supports 3 at a predetermined interval in the circumferential direction. A ferromagnetic support ring 6 having a group of alternately arranged permanent magnets 5 attached to the side surface is disposed, and the support ring 6 is completely separated from a position where the permanent magnets 5 group completely faces the switch plate 4 group. Shaft slide method with a disk-type rotor that can be moved back and forth in the sealed case by the actuator 7.
[0007]
By the way, in the eddy current type speed reducer as described above, the temperature of the rotor 2 becomes high when used in, for example, a long downhill. And if the state exceeding the allowable upper limit temperature of the rotor 2 continues for a long time, the rotor 2 may be thermally deformed or a thermal crack may occur. Therefore, the temperature of the rotor 2 is detected so that the rotor 2 does not undergo thermal deformation or thermal cracks, and the braking operation of the eddy current reduction device is interrupted immediately before the rotor 2 reaches the allowable upper limit temperature. Need to control.
[0008]
Therefore, as a technique for monitoring the temperature of the rotor described above, for example, in JP-A-4-251600, a temperature sensor is fixedly arranged on the fixed side facing the inner surface of the rotor, and the ambient temperature in the vicinity of the rotor is monitored. Thus, an indirect estimation of the rotor temperature has been proposed.
[0009]
[Problems to be solved by the invention]
However, because of the characteristics of the eddy current type speed reducer, the braking torque changes when the vehicle speed changes, so the amount of heat generated by the rotor also changes. Normally, as the vehicle speed increases, the amount of heat generated by the rotor increases, and the rotor temperature reaches the allowable upper limit temperature in a short time. Accordingly, when an air layer is interposed between the rotor and the temperature sensor as in the technique disclosed in Japanese Patent Laid-Open No. 4-251600, a rapid temperature rise of the rotor is hindered by the thermal resistance of the air layer, and the temperature sensor This causes a problem that the temperature rise is delayed with respect to the temperature rise of the rotor, and in consideration of the rapid temperature rise of the rotor at high speed, it is necessary to consider, for example, setting the temperature upper limit temperature of the temperature sensor low.
[0010]
However, the correlation between the measured temperature of the temperature sensor and the rotor temperature differs between high speed and low speed, so if the upper temperature limit of the temperature sensor is set low, the rotor temperature is much lower than the allowable upper limit temperature at low speed. Nevertheless, the temperature measured by the temperature sensor reaches the upper limit temperature and the braking is interrupted. As a result, there arises a problem that the original ability of the eddy current type reduction gear cannot be fully exhibited.
[0011]
The present invention has been made in view of the above-described conventional problems, and uses the rotor temperature estimation method of an eddy current type reduction gear capable of accurately estimating the temperature change of the rotor, and the rotor temperature estimation method. It is an object of the present invention to provide a braking control device capable of suppressing the temperature rise of the rotor even during continuous use and exhibiting a braking effect for a long time, and an eddy current reduction device provided with the braking control device.
[0012]
[Means for Solving the Problems]
In order to achieve the above-described object, the rotor temperature estimation method for an eddy current type reduction gear according to the present invention detects an eddy current type speed reduction device at the time of braking on switching or a measured temperature in the vicinity thereof, and this measured temperature and the rotor A rotor initial temperature at the time of braking-on switching is calculated based on the temperature correlation, an initial temperature change rate and a first temperature change rate approximation formula are determined from the rotor initial temperature, and the rotor initial temperature and the first temperature change are determined. Using the rate approximation formula and the predetermined second temperature change rate approximation formula, the estimated rotor temperature from the time when the braking is switched on until the time when the braking is controlled to be off is calculated. By doing so, the rotor temperature can be accurately estimated.
[0013]
Then, the temperature sensor provided in or near the eddy current type reduction gear, the change in the ambient temperature at the temperature sensor mounting position, the correlation between the ambient temperature and the rotor temperature, and the second temperature change rate approximation formula are stored. And calculating the initial rotor temperature at the time of braking-on switching from the correlation between the ambient temperature of the storage unit and the rotor temperature, and calculating the initial temperature change rate and the first temperature change rate approximation formula from the rotor initial temperature. A calculation unit that calculates the estimated rotor temperature from the time when the brake is switched to the time when the brake is turned off using the rotor initial temperature, the first temperature change rate approximate expression, and the second temperature change rate approximate expression; The present invention uses the braking control device according to the present invention, which includes a control unit that controls braking off immediately before the estimated rotor temperature calculated by the calculation unit exceeds a preset allowable temperature. If the estimated rotor temperature by the rotor temperature estimation method that can be turned off precisely control the braking immediately before exceeding the allowable temperature previously set.
[0014]
Therefore, in the eddy current type speed reducer provided with the above-described braking control device according to the present invention, braking on and braking off can be performed at the optimum timing, so that the original ability can be sufficiently exhibited.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The rotor temperature Ti at a certain time ti of the eddy current reduction device is expressed as follows: the rotor temperature at the previous time ti−1 is Ti−1, and the temperature change between the previous time ti−1 and Δti−1. In this case, it can be obtained by the following temperature calculation basic formulas (1) and (2).
Ti = Ti-1 + ΔTi-1 (1)
However, ΔTi−1 = Ki−1 × (ti−ti−1) (2)
Ki-1: Rate of temperature change at time ti-1 (° C / sec)
[0016]
By the way, since the rotor temperature of the eddy current type reduction gear always changes when braking is off as well as when braking is on, the above formulas (1) and (2) are always used during operation of the eddy current type reduction gear. To find the rotor temperature. And when the value calculated | required by calculation reaches a setting value, control which switches the braking of a rotor automatically is performed. The Ki-1 is stored in advance in a computer based on the test and analysis results, and a value corresponding to the rotor temperature is always selected.
[0017]
FIG. 1 is a bench test using the double-row swirl type eddy current speed reduction device shown in FIG. 13 and a braking experiment was performed under constant conditions of a braking state of Low (braking force reduction braking) and a rotational speed of 1800 rpm. FIG. 6 is a diagram in which the rotor temperature is plotted on the horizontal axis and the temperature change rate is plotted on the vertical axis. Further, the straight line in FIG. 1 is obtained by approximating the actual measurement value with a linear function.
[0018]
In this bench test, the braking switching temperature was 4 ° C. (50 ° C. (♦ mark and thick solid line), 100 ° C. (■ mark and thin solid line), 300 ° C. (▲ mark and thin broken line), 500 ° C. (○ mark and thick broken line). Thus, the change in temperature change rate until the rotor temperature reached 650 ° C., which is the heat resistant limit temperature, was determined. For example, when the braking switching temperature is 50 ° C., the temperature change rate decreases as the temperature rises along the ♦ mark in FIG. 1, and then the temperature change rate decreases from around 250 ° C. along the * mark. To go.
[0019]
From the bench test described above, it has been found that if the temperature at the time of switching the braking is different, even if the rotor temperature is the same, the temperature change rate takes a completely different value. For example, in FIG. 1, when the rotor temperature is 300 ° C., the temperature change rate is 7 ° C./second when the switching temperature is 100 ° C. (■ mark and thin solid line), but when the switching temperature is 300 ° C. The rate of change in temperature was 14 ° C./sec.
[0020]
From the above, the present inventors have found that the temperature change rate distribution in FIG. 1 is represented by the initial temperature change rate at the time of braking switching (approximate equation in FIG. 1) when the rotational speed is constant and the braking state is constant. (1): Thin dashed-dotted line in FIG. 1 and first temperature change rate approximation formula in the first half of braking (approximate formula (2) in FIG. 1: solid line and broken line in FIG. 1) and second temperature in the second half of braking It has been found that it can be expressed by three types of linear function approximation formulas of the change rate approximation formula (approximation formula (3) in FIG. 1: thick two-dot chain line in FIG. 1).
[0021]
That is, since the temperature change rate at the time of braking switching (ON) passes on the approximate expression (1) in FIG. 1, if the rotor temperature at the time of braking switching is known, the temperature changing rate at that time (initial The rate of temperature change is the approximate expression (1) (K) in FIG. 0 = A 1 ・ T 0 + B 1 ).
[0022]
The temperature change rate immediately after the start of braking varies depending on the switching temperature. At this time, the slope of the approximate expression (2) in FIG. 1 increases as the switching temperature increases. The temperature change rate approximate expression (approximate expression (2) in FIG. 1) is an initial value (T) determined by the initial temperature change rate (approximate expression (1) in FIG. 1). 0 , K 0 ) Through the slope A 2 The rate of change in temperature during the previous braking period (approximate equation (2) K in FIG. i = A 2 ・ (T i -T 0 ) + K 0 , A 2 = A 2a ・ T 0 + A 2b ).
[0023]
Further, since the temperature change rate gradually approaches the same value (approximate expression (3) in FIG. 1) as the rotor becomes hot, the rotor temperature rises and approximate expression (3) in FIG. When it becomes larger than ▼, the temperature change rate is approximated by the approximate expression (3) (K i = A 3 ・ T i + B 3 ), The temperature change rate close to the actually measured value can be obtained by calculation.
[0024]
That is, by using the above approximate expression (1) to approximate expression (3), the rate of temperature change when the braking state and the rotation speed are constant can be calculated by the flow as shown in FIG. It becomes like this.
[0025]
The above is the knowledge about the temperature change rate when the braking state and the rotation speed are constant, but the temperature change rate is strongly influenced not only by the brake switching temperature but also by the rotor rotation speed. Therefore, in order to bring the temperature change rate used for the calculation of the rotor temperature closer to the actual value, the temperature change rate is corrected in consideration of not only the influence of the braking switching temperature but also the influence of the rotation speed of the rotor. There is a need.
[0026]
As shown in FIG. 3, it has been found that the influence of the temperature change rate on the rotor rotational speed is proportional to the rotor rotational speed, so that the temperature change takes into account the rotor rotational speed that changes from time to time. In order to correct the rate, for example, constants (A) constituting the approximate expression (1) to the approximate expression (3) at a certain high rotation speed (for example, 3000 rpm) and a certain low rotation speed (for example, 2000 rpm). 1 , B 1 , A 2a , A 12b , A 3 , B 3 ) Is obtained by a bench test, stored in advance in an arithmetic unit, and a constant constituting the approximate expression (1) to approximate expression (3) at the rotor speed at that time is determined by linear interpolation from these constants. The simplest.
[0027]
The present invention has been made based on the above knowledge and the like, and the rotor temperature estimation method for the first eddy current type speed reducer according to the present invention includes:
A rotor temperature estimation method for an eddy current type speed reducer for controlling braking off immediately before the rotor reaches an allowable upper limit temperature,
The actual temperature measured at or near the eddy current reduction gear at the time of braking on switching is detected, and the rotor initial temperature at the time of braking on switching is calculated based on the correlation between this measured temperature and the rotor temperature. The temperature change rate and the first temperature change rate approximation formula are determined, and braking is performed from the time of braking on switching using the rotor initial temperature and the first temperature change rate approximation formula and the predetermined second temperature change rate approximation formula. The estimated rotor temperature up to the time of off control is calculated.
[0028]
Then, using the first rotor temperature estimation method according to the present invention described above, the control for turning off braking immediately before the estimated rotor temperature exceeds the preset allowable temperature is as shown in FIG.
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A storage unit 12 that stores a change in the ambient temperature at the mounting position of the temperature sensor 11, a correlation between the ambient temperature and the rotor temperature, and a second temperature change rate approximation formula;
A rotor initial temperature at the time of braking-on switching is calculated from the correlation between the ambient temperature and the rotor temperature in the storage unit 12, and an initial temperature change rate and a first temperature change rate approximation formula are determined from the rotor initial temperature, A calculation unit 13 that calculates a rotor estimated temperature from a time when braking is switched on to a time when brake is turned off using the rotor initial temperature and the first temperature change rate approximate expression and the second temperature change rate approximate expression;
This can be implemented by the braking control device for the first eddy current type speed reducer according to the present invention, which includes a control unit 14 for controlling braking OFF immediately before the estimated rotor temperature calculated by the calculation unit 13 exceeds a preset allowable temperature. It is.
[0029]
In the first rotor temperature estimation method according to the present invention,
Instead of performing the initial temperature change rate based on the calculated rotor initial temperature, it is determined from the calculated rotor initial temperature and the detected rotor initial rotational speed,
The determination of the first temperature change rate approximation formula is performed based on the calculated rotor initial temperature and the detected rotor speed instead of being performed based on the calculated rotor initial temperature,
Instead of predetermining the second temperature change rate approximation formula, it may be determined from the detected rotor rotational speed.
This is the rotor temperature estimation method for the second eddy current type speed reducer according to the present invention.
[0030]
Then, using the above-described second rotor temperature estimation method according to the present invention, control for turning off braking immediately before the estimated rotor temperature exceeds a preset allowable temperature is as shown in FIG.
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A rotation sensor 15 for detecting the rotation speed of the rotor;
A storage unit 16 that stores changes in the ambient temperature at the mounting position of the temperature sensor 11 and the correlation between the ambient temperature and the rotor temperature;
The rotor initial temperature at the time of braking-on switching is calculated from the correlation between the ambient temperature and the rotor temperature in the storage unit 16, and the initial temperature change rate is calculated from the initial temperature and the initial rotational speed of the rotor and the initial rotational speed of the rotor. A first temperature change rate approximate expression is determined from the detected rotational speed, and a second temperature change rate approximate expression is determined from the detected rotational speed of the rotor, and the rotor initial temperature, the first temperature change rate approximate expression, and the first (2) A calculation unit 17 that calculates an estimated rotor temperature from a time when braking is switched on to a time when braking is controlled to be off, using a temperature change rate approximation formula;
This can be implemented by the braking control device for the second eddy current type speed reducer according to the present invention, which includes the control unit 14 that controls the braking off immediately before the estimated rotor temperature calculated by the calculation unit 17 exceeds a preset allowable temperature. It is.
[0031]
Moreover, the rotor temperature estimation method of the third eddy current reduction device according to the present invention is:
A rotor temperature estimation method for an eddy current reduction device that performs braking force reduction control immediately before the rotor reaches a first allowable temperature, and controls braking off immediately before reaching the allowable upper limit temperature,
The actual temperature measured at or near the eddy current reduction gear at the time of braking on switching is detected, and the rotor initial temperature at the time of braking on switching is calculated based on the correlation between this measured temperature and the rotor temperature. The temperature change rate and the first temperature change rate approximation formula are determined, and the braking force is applied from the time of braking on switching using the rotor initial temperature and the first temperature change rate approximation formula and the predetermined second temperature change rate approximation formula. The estimated rotor temperature until the reduction switching is calculated, the braking reduction switching initial temperature change rate and the third temperature change rate approximate expression are determined from the estimated rotor temperature at the braking force reduction switching, and the rotor at the braking force reduction switching is determined. Using the estimated temperature and the third temperature change rate approximation formula and the predetermined fourth temperature change rate approximation formula, the estimated rotor temperature from the time of braking force reduction switching to the time when braking is controlled to be off is calculated.
[0032]
Then, using the third rotor temperature estimation method according to the present invention, the braking force reduction control is performed immediately before the estimated rotor temperature reaches the first allowable temperature, and the braking is turned off immediately before the allowable upper limit temperature is reached. As shown in FIG.
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A storage unit 18 that stores changes in the ambient temperature at the mounting position of the temperature sensor 11, a correlation between the ambient temperature and the rotor temperature, a second temperature change rate approximate expression, and a fourth temperature change rate approximate expression;
The rotor initial temperature at the time of braking on switching is calculated from the correlation between the ambient temperature and the rotor temperature in the storage unit 18, and the initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor initial temperature, Using the rotor initial temperature and the first temperature change rate approximation formula and the second temperature change rate approximation formula, after calculating the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching, The brake reduction switching initial temperature change rate and the third temperature change rate approximation formula are determined from the estimated rotor temperature, and the rotor estimated temperature and third temperature change rate approximation formula and the fourth temperature change rate at the time of the braking force reduction switchover are determined. A calculation unit 19 that calculates an estimated rotor temperature from the time of braking force reduction switching to the time when braking is controlled off using an approximate expression;
A first control unit 20 that performs braking force reduction control immediately before the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching calculated by the computing unit 19 reaches the first allowable temperature;
According to the present invention, a second control unit 21 is provided, which includes a second control unit 21 that performs braking off control immediately before the estimated rotor temperature from the time of braking force reduction switching calculated by the calculation unit 19 to the time when braking braking is controlled to reach the allowable upper limit temperature. This can be implemented by the braking control device of No. 3 eddy current type reduction gear.
[0033]
In the third rotor temperature estimation method according to the present invention,
Instead of performing the initial temperature change rate based on the calculated rotor initial temperature, it is determined from the calculated rotor initial temperature and the detected rotor initial rotational speed,
The determination of the first temperature change rate approximation formula is performed based on the calculated rotor initial temperature and the detected rotor speed instead of being performed based on the calculated rotor initial temperature,
Instead of predetermining the second temperature change rate approximate expression, it is determined from the detected rotor speed,
Also, instead of performing the braking reduction switching initial temperature change rate based on the estimated rotor temperature at the time of braking force reduction switching, the estimated rotor temperature at the time of braking force reduction switching and the detected rotor speed at the time of braking force reduction switching Based on
Instead of determining the third temperature change rate approximate expression based on the estimated rotor temperature at the time of braking force reduction switching, the third temperature change rate approximate expression is determined based on the estimated rotor temperature at the time of braking force reduction switching and the detected rotor speed. ,
Instead of predetermining the fourth temperature change rate approximation formula, it may be determined from the detected rotor rotational speed.
This is the rotor temperature estimation method for the fourth eddy current type speed reducer according to the present invention.
[0034]
Then, using the above-described fourth rotor temperature estimation method according to the present invention, the braking force reduction control is performed immediately before the estimated rotor temperature reaches the first allowable temperature, and the brake is turned off immediately before the allowable upper limit temperature is reached. As shown in FIG.
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A rotation sensor 22 for detecting the rotation speed of the rotor;
A storage unit 16 that stores changes in the ambient temperature at the mounting position of the temperature sensor 11 and the correlation between the ambient temperature and the rotor temperature;
A rotor initial temperature at the time of braking-on switching is calculated from the correlation between the ambient temperature and the rotor temperature in the storage unit 16, and an initial temperature change rate and a first temperature change rate approximation are calculated from the initial temperature of the rotor and the detected rotational speed. Further, a second temperature change rate approximate expression is determined from the detected rotor rotational speed, and braking on is determined using these rotor initial temperature, first temperature change rate approximate expression, and second temperature change rate approximate expression. After calculating the estimated rotor temperature from the switching to the braking force reduction switching, the braking reduction switching initial temperature change rate and the third temperature change rate approximation formula from the estimated rotor temperature at the braking force reduction switching and the detected rotor speed Further, a fourth temperature change rate approximate expression is determined from the rotor rotational speed at the time of braking force reduction switching, and the estimated rotor temperature and third temperature change rate approximate expression at the time of braking force reduction switching and the fourth temperature change are determined. Using the rate approximation formula, a calculation unit 23 for calculating the rotor estimated temperature until the time of OFF control of the braking from the time of switching reduced braking force,
A first control unit 24 that performs braking force reduction control immediately before the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching calculated by the computing unit 23 reaches the first allowable temperature;
A second control unit 25 according to the present invention is provided that includes a second control unit 25 that controls the braking off immediately before the estimated rotor temperature from the time of the braking force reduction switching calculated by the computing unit 23 to the time when the braking is controlled to be off reaches the allowable upper limit temperature. This can be implemented by the brake control device of the eddy current type speed reducer.
[0035]
Further, the rotor temperature estimation method of the eddy current type reduction device that controls the braking off until the rotor reaches the allowable upper limit temperature is not limited to the first to fourth rotor temperature estimation methods according to the present invention,
An initial temperature change rate and a first temperature change rate approximation formula are determined from a rotor temperature (regardless of an actual measurement value or an estimated value) at the time of braking off switching, and the rotor temperature and the first temperature change rate approximation at the time of braking off switching are determined. It is also possible to calculate the estimated rotor temperature after elapse of a predetermined time in the brake-off state from the time of braking-off switching, using the formula and a predetermined second temperature change rate approximation formula. This is the rotor temperature estimation method for the fifth eddy current reduction gear according to the present invention.
[0036]
Moreover, in the rotor temperature estimation method for the fifth eddy current type speed reducer according to the present invention,
In place of determining the initial temperature change rate and the first temperature change rate approximate expression based on the rotor temperature at the time of braking off switching, based on the rotor temperature and the detected rotor speed,
Instead of predetermining the second temperature change rate approximation formula, it may be determined from the detected rotor rotational speed.
This is the rotor temperature estimation method for the sixth eddy current type speed reducer according to the present invention.
[0037]
In the first or third rotor temperature estimation method according to the present invention described above, the estimated rotor temperature using the fifth rotor temperature estimation method according to the present invention is used as the initial rotor temperature at the time of braking on switching. In addition, in the second or fourth rotor temperature estimation method according to the present invention, the rotor temperature estimation using the sixth rotor temperature estimation method according to the present invention as the initial rotor temperature at the time of braking-on switching. It is also possible to use a value. These are the rotor temperature estimation methods of the seventh and eighth eddy current type speed reducers according to the present invention.
[0038]
Of the above-described seventh rotor temperature estimation method according to the present invention, the first rotor temperature estimation value according to the present invention using the rotor temperature estimated value according to the fifth estimation method according to the present invention as the initial rotor temperature at the time of braking on switching. Using the rotor temperature estimation method, the control for turning off braking immediately before the estimated rotor temperature exceeds a preset allowable temperature is as shown in FIG.
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A storage unit 26 storing a second temperature change rate approximation formula;
An initial temperature change rate and a first temperature change rate approximate expression are determined from the rotor temperature at the time of braking off switching, and the rotor temperature and first temperature change rate approximate expression and the second temperature change rate approximate expression at the time of braking off switching are determined. Calculation unit 27 for calculating the estimated rotor temperature from the time when braking is switched on to the time when braking is controlled to be off,
This can be implemented by the braking control device for the fifth eddy current reduction device according to the present invention, which includes a control unit 28 for controlling the braking to be turned off immediately before the estimated rotor temperature calculated by the calculation unit 27 exceeds the allowable upper limit temperature. .
[0039]
In the eighth rotor temperature estimation method according to the present invention described above, the rotor temperature estimated value according to the sixth estimation method according to the present invention is used as the rotor initial temperature at the time of braking on switching. Control for turning off braking immediately before the estimated rotor temperature exceeds a preset allowable temperature using the rotor temperature estimation method 2 is as shown in FIG.
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A rotation sensor 15 for detecting the rotational speed of the rotor;
The initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor temperature at the time of braking off switching and the rotation speed detected by the rotor, and the second temperature change rate approximation formula is determined from the rotation speed detected by the rotor. Then, using the rotor temperature, the first temperature change rate approximate expression and the second temperature change rate approximate expression at the time of braking off switching, an operation for calculating the estimated rotor temperature from the time of braking on switching to the time at which braking is controlled to be off Part 29;
This can be implemented by the brake control device for the sixth eddy current reduction device according to the present invention, which includes a control unit 30 for controlling the braking off immediately before the estimated rotor temperature calculated by the calculation unit 29 exceeds the allowable upper limit temperature. .
[0040]
In the seventh rotor temperature estimation method according to the present invention described above, the rotor temperature estimated value according to the fifth estimation method according to the present invention is used as the rotor initial temperature at the time of braking on switching. As shown in FIG. 6, the control for performing the braking force reduction control immediately before the estimated rotor temperature reaches the first allowable temperature and turning off the brake immediately before reaching the allowable upper limit temperature using the rotor temperature estimation method of FIG.
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A storage unit 31 storing the second temperature change rate approximate expression and the fourth temperature change rate approximate expression;
An initial temperature change rate and a first temperature change rate approximate expression are determined from the rotor temperature at the time of braking off switching, and the rotor temperature and first temperature change rate approximate expression and the second temperature change rate approximate expression at the time of braking off switching are determined. After calculating the estimated rotor temperature from the time of braking ON switching to the time of braking force reduction switching, the braking reduction switching initial temperature change rate and the third temperature change rate approximation formula are calculated from the estimated rotor temperature at the time of braking force reduction switching. Using the estimated rotor temperature and the third temperature change rate approximation formula at the time of braking force reduction switching and the fourth temperature change rate approximation formula, the rotor from the time of braking force reduction switching to the time at which braking is controlled to be off is determined. A calculation unit 32 that calculates an estimated temperature, and a first control that performs a braking force reduction control immediately before the estimated rotor temperature calculated from the calculation unit 32 until the braking force reduction switching reaches the first allowable temperature. Part 33;
A second control unit 34 according to the present invention is provided that includes a second control unit 34 that performs braking off control immediately before the estimated rotor temperature from the time of braking force reduction switching calculated by the calculation unit 32 to the time when braking braking is controlled to reach the allowable upper limit temperature. 7 can be implemented by the braking control device of the eddy current type speed reducer.
[0041]
In the eighth rotor temperature estimation method according to the present invention described above, the rotor temperature estimated value according to the sixth estimation method according to the present invention is used as the rotor initial temperature at the time of braking on switching. The rotor temperature estimation method of No. 4 is used to perform braking force reduction control immediately before the estimated rotor temperature reaches the first allowable temperature, and to turn off braking immediately before reaching the allowable upper limit temperature, as shown in FIG.
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A rotation sensor 22 for detecting the rotation speed of the rotor;
The initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor temperature at the time of braking off switching and the rotation speed detected by the rotor, and the second temperature change rate approximation formula is determined from the rotation speed detected by the rotor. And calculating the rotor estimated temperature from the time of braking on switching to the time of braking force reduction switching using the rotor temperature at the time of braking off switching, the first temperature change rate approximate expression, and the second temperature change rate approximate expression, From the estimated rotor temperature at the time of braking force reduction switching and the detected rotor rotational speed, the braking reduction switching initial temperature change rate and the third temperature change rate approximate expression are obtained, and from the detected rotor rotational speed, the fourth temperature change rate approximate expression is obtained. Using the estimated rotor temperature at the time of braking force reduction switching and the third temperature change rate approximate expression and the fourth temperature change rate approximate expression, the rotor from the time of braking force reduction switching to the time at which braking is controlled to be off is determined. Estimated temperature A calculation unit 35 for calculating a,
A first control unit 36 that performs braking force reduction control immediately before the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching calculated by the computing unit 35 reaches the first allowable temperature;
A second control unit 37 according to the present invention is provided that includes a second control unit 37 that controls braking off immediately before the estimated rotor temperature from the time of braking force reduction switching calculated by the calculation unit 35 to the time when braking off control reaches the allowable upper limit temperature. This can be implemented by the braking control device of the eddy current type speed reducer.
[0042]
In the rotor temperature estimation method according to the present invention described above, the temperature change rate can be appropriately corrected in consideration of the influence of the temperature at the time of braking switching and the influence of the rotation speed. Can be used to accurately estimate the rotor temperature. Then, if the rotor temperature is estimated by the rotor temperature estimation method according to the present invention, the braking control can be accurately performed immediately before exceeding the preset temperature, for example, the temperature of the rotor even during continuous use. The braking effect can be exhibited for a long time while suppressing the increase.
[0043]
Further, in the eddy current type speed reducer according to the present invention provided with the above-described braking control apparatus according to the present invention, the braking on and the braking off can be performed at the optimum timing so that the original ability can be sufficiently exhibited. become. In addition, it cannot be overemphasized that the eddy current type speed reducer which concerns on this invention does not ask | require an axis | shaft slide system, a single row turning system, and a double row turning system.
[0044]
【Example】
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
The experiment uses the same double-row swirl type eddy current speed reducer as that used for the bench test that obtained the results shown in FIG. 1, and claims 4 and 8 (claimed as the initial temperature) under the following experimental conditions. This was performed by estimating the rotor temperature by the rotor temperature estimation method according to the present invention of claim 4) using the estimation method according to item 6.
[0045]
Experimental conditions:
▲ 1 ▼ Braking pattern
The rotation speed of the rotor and the switching temperature for braking on / off were changed randomly.
▲ 2 ▼ Atmospheric temperature
Room temperature (20 ° C)
▲ 3 ▼ Speed change
manual
▲ 4 ▼ Switching braking on / off
Automatic braking off at calculated value of 650 ° C.
Randomly manually release the brake off state and return to braking.
[0046]
FIG. 10 shows the result of the above experiment. The estimated value (broken line) according to the method of the present invention agrees very well with the actually measured value (solid line) of the rotor temperature. It was confirmed that it was extremely effective in estimating
[0047]
Therefore, in the control device of the present invention using the method of the present invention, it becomes possible to perform braking control with high accuracy immediately before exceeding a preset temperature, and the eddy current type deceleration provided with the control device of the present invention. It goes without saying that the device can fully demonstrate its original capabilities.
[0048]
Needless to say, the present invention is not limited to the embodiment according to claim 4 described above, and the same effects can be obtained even if the invention relates to other claims.
[0049]
【The invention's effect】
As described above, in the present invention, the temperature of the rotor can be accurately estimated by appropriately correcting the temperature change rate in consideration of the influence of the temperature at the time of braking switching and the influence of the rotation speed, and the braking can be accurately performed. On and braking off can be performed at the optimal timing, and the original ability can be fully demonstrated.
[Brief description of the drawings]
FIG. 1 shows the results of a braking experiment under a constant braking condition and rotational speed in a bench test using an eddy current type speed reducer. The horizontal axis represents the rotor temperature and the vertical axis represents the temperature change. It is the figure which showed the rate.
FIG. 2 is a flowchart for obtaining a temperature change rate when the braking state and the rotation speed are constant.
FIG. 3 is a graph showing the influence of the temperature change rate due to the rotor speed.
FIG. 4 is a block diagram showing a schematic configuration of a control device for an eddy current type speed reducer according to the present invention of claim 9 and claim 13;
FIG. 5 is a block diagram showing a schematic configuration of a control device for an eddy current type speed reducer according to the present invention according to claim 10;
6 is a block diagram showing a schematic configuration of a control device for an eddy current type speed reducer according to the present invention of claims 11 and 15. FIG.
FIG. 7 is a block diagram showing a schematic configuration of a control device for an eddy current type speed reducer according to the present invention according to claim 12;
FIG. 8 is a block diagram showing a schematic configuration of a control device for an eddy current type speed reducer according to the present invention according to claim 14;
9 is a block diagram showing a schematic configuration of a control device for an eddy current type reduction gear according to the present invention of claim 16. FIG.
FIG. 10 is a diagram showing a result of estimating a rotor temperature by using a rotor temperature estimation method according to the present invention of claim 4 and an actual measured temperature of the rotor using an eddy current type speed reducer.
FIG. 11 is a cross-sectional view of the shaft slide type eddy current reduction device in the direction of the rotation axis.
FIG. 12 is a cross-sectional view in the direction of the rotation axis of a single-row swirl type eddy current reduction device.
FIG. 13 is a cross-sectional view in the direction of the rotation axis of a double-row swirl type eddy current reduction device.
FIG. 14 is a cross-sectional view in the direction of the axis of rotation of an eddy current type reduction device of a shaft slide type with a disk type rotor.
[Explanation of symbols]
2 Rotor
11 Temperature sensor
12, 16, 18, 26, 31 Storage unit
13, 17, 19, 23, 27, 29, 32, 35
14, 28, 30 Control unit
15, 22 Rotation sensor
20, 24, 33, 36 First controller
21, 25, 34, 37 Second control unit

Claims (17)

ロータが許容上限温度に達する直前に制動をオフ制御する渦電流式減速装置のロータ温度推定方法であって、
制動オン切替え時の渦電流式減速装置或いはその近傍の雰囲気温度(以下、「実測温度」という。)を検出し、この実測温度とロータ温度の相関関係に基づいて制動オン切替え時のロータ初期温度を算出し、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、前記のロータ初期温度及び第1温度変化率近似式と予め定めた第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出することを特徴とする渦電流式減速装置のロータ温度推定方法。
A rotor temperature estimation method for an eddy current type speed reducer for controlling braking off immediately before the rotor reaches an allowable upper limit temperature,
The rotor initial temperature at the time of braking on switching is detected based on the correlation between the measured temperature and the rotor temperature based on the correlation between the measured temperature and the rotor temperature. The initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor initial temperature, and the rotor initial temperature and first temperature change rate approximation formula and the predetermined second temperature change rate approximation formula are calculated. A rotor temperature estimation method for an eddy current type speed reducer, characterized in that the estimated rotor temperature is calculated from the time when braking is switched to the time when braking is turned off.
請求項1記載の渦電流式減速装置のロータ温度推定方法において、
初期温度変化率を、算出したロータ初期温度に基づいて行うのに代えて、算出したロータ初期温度と検出したロータ初期回転数より決定し、
第1温度変化率近似式の決定を、算出したロータ初期温度に基づいて行うのに代えて、算出したロータ初期温度と検出したロータ回転数に基づいて行うと共に、
第2温度変化率近似式を、予め定めておくのに代えて、前記検出したロータ回転数から決定することを特徴とする渦電流式減速装置のロータ温度推定方法。
In the rotor temperature estimation method of the eddy current type reduction gear according to claim 1,
Instead of performing the initial temperature change rate based on the calculated rotor initial temperature, it is determined from the calculated rotor initial temperature and the detected rotor initial rotational speed,
The determination of the first temperature change rate approximation formula is performed based on the calculated rotor initial temperature and the detected rotor speed instead of being performed based on the calculated rotor initial temperature,
A method for estimating a rotor temperature of an eddy current type speed reducer, characterized in that, instead of predetermining a second temperature change rate approximation formula, the detected temperature of the rotor is determined.
ロータが第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフ制御する渦電流式減速装置のロータ温度推定方法であって、
制動オン切替え時の渦電流式減速装置或いはその近傍の雰囲気温度(以下、「実測温度」という。)を検出し、この実測温度とロータ温度の相関関係に基づいて制動オン切替え時のロータ初期温度を算出し、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、前記のロータ初期温度及び第1温度変化率近似式と予め定めた第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出し、前記制動力低減切替え時のロータ推定温度から制動低減切替初期温度変化率及び第3温度変化率近似式を決定し、前記制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と予め定めた第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出することを特徴とする渦電流式減速装置のロータ温度推定方法。
A rotor temperature estimation method for an eddy current reduction device that performs braking force reduction control immediately before the rotor reaches a first allowable temperature, and controls braking off immediately before reaching the allowable upper limit temperature,
The rotor initial temperature at the time of braking on switching is detected based on the correlation between the measured temperature and the rotor temperature based on the correlation between the measured temperature and the rotor temperature. The initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor initial temperature, and the rotor initial temperature and first temperature change rate approximation formula and the predetermined second temperature change rate approximation formula are calculated. The estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching is calculated, and the braking reduction switching initial temperature change rate and the third temperature change rate approximation formula are determined from the estimated rotor temperature at the time of braking force reduction switching. Then, using the estimated rotor temperature and the third temperature change rate approximate expression at the time of the braking force reduction switching and the predetermined fourth temperature change rate approximate expression, the time from the braking force reduction switch to the time when the brake is turned off is controlled. Rotor temperature estimation method of the eddy current type reduction gear, characterized in that to calculate the data estimated temperature.
請求項3記載の渦電流式減速装置のロータ温度推定方法において、
初期温度変化率を、算出したロータ初期温度に基づいて行うのに代えて、算出したロータ初期温度と検出したロータ初期回転数より決定し、
第1温度変化率近似式の決定を、算出したロータ初期温度に基づいて行うのに代えて、算出したロータ初期温度と検出したロータ回転数に基づいて行うと共に、
第2温度変化率近似式を、予め定めておくのに代えて、前記検出したロータ回転数から決定し、
また、制動低減切替初期温度変化率を、制動力低減切替え時のロータ推定温度に基づいて行うのに代えて、制動力低減切替え時のロータ推定温度と検出した制動力低減切替え時のロータ回転数に基づいて決定し、
第3温度変化率近似式の決定を、制動力低減切替え時のロータ推定温度に基づいて行うのに代えて、制動力低減切替え時のロータ推定温度と前記検出したロータ回転数に基づいて行うと共に、
第4温度変化率近似式を、予め定めておくのに代えて、前記検出したロータ回転数から決定することを特徴とする渦電流式減速装置のロータ温度推定方法。
In the rotor temperature estimation method of the eddy current type speed reducer according to claim 3,
Instead of performing the initial temperature change rate based on the calculated rotor initial temperature, it is determined from the calculated rotor initial temperature and the detected rotor initial rotational speed,
The determination of the first temperature change rate approximation formula is performed based on the calculated rotor initial temperature and the detected rotor speed instead of being performed based on the calculated rotor initial temperature,
Instead of predetermining the second temperature change rate approximate expression, it is determined from the detected rotor speed,
Also, instead of performing the braking reduction switching initial temperature change rate based on the estimated rotor temperature at the time of braking force reduction switching, the estimated rotor temperature at the time of braking force reduction switching and the detected rotor speed at the time of braking force reduction switching Based on
Instead of determining the third temperature change rate approximate expression based on the estimated rotor temperature at the time of braking force reduction switching, the third temperature change rate approximate expression is determined based on the estimated rotor temperature at the time of braking force reduction switching and the detected rotor speed. ,
A rotor temperature estimation method for an eddy current type speed reducer, characterized in that a fourth temperature change rate approximation equation is determined from the detected rotor rotational speed instead of being predetermined.
ロータが、許容上限温度に達するまでに制動をオフ制御する渦電流式減速装置のロータ温度推定方法において、
制動オフ切替え時のロータ温度(実測値、推定値を問わない)から初期温度変化率と第1温度変化率近似式を決定し、前記の制動オフ切替え時のロータ温度及び第1温度変化率近似式と予め定めた第2温度変化率近似式を用いて、制動オフ切替え時から制動オフ状態にある所期時間経過後のロータ推定温度を算出することを特徴とする渦電流式減速装置のロータ温度推定方法。
In the rotor temperature estimation method for an eddy current type speed reducer in which braking is controlled off until the rotor reaches the allowable upper limit temperature,
An initial temperature change rate and a first temperature change rate approximation formula are determined from a rotor temperature (regardless of an actual measurement value or an estimated value) at the time of braking off switching, and the rotor temperature and the first temperature change rate approximation at the time of braking off switching are determined. And an estimated second temperature change rate approximate expression, the rotor estimated temperature after the lapse of a predetermined time in the braking-off state from the time of braking-off switching is calculated. Temperature estimation method.
請求項5記載の渦電流式減速装置のロータ温度推定方法において、
初期温度変化率と第1温度変化率近似式の決定を、制動オフ切替え時のロータ温度に基づいて行うのに代えて、前記ロータ温度と検出したロータ回転数に基づいて行うと共に、
第2温度変化率近似式を、予め定めておくのに代えて、前記検出したロータ回転数から決定することを特徴とする渦電流式減速装置のロータ温度推定方法。
In the rotor temperature estimation method of the eddy current type reduction gear according to claim 5,
In place of determining the initial temperature change rate and the first temperature change rate approximate expression based on the rotor temperature at the time of braking off switching, based on the rotor temperature and the detected rotor speed,
A method for estimating a rotor temperature of an eddy current type speed reducer, characterized in that, instead of predetermining a second temperature change rate approximation formula, the detected temperature of the rotor is determined.
制動オン切替え時のロータ初期温度として、請求項5記載の推定方法を用いたロータ温度推定値を用いることを特徴とする請求項1又は3記載のロータ温度推定方法。The rotor temperature estimation method according to claim 1, wherein an estimated rotor temperature value using the estimation method according to claim 5 is used as the initial rotor temperature at the time of braking on switching. 制動オン切替え時のロータ初期温度として、請求項6記載の推定方法を用いたロータ温度推定値を用いることを特徴とする請求項2又は4記載のロータ温度推定方法。The rotor temperature estimation method according to claim 2 or 4, wherein a rotor temperature estimated value using the estimation method according to claim 6 is used as the rotor initial temperature at the time of braking on switching. 請求項1記載のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
この温度センサ取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係と、第2温度変化率近似式を記憶した記憶部と、
この記憶部の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、このロータ初期温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、
この演算部で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
A control device that uses the rotor temperature estimation method according to claim 1 to turn off braking immediately before the estimated rotor temperature exceeds a preset allowable temperature,
A temperature sensor provided in or near the eddy current type speed reducer;
A storage unit storing a change in the atmospheric temperature at the temperature sensor mounting position, a correlation between the atmospheric temperature and the rotor temperature, and a second temperature change rate approximation formula;
The rotor initial temperature at the time of braking on switching is calculated from the correlation between the ambient temperature and the rotor temperature of the storage unit, and the initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor initial temperature, and the rotor A calculation unit that calculates an estimated rotor temperature from a time when braking is switched on to a time when the braking is turned off using an initial temperature, a first temperature change rate approximate expression, and the second temperature change rate approximate expression;
A braking control device for an eddy current reduction device, comprising: a control unit that controls braking off immediately before the estimated rotor temperature calculated by the calculation unit exceeds a preset allowable temperature.
請求項2記載のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
ロータの回転数を検出する回転センサと、
前記温度センサ取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係を記憶した記憶部と、
この記憶部の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータの初期温度と初期回転数から初期温度変化率を、ロータの初期回転数と検出した回転数から第1温度変化率近似式を、また、ロータの検出した回転数から第2温度変化率近似式を夫々決定し、これらのロータ初期温度と第1温度変化率近似式と第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、
この演算部で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
A control device that uses the rotor temperature estimation method according to claim 2 to turn off braking immediately before the estimated rotor temperature exceeds a preset allowable temperature,
A temperature sensor provided in or near the eddy current type speed reducer;
A rotation sensor for detecting the rotational speed of the rotor;
A change in the ambient temperature at the temperature sensor mounting position, and a storage unit that stores the correlation between the ambient temperature and the rotor temperature,
The rotor initial temperature at the time of braking on switching is calculated from the correlation between the ambient temperature of the storage unit and the rotor temperature, and the initial temperature change rate is detected from the initial rotational speed of the rotor and the initial rotational speed of the rotor. The first temperature change rate approximation formula is determined from the determined rotation speed, and the second temperature change rate approximation formula is determined from the rotation speed detected by the rotor. The rotor initial temperature, the first temperature change rate approximation formula, and the second Using a temperature change rate approximate expression, a calculation unit that calculates a rotor estimated temperature from the time when braking is switched to the time when braking is controlled to be off,
A braking control device for an eddy current reduction device, comprising: a control unit that controls braking off immediately before the estimated rotor temperature calculated by the calculation unit exceeds a preset allowable temperature.
請求項3記載のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
この温度センサ取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係と、第2温度変化率近似式及び第4温度変化率近似式を記憶した記憶部と、
この記憶部の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータ初期温度から初期温度変化率と第1温度変化率近似式を決定し、このロータ初期温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出した後、この制動力低減切替え時のロータ推定温度から制動低減切替初期温度変化率と第3温度変化率近似式を決定し、前記の制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と前記第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、
この演算部で算出した制動オン切替え時から制動力低減切替え時までのロータ推定温度が第1許容温度に達する直前に制動力低減制御する第1制御部と、
前記演算部で算出した制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度が許容上限温度に達する直前に制動をオフ制御する第2制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
A control device that uses the rotor temperature estimation method according to claim 3 to perform braking force reduction control immediately before the estimated rotor temperature reaches a first allowable temperature, and to turn off braking immediately before reaching the allowable upper limit temperature,
A temperature sensor provided in or near the eddy current type speed reducer;
A storage unit storing the change in the ambient temperature at the temperature sensor mounting position, the correlation between the ambient temperature and the rotor temperature, the second temperature change rate approximation formula and the fourth temperature change rate approximation formula,
The rotor initial temperature at the time of braking on switching is calculated from the correlation between the ambient temperature and the rotor temperature of the storage unit, and the initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor initial temperature, and the rotor Using the initial temperature and the first temperature change rate approximation formula and the second temperature change rate approximation formula, after calculating the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching, The braking reduction switching initial temperature change rate and the third temperature change rate approximation formula are determined from the estimated rotor temperature, and the estimated rotor temperature and third temperature change rate approximation formula and the fourth temperature change rate approximation at the time of the braking force reduction switching are determined. An arithmetic unit that calculates the estimated rotor temperature from the time of braking force reduction switching to the time when braking is controlled off using the equation;
A first control unit that performs braking force reduction control immediately before the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching calculated by the computing unit reaches the first allowable temperature;
An eddy current comprising a second control unit that controls braking off immediately before the estimated rotor temperature from the time of braking force reduction switching calculated by the arithmetic unit to the time when braking is controlled to reach the allowable upper limit temperature Type braking device braking control device.
請求項4記載のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御し、許容上限温度に達する直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
ロータの回転数を検出する回転センサと、
前記温度センサ取付位置での雰囲気温度の変化と、この雰囲気温度とロータ温度の相関関係を記憶した記憶部と、
この記憶部の前記雰囲気温度とロータ温度の相関関係から制動オン切替え時のロータ初期温度を算出すると共に、このロータの初期温度と検出した回転数から初期温度変化率と第1温度変化率近似式を、また、検出したロータ回転数から第2温度変化率近似式を夫々決定し、これらのロータ初期温度と第1温度変化率近似式と第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出した後、この制動力低減切替え時のロータ推定温度と検出したロータ回転数から制動低減切替初期温度変化率と第3温度変化率近似式を、また、検出したロータ回転数から第4温度変化率近似式を夫々決定し、前記の制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、
この演算部で算出した制動オン切替え時から制動力低減切替え時までのロータ推定温度が第1許容温度に達する直前に制動力低減制御する第1制御部と、
前記演算部で算出した制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度が許容上限温度に達する直前に制動をオフ制御する第2制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
A control device that uses the rotor temperature estimation method according to claim 4 to perform braking force reduction control immediately before the estimated rotor temperature reaches a first allowable temperature, and to turn off braking immediately before reaching the allowable upper limit temperature,
A temperature sensor provided in or near the eddy current type speed reducer;
A rotation sensor for detecting the rotational speed of the rotor;
A change in the ambient temperature at the temperature sensor mounting position, and a storage unit that stores the correlation between the ambient temperature and the rotor temperature,
The rotor initial temperature at the time of braking on switching is calculated from the correlation between the ambient temperature and the rotor temperature in the storage unit, and the initial temperature change rate and the first temperature change rate approximation formula are calculated from the initial temperature of the rotor and the detected rotational speed. Further, a second temperature change rate approximate expression is determined from the detected rotor rotational speed, and braking on switching is performed using the rotor initial temperature, the first temperature change rate approximate expression, and the second temperature change rate approximate expression. After calculating the estimated rotor temperature from the time to the braking force reduction switching, the braking reduction switching initial temperature change rate and the third temperature change rate approximation formula are calculated from the estimated rotor temperature at the braking force reduction switching and the detected rotor speed. Further, a fourth temperature change rate approximate expression is determined from the detected rotor rotational speed, and the estimated rotor temperature and the third temperature change rate approximate expression and the fourth temperature change rate approximate expression at the time of the braking force reduction switching are used. An arithmetic unit for calculating the rotor estimated temperature until the time of OFF control of the braking from the time of switching reduced braking force,
A first control unit that performs braking force reduction control immediately before the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching calculated by the computing unit reaches the first allowable temperature;
An eddy current comprising a second control unit that controls braking off immediately before the estimated rotor temperature from the time of braking force reduction switching calculated by the arithmetic unit to the time when braking is controlled to reach the allowable upper limit temperature Type braking device braking control device.
制動オン切替え時のロータ初期温度として、請求項5の推定方法によるロータ温度推定値を用いた請求項1記載のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
第2温度変化率近似式を記憶した記憶部と、
制動オフ切替え時のロータ温度から初期温度変化率と第1温度変化率近似式を決定し、前記制動オフ切替え時のロータ温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、
この演算部で算出したロータ推定温度が許容上限温度を超える直前に制動をオフ制御する制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
The rotor temperature estimation method according to claim 1 using the rotor temperature estimation value according to the estimation method according to claim 5 as the rotor initial temperature at the time of braking on switching, and braking is performed immediately before the estimated rotor temperature exceeds a preset allowable temperature. A control device for turning off
A temperature sensor provided in or near the eddy current type speed reducer;
A storage unit storing a second temperature change rate approximation formula;
An initial temperature change rate and a first temperature change rate approximate expression are determined from the rotor temperature at the time of braking off switching, and the rotor temperature and first temperature change rate approximate expression and the second temperature change rate approximate expression at the time of braking off switching are determined. A calculation unit that calculates a rotor estimated temperature from a time when braking is switched on to a time when braking is controlled to be off;
A braking control device for an eddy current type speed reducer, comprising a control unit that controls braking off immediately before the estimated rotor temperature calculated by the calculation unit exceeds an allowable upper limit temperature.
制動オン切替え時のロータ初期温度として、請求項6の推定方法によるロータ温度推定値を用いた請求項2記載のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
ロータの回転数を検出する回転センサと、
制動オフ切替え時のロータ温度と前記ロータの検出した回転数から初期温度変化率と第1温度変化率近似式を、また、前記ロータの検出した回転数から第2温度変化率近似式を夫々決定し、前記制動オフ切替え時のロータ温度と第1温度変化率近似式と第2温度変化率近似式を用いて、制動オン切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、
この演算部で算出したロータ推定温度が許容上限温度を超える直前に制動をオフ制御する制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
The rotor temperature estimation method according to claim 2 using the rotor temperature estimation value according to the estimation method of claim 6 as the rotor initial temperature at the time of braking on switching, and braking is performed immediately before the estimated rotor temperature exceeds a preset allowable temperature. A control device for turning off
A temperature sensor provided in or near the eddy current type speed reducer;
A rotation sensor for detecting the rotational speed of the rotor;
The initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor temperature at the time of braking off switching and the rotation speed detected by the rotor, and the second temperature change rate approximation formula is determined from the rotation speed detected by the rotor. Then, using the rotor temperature, the first temperature change rate approximate expression and the second temperature change rate approximate expression at the time of braking off switching, an operation for calculating the estimated rotor temperature from the time of braking on switching to the time at which braking is controlled to be off And
A braking control device for an eddy current type speed reducer, comprising a control unit that controls braking off immediately before the estimated rotor temperature calculated by the calculation unit exceeds an allowable upper limit temperature.
制動オン切替え時のロータ初期温度として、請求項5の推定方法によるロータ温度推定値を用いた請求項3記載のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
第2温度変化率近似式及び第4温度変化率近似式を記憶した記憶部と、
制動オフ切替え時のロータ温度から初期温度変化率と第1温度変化率近似式を決定し、前記制動オフ切替え時のロータ温度及び第1温度変化率近似式と前記第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出した後、この制動力低減切替え時のロータ推定温度から制動低減切替初期温度変化率と第3温度変化率近似式を決定し、前記の制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と前記第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、
この演算部で算出した制動オン切替え時から制動力低減切替え時までのロータ推定温度が第1許容温度に達する直前に制動力低減制御する第1制御部と、
前記演算部で算出した制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度が許容上限温度に達する直前に制動をオフ制御する第2制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
The rotor temperature estimation method according to claim 3 using the rotor temperature estimation value according to the estimation method of claim 5 as the rotor initial temperature at the time of braking on switching, and the braking force immediately before the estimated rotor temperature reaches the first allowable temperature. A control device that performs reduction control and turns off braking immediately before reaching an allowable upper limit temperature,
A temperature sensor provided in or near the eddy current type speed reducer;
A storage unit storing the second temperature change rate approximate expression and the fourth temperature change rate approximate expression;
An initial temperature change rate and a first temperature change rate approximate expression are determined from the rotor temperature at the time of braking off switching, and the rotor temperature and first temperature change rate approximate expression and the second temperature change rate approximate expression at the time of braking off switching are determined. After calculating the estimated rotor temperature from the time of braking ON switching to the time of braking force reduction switching, the braking reduction switching initial temperature change rate and the third temperature change rate approximation formula are calculated from the estimated rotor temperature at the time of braking force reduction switching. Using the estimated rotor temperature and the third temperature change rate approximation formula at the time of braking force reduction switching and the fourth temperature change rate approximation formula, the rotor from the time of braking force reduction switching to the time at which braking is controlled to be off is determined. A calculation unit for calculating the estimated temperature;
A first control unit that performs braking force reduction control immediately before the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching calculated by the computing unit reaches the first allowable temperature;
An eddy current comprising a second control unit that controls braking off immediately before the estimated rotor temperature from the time of braking force reduction switching calculated by the arithmetic unit to the time when braking is controlled to reach the allowable upper limit temperature Type braking device braking control device.
制動オン切替え時のロータ初期温度として、請求項6の推定方法によるロータ温度推定値を用いた請求項4記載のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
ロータの回転数を検出する回転センサと、
制動オフ切替え時のロータ温度と前記ロータの検出した回転数から初期温度変化率と第1温度変化率近似式を、また、前記ロータの検出した回転数から第2温度変化率近似式を夫々決定し、前記制動オフ切替え時のロータ温度と第1温度変化率近似式と第2温度変化率近似式を用いて、制動オン切替え時から制動力低減切替え時までのロータ推定温度を算出した後、この制動力低減切替え時のロータ推定温度と検出したロータ回転数から制動低減切替初期温度変化率と第3温度変化率近似式を、また、検出したロータ回転数から第4温度変化率近似式を夫々決定し、前記の制動力低減切替え時のロータ推定温度及び第3温度変化率近似式と第4温度変化率近似式を用いて、制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度を算出する演算部と、
この演算部で算出した制動オン切替え時から制動力低減切替え時までのロータ推定温度が第1許容温度に達する直前に制動力低減制御する第1制御部と、
前記演算部で算出した制動力低減切替え時から制動をオフ制御する時刻までのロータ推定温度が許容上限温度に達する直前に制動をオフ制御する第2制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
The rotor temperature estimation method according to claim 4 using the rotor temperature estimation value according to the estimation method of claim 6 as the rotor initial temperature at the time of braking on switching, and the braking force immediately before the estimated rotor temperature reaches the first allowable temperature. A control device that performs reduction control and turns off braking immediately before reaching an allowable upper limit temperature,
A temperature sensor provided in or near the eddy current type speed reducer;
A rotation sensor for detecting the rotational speed of the rotor;
The initial temperature change rate and the first temperature change rate approximation formula are determined from the rotor temperature at the time of braking off switching and the rotation speed detected by the rotor, and the second temperature change rate approximation formula is determined from the rotation speed detected by the rotor. And calculating the rotor estimated temperature from the time of braking on switching to the time of braking force reduction switching using the rotor temperature at the time of braking off switching, the first temperature change rate approximate expression, and the second temperature change rate approximate expression, From the estimated rotor temperature at the time of braking force reduction switching and the detected rotor rotational speed, the braking reduction switching initial temperature change rate and the third temperature change rate approximate expression are obtained, and from the detected rotor rotational speed, the fourth temperature change rate approximate expression is obtained. Using the estimated rotor temperature at the time of braking force reduction switching and the third temperature change rate approximate expression and the fourth temperature change rate approximate expression, the rotor from the time of braking force reduction switching to the time at which braking is controlled to be off is determined. Estimated temperature A calculation unit for calculating a,
A first control unit that performs braking force reduction control immediately before the estimated rotor temperature from the time of braking on switching to the time of braking force reduction switching calculated by the computing unit reaches the first allowable temperature;
An eddy current comprising a second control unit that controls braking off immediately before the estimated rotor temperature from the time of braking force reduction switching calculated by the arithmetic unit to the time when braking is controlled to reach the allowable upper limit temperature Type braking device braking control device.
請求項9〜16の何れか記載の制動制御装置を備えたことを特徴とする渦電流式減速装置。An eddy current reduction device comprising the braking control device according to any one of claims 9 to 16.
JP2002177657A 2002-06-18 2002-06-18 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer Expired - Fee Related JP4045869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177657A JP4045869B2 (en) 2002-06-18 2002-06-18 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177657A JP4045869B2 (en) 2002-06-18 2002-06-18 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer

Publications (2)

Publication Number Publication Date
JP2004023930A true JP2004023930A (en) 2004-01-22
JP4045869B2 JP4045869B2 (en) 2008-02-13

Family

ID=31175634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177657A Expired - Fee Related JP4045869B2 (en) 2002-06-18 2002-06-18 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer

Country Status (1)

Country Link
JP (1) JP4045869B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054451A (en) * 2006-08-25 2008-03-06 Sumitomo Metal Ind Ltd Braking force estimation method for eddy current decelerator, estimated braking force operating device, braking force controller and eddy current decelerator
US20130028292A1 (en) * 2011-07-29 2013-01-31 Fanuc Corporation Temperature detection device that detects temperature of rotor of motor
CN103776556A (en) * 2012-10-18 2014-05-07 发那科株式会社 Temperature estimation apparatus for estimating temperature of motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054451A (en) * 2006-08-25 2008-03-06 Sumitomo Metal Ind Ltd Braking force estimation method for eddy current decelerator, estimated braking force operating device, braking force controller and eddy current decelerator
US20130028292A1 (en) * 2011-07-29 2013-01-31 Fanuc Corporation Temperature detection device that detects temperature of rotor of motor
US8967857B2 (en) * 2011-07-29 2015-03-03 Fanuc Corporation Temperature detection device that detects temperature of rotor of motor
CN103776556A (en) * 2012-10-18 2014-05-07 发那科株式会社 Temperature estimation apparatus for estimating temperature of motor
JP2014082908A (en) * 2012-10-18 2014-05-08 Fanuc Ltd Temperature estimation device for estimating temperature of motor

Also Published As

Publication number Publication date
JP4045869B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US20130144478A1 (en) Shift range switcher
JP5802142B2 (en) Electric parking brake control device, control method, control program, and brake system
US10246064B2 (en) Electric brake device
US9829058B2 (en) Method and apparatus for the operation of a parking brake of a motor vehicle
JP2000033863A (en) Method for controlling vehicle brake and apparatus for same
US6909575B2 (en) Magnetic disk drive and control method thereof
US20210024044A1 (en) Vehicle control apparatus and vehicle control method
US20170297548A1 (en) Braking Device for a Motor Vehicle, and Method for Controlling the Braking Device
JP2018040463A5 (en)
JP2008202905A5 (en)
WO2018159645A1 (en) Temperature prediction device, compressor with magnetic bearing mounted thereon, and temperature prediction method and program
JP2004023930A (en) Method of estimating temperature of rotor of eddy current system speed reducer, and brake controller, and eddy current system speed reducer
JP5023617B2 (en) Braking force estimation method, estimated braking force calculation device, braking force control device, and eddy current reduction device for eddy current reduction device
JP7225820B2 (en) Vehicle opening/closing body control device
JP5724884B2 (en) Internal combustion engine cooling device
JP2014504978A (en) Adjustment method of tightening force given by parking brake
US20220340017A1 (en) Control of torque in electric lift trucks
US10819265B2 (en) Method and apparatus for controlling an electric machine
JP3697904B2 (en) Inter-vehicle distance control device
JP3760776B2 (en) Braking control method and braking control device for eddy current reduction device
ATE508916T1 (en) ARRANGEMENT AND METHOD FOR CONTROLLING THE ACTIVATION OF AN AUXILIARY BRAKE IN A VEHICLE
JP4258760B2 (en) Electric brake device
JP3956210B2 (en) Eddy current reducer
JP2011506836A (en) Method, apparatus and use of the apparatus for controlling a compressor
JP2006118775A (en) Heat treatment method and heat treatment device of aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4045869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees