JP4041550B2 - 集積回路 - Google Patents

集積回路 Download PDF

Info

Publication number
JP4041550B2
JP4041550B2 JP29082796A JP29082796A JP4041550B2 JP 4041550 B2 JP4041550 B2 JP 4041550B2 JP 29082796 A JP29082796 A JP 29082796A JP 29082796 A JP29082796 A JP 29082796A JP 4041550 B2 JP4041550 B2 JP 4041550B2
Authority
JP
Japan
Prior art keywords
die
wafer
dies
pad
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29082796A
Other languages
English (en)
Other versions
JPH09266283A (ja
Inventor
ディ.フェトセル リー
Original Assignee
テキサス インスツルメンツ インコーポレイテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テキサス インスツルメンツ インコーポレイテツド filed Critical テキサス インスツルメンツ インコーポレイテツド
Publication of JPH09266283A publication Critical patent/JPH09266283A/ja
Application granted granted Critical
Publication of JP4041550B2 publication Critical patent/JP4041550B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318505Test of Modular systems, e.g. Wafers, MCM's
    • G01R31/318511Wafer Test
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31712Input or output aspects
    • G01R31/31715Testing of input or output circuits; test of circuitry between the I/C pins and the functional core, e.g. testing of input or output driver, receiver, buffer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318505Test of Modular systems, e.g. Wafers, MCM's

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般に集積回路製造に関するものであり、更に詳細にはウエハ上のダイの試験に関する。
【0002】
【従来の技術】
集積回路(IC)製造者は、ウエハと呼ばれる典型的には円形の基板上にダイ(die)を作製する。ウエハには個々に長方形または正方形のダイが数百個含まれる。ウエハ上のダイあるいは切り離される前のダイは、ダイが切り離される前に試験をして良品と不良品とを区別しなければならない。切り離し前のダイの試験はダイパッドにおいて個々のダイを物理的にプロービング(probing)することによって行われるのが従来のやり方で、それによって、プローブへつながれたテスターが良品のダイであるか不良品であるかを見分けることができるようになっている。この種のプロービングは比較的低速で、また、ウエハ上の各ダイ位置でプローブを正確に位置決めしたりステップ移動したりするために高価な機械機構を必要とするものである。このプロービング工程は、MCM(マルチチップモジュール)基板上へ裸のダイをアセンブルしたりICパッケージ化したりする間にボンディングプロセスを妨害する可能性のある損傷をダイパッドに対して与えかねない。更に、ダイ寸法が縮小するにつれてパッド同士が互いに益々接近することになり、それらへアクセスするための精密なプロービング装置を設計することがより困難で高くつくようになっている。
【0003】
切り離し前のウエハ上のダイを試験するための従来のその他の方法には、(1)各ダイ上にビルトインの自己試験(BIST)回路を採用して、各ダイのBIST回路がそのダイを試験することを許容する方法を提供することによって、各ダイがそれ自身を試験できるように設計する方法、(2)ダイ間のスクライブレーン(scribe lane)を幅広くして、(a)試験プローブポイント、(b)試験用のアクセス導体、および/または(c)試験回路を収容できるようにする方法、および(3)ウエハ上のダイを覆う、試験回路を備えた半導体材料の被覆層を加工処理して、被覆層からウエハ上の各ダイのパッドへビア接続を設ける方法、が含まれる。方法1はダイ上の面積を食うBIST回路を必要とするのが欠点で、またそのBIST回路はダイのI/Oを適切に試験することができないことがある。方法2は、スクライブレーンを幅広くすれば、付加的なダイのために使用できたであろうウエハ面積がそれのために占有され、ウエハ上に製造できるダイの数が減少することが欠点である。方法3は、ウエハ上のダイの上を被覆した接続性試験用の層を形成するという付加的なウエハ処理工程を必要とし、更に試験が完了した後にその被覆層をウエハから除去する必要があることが欠点である。この被覆層除去の工程は、プロセスに付加されることになって、下層のダイがこの除去工程の間に損傷を受ける可能性もある。
【0004】
理想的には、良品のダイだけを切り離してICとして実装することが好ましい。ダイの実装コストは高価であり、従って不良品ダイをIC中へ実装することはICベンダーの製造コストを引き上げ、その結果、消費者に対する高い価格となって跳ね返ってくる。
【0005】
図1は、機能コア論理回路(FCL)とパッド位置への入力および出力バッファを備えたダイの模式図を示す。多様なパッドバッファリングの方式が示されており、それらの中には、入力(I)、2状態出力(2SO)、3状態出力(3SO)、オープンドレイン出力(ODO)、双方向的な入力および3SO(I/O1)、および双方向的な入力およびODO(I/O2)が含まれる。このFCLは、カスタムであっても半カスタム(ASIC)であってもよく、それらには、マイクロプロセッサ、組み合わせ論理回路、逐次論理回路、アナログ、混在信号、プログラマブル論理回路、RAM、ROM、キャッシュ、アレイ、DSP、あるいはそれらおよび/またはその他の機能を組み合わせたものが含まれる。ダイは、ウエハ上でのそれの位置を説明する便宜上、上側A、右側B、下側C、左側Dの側面を有するように示してある。ダイはまた、ダイに対して電力を供給するために、少なくとも1つの電源(V)パッドと少なくとも1つのアース(G)パッドとを有している。側面Aにはパッド位置1−7が含まれ、Bにはパッド位置1−8が、Cにはパッド位置1−8が、そしてDにはパッド位置1−9が含まれている。各側面(A、B、C、D)上でのバッファ/パッド組の配置は、そのダイがアセンブルされるパッケージの所望のピン出力、あるいはダイがつながれるマルチチップモジュール(MCM)基板上の信号端子に対応している。図2はダイの切り出された側面を示しており、いずれもFCLへつながる入力パッドおよび出力パッドをそれぞれD2およびB2に示されている。
【0006】
図3Aは図1のダイを64個収容するウエハの例を示している。図3Bはウエハ上での各ダイのそれぞれA、B、C、Dの側面に関する位置を示している。点線で描かれたダイは、ウエハ当たりのダイ数を増やすための詰め方を示している。ウエハ上にダイがびっしりと詰められた場合(すなわち、点線のダイの配置を採用した場合)でも、ウエハの周辺にはダイを配置できない領域が存在することに注目されたい。これはウエハが円形形状であるのに対してダイが正方形/長方形形状であることから生じている。このウエハ周辺の未使用領域は、試験ポイント(パッド)、試験回路、およびダイに対して電源およびアースと試験信号を供給する導体を引き回すために使用できる。
【0007】
図4はテスターおよびパッドプローブアセンブリを使用して、どのように従来のダイ試験が行われるかを示している。選ばれたダイの上にプローブアセンブリが設置され、ダイパッドに接触するまで下に降ろされる。一旦接触がなされると、テスターが電力を供給して大電流チェックが行われる。もし電流が大きければ、ダイ上に短絡が生じているということで試験は中止され、そのダイは不良品としてマークされる(通常はインクの色で表示する)。もし電流が正常であれば試験が継続され、ダイに対して試験パターンが供給されて、ダイからの試験応答が受信される。もし試験に失敗すれば、そのダイは不良品としてマークされる。もし試験にパスすればそのダイは良品ということで、マークはされないか、あるいはマークをするとしても異なる色のインクでマークされる。試験の間、ダイ電流をモニターして、試験中にそれが指定された範囲の中に収まっているかどうかを調べることができる。範囲を逸脱した電流が発生すれば、大電流機能の障害としてマークされる。
【0008】
【発明の解決しようとする課題】
このような従来のウエハ試験にはいくつもの欠点がある。ダイに対してプロービングすることは金属ダイパッドに傷を付けることになる。従って、物理的なプローブを用いる場合には、ダイの試験を1回だけに限ることが重要である。もしそうでなければ、試験を繰り返すためにダイを再プロービングすることはパッドに対する損傷を更にひどくすることになる。ダイへの1回だけのプロービングであっても、後にダイをICパッケージやMCM基板へアセンブリする場合に悪影響を与えるのに十分な損傷をパッドに与える可能性がある。ダイパッドによって供給される標的が非常に小さいため、プローブをダイパッド上へ配置するために用いられる装置は注意深く設計されなければならず、従って購入/製作および保守、校正が非常に高くつくことになる。更に、ウエハ上で各ダイ位置へプローブをステップ移動させる操作は、ウエハ上の各ダイをアクセス・試験するためにプローブが移動しなければならない三次元的な運動のために、時間を食うものとなる。
【0009】
従って、上に述べたような欠点なしにウエハ上のダイを試験できることが望まれる。
【0010】
【課題を解決するための手段】
本発明は:ダイが直接的なダイとダイとの接続性を有するバイパスモードと、ダイが機能コア論理回路へつながるダイパッドを有する機能モードのいずれかを選択的に提供するためのダイ常駐回路および接続を含むダイ・フレームワーク;ウエハ上のその他のダイをバイパスモードに設定したまま、1つのダイを選んで機能モードに設定するためのフォールト・トレラント回路および方法;(1)ウエハ上のその他のダイをバイパスモードに設定したまま、ウエハ上の機能モードに設定すべき1つのダイを電気的に選ぶこと、(2)その選ばれたダイを試験すること、および(3)その他のダイに対しても上記の電気的な選択と試験とを繰り返すこと、を実施するための方法と装置;(1)ウエハ上のその他のダイをバイパスモードに設定したまま、ウエハ上の機能モードに設定すべき対角に位置する複数個のダイを電気的に選ぶこと、(2)前記選ばれた対角に位置するダイ群を並列的に試験すること、および(3)前記電気的選択と試験とをその他の対角に位置するダイ群に対しても繰り返すこと、を実施するための方法と装置、を提供する。
【0011】
本発明は、ウエハ上の切り離し前のダイに対する進歩した試験を提供する。本発明は、例えば、次のような進歩した特徴を有する:(1)ウエハ上の切り離し前のダイの電気的な選択と試験、(2)ウエハ上のダイのより迅速な試験、(3)精密に設計された高価な機械的ウエハプローブ不要、(4)ウエハ上の切り離し前のダイを高速に試験できる能力、(5)切り離し前の複数個のダイを並列的に試験できる能力、および(6)切り離し前のダイのバーンイン試験を簡略化できる能力。
【0012】
【発明の実施の形態】
図5には図1のそれと類似したダイの概略構成が示されている。図1と同様に、ダイは側面A、B、C、Dと、それらに対応して、入力、出力、入力/出力、VおよびGに関するパッドサイト(pad site)を有している。図5はバイパスと呼ばれる付加的なパッドサイトA8およびB9と、モードと呼ばれる付加的なパッドサイトC9を含んでいる。モードパッドはデータ入力と同じようにバッファリングされる。モードが予め定められた論理レベル、例えば高レベルにある時には、ダイの概略構成は図5に示されたもののように見え、ダイはそれの機能モードにあって、図1のダイと正確に等価なものになる。機能モードにおいては、FCL、入力、出力、および入力/出力パッドが許可され、ダイはそれが意図された機能を実行する。機能モードでは、バイパスパッドは使用されない。
【0013】
図6の例は、本発明のバイパスモードで動作するものとして図5のダイを模式的に示している。このダイは、機能モードの論理状態とは反対の、この場合は低論理レベルの論理状態へモードパッドを設定することによってバイパスモードに設定されている。バイパスモードでは、ダイのFCL、入力、出力、および入力/出力バッファが禁止され、側面AとCとの間、および側面DとBとの間の対応する位置にあるパッドサイトが電気的に接続される。バイパスモードでは、ダイは側面AとC間、および側面DとB間の単なる相互接続構造に変換される。この相互接続構造には側面AとC間に互いに平行に延びる複数個の導体、および側面DとB間に互いに平行に延びる複数個の導体が含まれている。バイパスモードにある間は、テスター装置からの信号はAとC間、およびDとB間の相互接続を通って流れ、ウエハ上の選ばれたダイをアクセスおよび試験することができる。
【0014】
機能上必要とされる既存のパッドサイト間には、ほとんどのバイパス接続が形成できるが、片側にある機能パッドサイトの数が反対側にある機能パッドサイトの数と等しくない場合があり得る。このように、図5のバイパスパッドは、向き合った側のパッド数が互いに等しくない場合にパッドからパッドへの接続を提供する。例えば、図5と図6において、バイパスパッドA8とB9はそれぞれ機能パッドC8とD9に対する接続パッドを提供する。対向する側面のダイパッド間のバイパス接続は、ダイを通ってパッドからパッドへの低インピーダンスで双方向的な信号経路を形成する。2つの面間のバイパス接続は、バイパスされたダイを通る試験信号の歪みを回避するために、対向側面のパッド間で等しい伝搬遅延を有するように設計するのが好ましい。
【0015】
例えば図3Aのようなウエハ上のダイ位置を例にとると、試験のために選ばれたダイの側面は、バイパスモードにある(図6)上、右、下、および左の隣接ダイの隣接側面からの信号によって駆動する必要がある。隣接するダイを試験するためには、それを機能モードに設定して、(1)それのA面で必要とされるすべての信号が上に隣接するバイパスされたダイのC面から供給され、(2)それのB面で必要とされるすべての信号が右に隣接するバイパスされたダイのD面から供給され、(3)それのC面で必要とされるすべての信号が下に隣接するバイパスされたダイのA面から供給され、そして(4)それのD面で必要とされるすべての信号が左に隣接するバイパスされたダイのB面から供給される必要がある。
【0016】
図7ないし図14は、ダイの選択的な機能モードおよびバイパスモードのためのフレームワークを実現できる回路および接続の実施例を断面図で示している。
【0017】
例えば図7Aおよび図7Bは、図5および図6のダイのD1入力パッドとB1の3状態出力パッドとの側面図を示している。入力パッドと入力バッファとの間にスイッチ71が設けられて、バイパスモードの間は入力パッドを入力バッファから分離することを許容しており、また入力状態ホールダ(ISH)回路がスイッチと入力バッファとの間に設けられて、バイパスモード中のスイッチが開いている間、(FCLを駆動する)入力バッファへの予め定められた入力状態を保持するようになっている。ANDゲート(A)のようなゲート回路がFCLと3状態出力バッファとの間の制御経路中に設けられて、バイパスモードの間は3状態出力バッファが禁止されるのを許容している。入力パッドと出力パッドとの間の選択可能な接続経路73には、その入力パッドに付随するスイッチ77と出力パッドに付随するスイッチ79との間をつなぐ導体75が含まれ、これらのスイッチは導体75をGまたは入力および出力パッドへつなぐように動作できる。モードパッドは図示のように、これらのスイッチ、ISH、およびゲートAへつながれ、モードパッドが1つの論理状態にある時にはそのダイが機能モードになり、また逆の論理状態にある時にはそのダイがバイパスモードになるようになっている。モードパッドは図示のように、FCLへつなぐことができて、それによってバイパスモード時のFCL中のクロックやその他の動作を禁止することができる。
【0018】
図12Aの例に示されているように、データ入力を所望の論理レベル(ここの例では論理”1”レベル)へつながれ、データ出力を入力バッファの入力へつながれ、そして3状態制御入力をモードパッドへつながれた3状態データバッファで以てISHを実現することができる。与えられたFCL入力に関する好ましい論理レベルとしては、例えばバイパスモードにFCLへ流入する電流を最小化する論理レベルが考えられる。3状態バッファは、バイパスモードの間は許可され、機能モードの間は3状態化される。もし好ましい論理レベルがどうでもよい状態であれば、例示の図12BのバスホールダBHを用いて、バイパスモード間、最後の入力論理レベルを保持させることができる。
【0019】
機能モードにある時(図7A)は、スイッチ77および79が導体75をGへつなぎ、それは導体上にアース面を供給し、入力パッドと出力パッドとの間の交流結合を阻止する。バイパスモードにある時(図7B)は、スイッチ77および79と導体75は入力パッドと出力パッドとの間に、低インピーダンスで双方向的な信号経路接続を提供する。バイパスモードでは、スイッチ71は開いて、FCLを入力パッドから切り離し、3状態出力バッファがANDゲートAを介して禁止され(3状態化され)、FCLを出力パッドから切り離す。
【0020】
図8ないし図11の例は、その他の型のパッドバッファと一緒にバイパス回路を使用する場合を示している。図13および図14は、バイパス回路を機能入力D9とバイパスB9パッドとの間に使用した例、および機能出力C8とバイパスA8パッドとの間に使用した例をそれぞれ示している。
【0021】
図8Aおよび図8Bでは、更にスイッチ81が使用されてバイパスモードの間は2状態出力バッファを出力パッドB2から分離している。図8Cおよび図8Dは図8Aおよび図8Bと同様であるが、機能モードの間のスイッチ81のインピーダンスを無くすために、2状態出力バッファとスイッチ81の代わりに3状態出力バッファが使用されている点が異なる。
【0022】
図9Aおよび図9Bの入力パッドと、図10Aおよび図10Bの3状態出力パッドとは、先に図7Aおよび図7Bに関して述べたものと同じように配置されている。
【0023】
図11Aおよび図11Bは、3状態(I/O1)およびオープンドレイン(I/O2)出力を備えたI/Oパッドを示している。図11Aおよび図11Bの3状態出力バッファと入力バッファは、先に図7Aおよび図7Bに関して述べたものと同じように配置されている。図11Aおよび図11Bのオープンドレイン出力バッファはそれの入力をORゲート(O)の出力へつながれており、ORゲート(O)の1つの入力はFCLによって駆動され、もう1つの入力はモード信号の論理反転によって駆動されている。これにより、モード信号が低レベルの場合にバイパスモードを選択することを想定して、オープンドレイン出力はバイパスモードの間は高レベル状態に浮遊している。
【0024】
図13Aおよび図13Bの入力パッド、および図14Aおよび図14Bの3状態出力パッドは、先に図7Aおよび図7Bに関して述べたものと同じように配置されている。
【0025】
図15Aは、ウエハ上の各ダイのVおよびGパッドに対してウエハ電圧(WV)およびウエハアース(WG)をバスで以て供給するやり方の例を示している。WVバスはプローブ領域PA1およびプローブ領域PA2として指定されたウエハ領域から発しているように示されている。WGバスはプローブ領域PA3およびプローブ領域PA4から発しているように示されている。プローブ領域PA1−PA4は、既に図3Aに関して説明したような、ウエハ周辺のダイを配置できない領域に位置している。図15BはWVおよびWGをダイオードを介してVおよびGのダイパッド(図1および図5を参照)へどのようにつなぐかを示している。WGとGの間、およびWVとVの間にダイオードを配置することにより、隣接のダイに対して電力を供給することなく、従来のような局所的なプロービングおよび個別ダイへの電力供給が可能である。
【0026】
図16Aはウエハ上の切り離し前のダイのフォールト・トレラント選択を実行するための方式例を示している。この方式には、ウエハ上の各ダイに隣接するスクライブレーン中に、ダイセレクタ(die selector)161と呼ばれる小さい回路を配置することが含まれる。図16Bに示されたダイセレクタ161は、I/O端子S1、I/O端子S2、モード出力端子、および電源用としてのWVおよびWGを含んでいる。ダイセレクタのモード出力は付随するダイのモードパッドへつながれる。ダイセレクタはそれらのS1およびS2端子を介して直列につながれている。図16Aの例では、直列になったうちの(ダイ1における)第1のダイセレクタのS1がPA4へつながれ、直列になったうちの(ダイ64における)最後のダイセレクタのS2がPA3へつながれている。ダイ上ではなくスクライブレーン内にダイセレクタが配置されているため、もし必要ならば、ダイセレクタのモード出力を無視してダイのモードパッドに対して物理的なプロービングを行うこともできる。この特徴のために、従来のプローブ試験技術を用いて任意のダイを試験することが可能となる。ダイセレクタのモード出力は単一ダイのモードパッドのみを駆動するので、比較的弱い出力駆動のものに設計することができ、そのため従来のプローブテスターでもモード出力を容易に無視することができ、モード出力に対する損傷を与えずに済む。
【0027】
PA1ないしPA4をプロービングすることによってWVおよびWGに対して電力が供給される。最初に電力が供給される時は、すべてのダイセレクタがリセットされて、それらのモード出力を強制的に低レベルにする状態が設定され、それによってすべてのダイはバイパスモードに設定される。パワーアップ時に過剰な電流が検出されると(恐らく、WVとWGとの間の短絡を示している)、ウエハはパワーダウンされ、従来の機械的なプローブ技術を用いて試験することができる(図15Bのダイオードがこのことを可能にすることに注意)。もし正常な電流が検出されれば(すべてのダイがバイパスモードで正常にパワーアップされたことを意味する)、本発明に従って更に試験を継続実行できる。
【0028】
ダイを試験する前に、直列接続されたダイセレクタ161の完全性を試験することができる。ダイセレクタの試験は、左上のダイセレクタ(ダイ1に隣接)のS1へPA4からクロックパルスを送り、左下のダイセレクタ(ダイ64に隣接)のS2をPA3においてモニターすることによって行うことができる。もしダイセレクタ間の直列経路が完全であれば、左上のS1へ65個のクロックパルスが供給された後に左下のS2においてクロックパルス出力が現れるはずである。1番目に供給されるクロックパルスの立ち下がり端において、ダイ1は付随するダイセレクタのモード出力が高レベルへ変化することによってバイパスモードから機能モードへスイッチされる。その他のダイはすべてそれらのダイセレクタのモード出力が低レベルにあることによって強制的にバイパスモードに留められる。1番目に供給されるクロックパルスの立ち下がり端においては更に、左上のダイセレクタがそれのS1およびS2端子をつなぐので、それによって引き続くS1クロックはS2へ出力される。2番目に供給されるクロックパルスの立ち上がり端において、ダイ1はそれのダイセレクタのモード出力が低レベルへ変化することによりバイパスモードへ復帰させられる。この2番目のクロックパルスはS1からS2への接続を経て、左上のダイセレクタを通って次のダイセレクタへ転送される。2番目のクロックパルスの立ち下がり端において、ダイ2のセレクタはそれのS1端子とS2端子とをつなぎ、モード出力を高レベルへ駆動することによってダイ2をバイパスモードから機能モードへスイッチする。ダイ64およびそれのダイセレクタまでこのプロセスが続けられる。65番目に供給されるクロックパルスの立ち上がり端において、ダイ64はそれのダイセレクタのモード出力が低レベルへ変化することによりバイパスモードへ復帰させられ、65番目のクロックパルスがS2からPA3へ出力される。
【0029】
更に、ダイセレクタ試験の間に、WVおよびWGを通ってウエハとの間で流出および/または流入する電流を各クロックの立ち上がりおよび立ち下がり端においてモニターすることができ、各ダイが連続的にバイパスモードと機能モードとの間で切り替えられる度に、期待される電流の増減が起こっているかどうかを監視することができる。ウエハ電流の変動を検出することによって、選択すべき(すなわち、機能モードへ設定すべき)ダイが選択されなかった時を検出することができる。この状態は以下に詳しく検討するように、ダイセレクタ構成に欠陥が存在することを示唆するものと考えられる。
【0030】
上に述べた説明は、PA4からPA3へのダイセレクタ経路をどのようにして試験および動作させるかを示すものであった。左下のダイセレクタのS2に対してPA3からクロックを供給し、左上のダイセレクタのS1をPA4においてモニターすることによっても同じような試験および動作モードを実現することができる。図17Aのダイセレクタモデルの例と、図17Bの状態グラフの例とがダイセレクタ動作モードを詳細に示している。図17Bからは、ダイセレクタが最初に受信されるS1またはS2クロックパルスに応答して、モード制御信号(立ち下がり端において)を出力し、それによって、つながっているダイを機能モードに設定し、それの試験が実行できるようにすることが分かる。そのダイが試験された後、同一信号(例えばS1)の立ち上がり端が試験済みのダイをバイパスモードへ復帰させ、更に次のダイセレクタのS1入力を駆動する。次に続く立ち下がり端において、次のダイセレクタに付随するダイは試験のために機能モードへスイッチされる。このような手順が繰り返される。
【0031】
図18Aないし図18Cの例は上述のダイセレクタの動作を詳細に示している。図18中のPS1およびPS2はクロックパルスを供給および受信するために外部からアクセス可能な端子(PA3およびPA4と同類)である。先に述べたようにダイセレクタは双方向的に動作することに注目されたい。双方向的な動作にするのはフォールト・トレラントのためである。すなわち、2つのダイセレクタ間の接続が故障しても許容できる。ダイセレクタのフォールト・トレラントな動作例が図19Aないし図19Cに示されている。図19Aでは、2番目と3番目のダイセレクタ間に回路開放故障が存在する。PS1クロック駆動はダイの1および2のみを選択する(図19B)。しかし、PS2クロック駆動はダイ5、4、および3を選択することができる(図19C)。このように回路開放があっても、このダイセレクタ構成は与えられたダイを選んで試験のために機能モードへ設定することができる。
【0032】
図16Aに示されたようなウエハを更に、S1/S2信号を介して直列につなぐことができ、図19Dに示すように、数多くのウエハ上でのダイ選択が可能になる。ウエハ191の左下のダイのS2が、ウエハ191のPA3、外部導体193、そしてウエハ195のPA4を経て、ウエハ195の左上のダイのS1へつながれる。ウエハ195と197との間にも同様な接続が存在し得る。ウエハ191のPA4およびウエハ197のPA3における外部プローブ接続は、上で図16Aないし図18Cに関連して説明したダイ選択方式を複数個のウエハ上のダイに対して適用することを可能とする。
【0033】
図20および図21の例は、ダイセレクタ201中に第2のI/O端子対S3およびS4を追加することによってダイセレクタのフォールト・トレラントを更に改善するやり方を示している。図20Aにおいて、S3およびS4の直列接続経路は縦方向のスクライブレーン中を通ってPA1とPA2との間に設けられるように示されている。S1/S2(横方向のスクライブレーン)経路とS3/S4(縦方向のスクライブレーン)経路とを分離する必要はなく、必要であれば両経路を同じ横方向または縦方向レーン中に配置することもできる。図20Aの例で明らかなように、横方向レーン中の経路S1およびS2と、縦方向レーン中の経路S3およびS4とは異なるダイ選択順をもたらす。すなわち、S1およびS2はダイを1、2、3...64または64、63、62...1の順に選択するが、他方、S3およびS4はダイを1、16、17、...64...8または8、9、24...1の順に選択する。
【0034】
図21Aおよび図21Bの例は、図20Aおよび図20Bの改善されたフォールト・トレラントなダイセレクタ201のモデルおよび状態グラフを示している。図21Aのダイセレクタ201の動作は、ダイセレクタ201が冗長な双方向的選択経路を有していることを除いて図17Aのダイセレクタ161の動作と同じである。冗長な選択経路は、図17Aの単一経路ダイセレクタ161に設けられたフォールト・トレラント機能を無効にするようなひどい欠陥によってそれの選択経路の1つが動作不能になった時でも、動作を継続できるようにする。
【0035】
図22Aないし図24Cには、2重選択経路のダイセレクタ201を使用した動作例が示されている。分かり易くするために、これらの例では両経路(S1およびS2と、S3およびS4)が一緒に(同じスクライブレーン中に)ダイ1からダイ5まで同じ順序で通るように配置されている。この状況は、S1およびS2が横方向レーンに配置され、S3およびS4が縦方向レーンに配置されて、そのため各経路が異なるダイ選択シーケンスを有するようになった図20Aの例とは違っている。図22BはPS1が1、2、3、4、および5の順序でダイを選択することを示している。図22CはPS2が5、4、3、2、および1の順にダイを選択することを示している。図23Aは、PS1(図22B)と同じ順序で冗長的にダイを選択する図22AのPS3を示している。図23Bは、PS2(図22C)と同じ順序で冗長的にダイを選択する図22AのPS4を示している。両経路は図19Aないし図19Cに示された単一欠陥(回路開放)に対して冗長度を持つ。
【0036】
しかし図24Aは、S1およびS2の経路のみを設けるだけでは中間のダイ2、3、および4へのアクセスを不可能にするような、S1およびS2経路に対する多重欠陥の例(2つの回路開放)を示している。図24Bおよび図24Cは、図24Aに示した欠陥を持っているため、PS1がダイ1のみしか選択できず、PS2がダイ5のみしか選択できないことを示している。しかし、図24Aのダイセレクタ201には冗長な選択経路が設けられているので、図23Aおよび図23Bに示すように、S3およびS4経路を用いてダイ2、3、および4を選択することができる。このように、ダイセレクタ201の特長は、多重欠陥によって経路の1つが使用不能なひどい状態になった場合でも、ダイへのアクセスを継続することを可能とする。
【0037】
図27および図28は、図17Aないし図18Cに定義されたダイセレクタ161の実施例を示している。図27において、入力端子S1およびS2は、それぞれの入力データバッファ243および245を介してダイセレクタ状態機械241の入力S1INおよびS2INへそれぞれつながれている。ダイセレクタ状態機械241はモード信号と、許可信号S1ENAおよびS2ENAを出力する。許可信号S1ENAおよびS2ENAはそれぞれ、出力データバッファ247および249を制御する。入力データバッファ243の出力は出力バッファ249の入力へもつながれて、許可信号S2ENAが出力データバッファ249を許可する時に、端子S1に受信された信号を端子S2へ出力させる。同様に、入力データバッファ245の出力は出力データバッファ247の入力へつながれて、許可信号S1ENAが出力データバッファ247を許可する時に端子S2に受信された信号を端子S1へ出力させる。
【0038】
図28の例は、図27のダイセレクタ状態機械241を詳細に示している。従来のパワーアップリセット回路は、ダイセレクタが最初にパワーアップされる時にDフリップフロップ251、253、および255をまずクリアする。フリップフロップ255からのパス信号出力はANDゲート259の1つの入力において反転される。ANDゲート259のもう1つの入力は、ORゲート257の出力によって駆動されるのであるが、この最初のパワーアップ時のパス信号によってゲート259に得られる。最初のパワーアップの後にはフリップフロップの出力QS1およびQS2は低レベルであるため、モード信号はパワーアップの後は低レベルである。QS1がS2ENAへつながれ、QS2がS1ENAへつながれていることに着目すると、出力データバッファ247および249はパワーアップ後は、最初禁止されていることが図27から分かる。信号QS1は最初低レベルであるので、信号S2INが最初ANDゲート261に得られ、また、信号QS2が最初低レベルであるので、信号S1INもまた最初ANDゲート263に得られる。QS1およびQS2の低レベルはまた、ORゲート265を介してフリップフロップ255のD入力を低レベルへ駆動する。ANDゲート261および263の出力はORゲート271の対応する入力へつながれており、ORゲート271の出力はフリップフロップ251、253、および255のクロック入力を駆動する。ANDゲート261の出力は遅延素子267を経てフリップフロップ253のD入力へつながれ、また、ANDゲート263の出力は遅延素子269を経てフリップフロップ251のD入力へつながれている。遅延素子267および269はORゲート271の伝搬遅延よりも大きい伝搬遅延を有するように設計されている。
【0039】
S1IN上の1番目のクロックパルスの立ち上がり端は、論理ゼロがフリップフロップ255までクロックされるようにし、それによってパス信号を最初の低レベル状態に保つ。クロックパルスの立ち下がり端が発生してORゲート271を経てフリップフロップ251をクロックするように伝搬する時、フリップフロップ251のD入力は遅延素子269のためにまだ高レベルにあるので、フリップフロップ出力QS1は高レベルへ駆動される。QS1が高レベルになるので、ORゲート257およびANDゲート259を経てモード信号が高レベルへ駆動される。更にQS1が高レベルにあるので、図27の出力データバッファ249は信号S2ENAを介して許可され、入力S2INはANDゲート261において禁止され、そしてフリップフロップ255のD入力はORゲート265を介して高レベルへ駆動される。こうして、図27の端子S1上の2番目のクロックパルスの立ち上がり端は、出力データバッファ249を通って端子S2へ直接通過し、更に、図28のANDゲート263およびORゲート271を通過してフリップフロップ255へのクロックとなり、そこにおいて高レベルのパス出力となってモード信号を低レベルへ駆動する。端子S1上の次の立ち下がり端は、データ出力バッファ249を通って端子S2へ通過し、フリップフロップ251のQS1出力を高論理レベルに保持するであろう。端子S1に受信される3番目のクロックパルスの立ち上がり端は、データ出力バッファ249を通って端子S2へ通過し、更にフリップフロップ255まで論理1をクロックし、それによってパス信号はANDゲート259を経てモード出力を低レベルに保持するであろう。3番目のクロックパルスの立ち下がり端はフリップフロップ255のQS1出力に論理1を保持するであろう。端子S1上の3番目のクロックパルス後の引き続く各クロックパルスも、3番目のクロックパルスに関して説明したのと同じ結果をもたらすであろう。
【0040】
ダイセレクタ161の双方向的な特徴は図27および図28から明らかになるはずである。すなわち、端子S1ではなくて端子S2においてクロックパルスの列が発生すれば、フリップフロップ253の出力QS2が高レベルへ駆動されて、データ出力バッファ247を許可し、ANDゲート263を介してS1IN信号を禁止することになろう。モード信号は、上に端子S1上のクロックパルス列に関連して述べたのと全く同じように、端子S2上のクロックパルス列に応答し、端子S1は2番目およびすべての引き続くクロックパルス入力を端子S2に受信することになろう。
【0041】
図25および図26の例は、図27および図28に示したダイセレクタ161の実施例と類似のダイセレクタ201の実施例を示している。図25を参照すると、データ入力バッファ243の出力は図27に示すようなデータ出力バッファ249の入力へつながれ、データ入力バッファ245の出力は図27に示すようなデータ出力バッファ247の入力へつながれている。同様に、データ入力バッファ275の出力はデータ出力バッファ277の入力へつながれ、データ入力バッファ281の出力はデータ出力バッファ279の入力へつながれている。
【0042】
図25のダイセレクタ状態機械273が図26に詳しく示されている。図26から分かるように、図25のダイセレクタ状態機械273は図28のダイセレクタ状態機械241を拡張したものを表している。端子S3に対する付加的なANDゲート287、遅延素子293、およびフリップフロップ283が付け加えられ、端子S4に対する付加的なANDゲート289、遅延素子291、およびフリップフロップ285が付け加えられている。これら付加的な要素の動作は先に図28の対応する要素に関連して説明したものと同一である。上で図28に関連して説明した動作と同様に、端子S3上の最初クロックパルスの立ち下がり端はフリップフロップ283のQS3出力を高レベルへ駆動し、モード信号を高レベルへ駆動して、データ出力バッファ277が端子S3を端子S4へつなぐことを許可するであろう。端子S3上の2番目のクロックパルスの立ち上がり端はフリップフロップ255まで論理1をクロックし、それによって、パス信号がANDゲート259を介してモード信号を再び低レベルへ駆動する。同様に、端子S4上の1番目のクロックパルスの立ち下がり端はフリップフロップ285のQS4出力を高レベルへ駆動し、それによってモード信号が高レベルに駆動され、データ出力バッファ279が端子S4を端子S3へつなぐことが許可される。デコーダ回路291は入力としてQS1−QS4を受信し、出力としてDS1−DS4を供給している。QS1が能動的な高レベルにある時、デコーダ回路291はDS2−DS4を能動的高レベルへ駆動し、それによってANDゲート261、287、および289における信号S2IN、S3IN、およびS4INが禁止される。同様に、信号QS2が能動的高レベルにある時、デコーダ回路は信号DS1、DS3、およびDS4を能動的高レベルへ駆動し、信号QS3が能動的高レベルの時は、デコーダ回路は信号DS1、DS2、およびDS4を能動的高レベルへ駆動し、またQS4が能動的高レベルの時は、デコーダ回路は信号DS1−DS3を能動的高レベルへ駆動する。
【0043】
図29Aおよび図29Dの例を参照すると、PA1中のプローブ試験パッドが8個の上側列スイッチグループ(TC1−8)の片側へバス接続(Aバスを介して)されており、図29Dには代表的なスイッチグループTC8が示されている。各々の上部列スイッチグループはまた、スイッチの開閉を行う選択上部列信号(例えば、STC8)をPA1から受信するようになっている。各上部列スイッチグループの反対側は、ダイ1、2、3、4、5、6、7、および8のA面(図5参照)パッドへバス接続されている。
【0044】
更に図29Cを参照すると、PA2中のプローブ試験パッドが8個の右側行スイッチグループ(RR1−8)の片側へバス接続(Bバスを介して)されており、図29Cには代表的なスイッチグループRR8が示されている。各々の右側行スイッチグループはまた、スイッチの開閉を行う選択右側行信号(例えばSRR8)をPA2から受信する。各右側行スイッチグループの反対側は、ダイ8、9、24、25、40、41、56、および57のB面パッドへバス接続されている。
【0045】
更に図29Eを参照すると、PA3中のプローブ試験パッドが8個の下側列スイッチグループ(BC1−8)の片側へバス接続(Cバスを介して)されており、図29Eには代表的なスイッチグループBC1が示されている。各々の下側列スイッチグループはまた、スイッチの開閉を行う選択下側列信号(例えばSBC1)をPA3から受信する。各下側列スイッチグループの反対側は、ダイ57、58、59、60、61、62、63、および64のC面パッドへバス接続されている。
【0046】
更に図29Bを参照すると、PA4中のプローブ試験パッドが8個の左側行スイッチグループ(LR1−8)の片側へバス接続(Dバスを介して)されており、図29Bには代表的なスイッチグループLR1が示されている。各々の左側行スイッチグループはまた、スイッチの開閉を行う選択左側行信号(例えばSLR1)をPA4から受信する。各左側行スイッチグループの反対側は、ダイ1、16、17、32、33、48、49、および64のD面パッドへバス接続されている。
【0047】
PA1−4、スイッチグループ、およびそれらをつなぐバス、これらはすべてウエハの未使用の周辺領域(図3A参照)に配置される。
【0048】
図30の詳細な例に示されているように、ダイ1、2、3、16、17等の周辺のダイを含めてウエハ上の各ダイは、それの上(A)、右(B)、下(C)、および左(D)の側面パッドサイトにおいて、ダイ間のスクライブレーンを跨ぐ短いバスによって隣接するダイパッドサイトへつながれている。ダイおよびウエハ上でのそれらの配置の規則性のために、縦方向のパッドバス接続がAおよびC面で隣接しているダイ間に設けられ、また、横方向のパッドバス接続がBおよびD面で隣接しているダイ間に設けられている。周辺ダイのパッドも同様に、隣接するダイパッドへバス接続されているが、多くとも3面のみである。それは、周辺ダイの側面のうち少なくとも1つの面は常にスイッチグループへつながれるからである。
【0049】
図29Aには示されていないが、ウエハには更に、(1)図5ないし図14において説明したような選択可能な機能モードおよびバイパスモードを有するダイ、(2)図15Aおよび図15Bに示されたようなWVおよびWGのバス接続、および(3)図16ないし図28で述べたようなフォールト・トレラントなダイセレクタが含まれている。
【0050】
各スイッチグループは、選ばれた時(スイッチが閉の時)、低インピーダンスで双方向的な信号経路を提供する。更に、PA1−4とスイッチグループ(TC1−8、LR1−8、BC1−8、RR1−8)間、スイッチグループとダイ側面(A、B、C、D)間、およびダイ側面同士間のバス接続もまた低インピーダンスで双方向的な信号経路を提供する。既に述べたように、ダイ内部をバイパスするパッドからパッドへの接続もまた、低インピーダンスで双方向的な信号経路を提供する。
【0051】
試験を実施する時は、プローブがウエハ上のパッドエリアPA1−4に設置される。PA1−4は各ダイのパッドエリアに比べて大きく、従って、プローブ設計に対する機械的要求は、小さいダイパッドへ接触するために繊細に設計されている従来のプローブと比べてより単純で、より安価なものとなる。更に、本発明はダイを電気的に選んで試験することが可能であることから、ウエハ上へのプローブの設置は一度だけでよく、それによってウエハを多数回プロービングする従来の方法と比べて試験時間が短縮される。この試験時間の短縮はウエハ試験のコストを大幅に削減し、それがひいてはダイおよび実装されたICのコストの低下につながる。更に、プローブがダイパッドに接触することがないため、ウエハプロービングおよびダイ試験過程においてダイパッドへの損傷が発生しない。更に、PA1−4によって提供される比較的大きいプローブ標的エリアは、この方法をコンピュータ制御方式の自動化された試験プロービング方法にうまく適応させることを可能とする。
【0052】
PA1−4においてプローブがウエハに接触した後に、ウエハに対して電力が供給され、ダイおよびダイセレクタがパワーアップされる。テスターは素早く大電流状態を検出でき、必要であればそのウエハから電力を取り除く。ウエハ処理の失敗によってWGおよびWVバス接続間に短絡が生じたり、ダイまたはダイセレクタがVおよびGの短絡を含むことがある。もしウエハがパワーアップ時の大電流試験をパスできなければ、従来のダイプロービング法によってダイ試験を継続して実施することができる。
【0053】
もしウエハがパワーアップ時に正常な電流を示せば、先に図16ないし図28に関連して説明したようにダイセレクタを試験することができる。もしダイセレクタがフォールト・トレラントモードのいずれかで失敗しても、ウエハを従来のやり方で継続して試験することができる。もしダイセレクタが試験をパスすれば、行および列のバス接続経路を試験できる。行1および列1(図29および図30)を試験するためには、LR1、RR1、TC1、およびBC1スイッチグループを閉じ、すべてのダイをバイパスモードにして、外部テスター(例えば、図4に示したような)によってPA4とPA2との間に行1バス接続を試験する信号を流し、PA1とPA3との間に列1バス接続を試験する信号を流す。この工程によって、(1)PA1−4からスイッチグループへのバス接続、(2)スイッチグループの閉動作、(3)スイッチグループから周辺ダイへのバス接続、(4)ダイのバイパスモード、および(5)ダイパッドからダイパッドへのバス接続が試験される。この工程がすべての行および列に対して繰り返される。もし1つの行または列が試験に失敗すれば、その行および列に付随するダイは従来のやり方で試験できる。行および列の接続性の試験の後、ダイの試験を行うことができる。
【0054】
ダイの試験は、PA4から1番目のパルスをS1(もしダイセレクタ201を使用すれば、S2でも、S3でもS4でもよい)へ出力し、上側左のダイセレクタによってダイ1をバイパスモードから機能モードへスイッチさせることから始まって、次にスイッチグループLR1、TC1、RR1、およびBC1を閉じ、次にPA1−4、閉じたスイッチグループ、および行1と列1のバス接続を介してダイ1へつながる外部テスターを用いてダイ1を試験する。この試験手順がウエハ上のすべてのダイに対して繰り返される。図30は行2および列2のバス接続を介してダイ15を試験する様子を詳細に示している。選ばれた1つのダイに対して異なる型の試験を実行することもできる。第1の試験は直流試験であって、その目的はダイの論理的な正しさとI/Oパラメトリクスを確かめることである。第2の試験は機能試験であって、ダイの意図された動作速度において機能試験が行われる。高度な信頼性を要求するいくつかの用途では、環境(あるいはバーンイン)試験が要求され、ダイは温度、湿度、および振動をサイクル的に変化させながらチェンバー内で試験される。直流試験をパスしたダイが機能試験および環境試験で失敗することもあり、そのため、ウエハレベルでダイを直流、機能、そして多分、環境試験の各モードで試験して、不良品ダイがICの形に実装されたり、あるいはMCM上へアセンブルされるのを防ぐことが重要である。
【0055】
ダイ試験を実施するために、比較的高性能なバス接続経路、すなわちウエハ全体をめぐるバス接続、ダイのバイパスモードでのパッドからパッドへのバス接続を設けることが重要であり、更にスイッチグループのスイッチが低インピーダンスで双方向的な信号処理用に設計されていることが好ましい。図30のダイ15の試験の例では、ダイ15のDおよびA面がそれぞれバイパスされたダイ16と2のみを通ってPA1およびPA4から試験信号を受信し、他方、ダイ15のBおよびC面における試験信号は、それぞれPA2およびPA3から到達するまでに1個よりも多いバイパスモードにあるダイ(図29Aを参照)を横切らなければならない。ダイバイパス信号の遅延およびダイからダイへのバス接続遅延はテスターでソフト的に容易にモデル化でき、従ってテスターは、異なる数のバイパスモードダイを横切る行および列のバス接続経路中の遅延を補償することができる。このように、試験される標的ダイとテスターとの間の試験信号の受け渡しは、試験されるダイのA、B、C、およびD面へつながれた行および列のバス接続経路中に存在するバイパスモードのダイの数に関係なく正しく行われる。
【0056】
図31の例では、各行および列にそれ自身のプローブエリアが一対備わったウエハバス接続構造が示されている。例えば、プローブエリア左側行1(PALR1)およびプローブエリア右側行1(PARR1)が行1のプローブエリアになり、プローブエリア上側列1(PATC1)およびプローブエリア下側列1(PABC1)が列1のプローブエリアになる。ダイからダイへのバス接続は図29ないし図30に関連して既に述べたのと同じである。また、このプローブエリアはウエハの未使用の周辺領域に置くことができる。オプションとして、プローブエリアを全く無くして、上、右、下、および左の周辺ダイのA、B、C、およびD面におけるパッドサイトを必要に応じてプロービングすることもできる。図32は、それの左側および右側のプローブエリアPALRnおよびPARRnを介して、各行に対して独自のVおよびG接続を設けるやり方の例を示している。図33は、それの左側および右側のプローブエリアPALRnおよびPARRnを介して、各行に対して独自のダイセレクタ信号接続を設けるやり方を示している。電源およびダイセレクタ接続はまた、列毎に配置して、PATCnおよびPABCnが各列に対して独自の電源およびダイ選択を供給するようにしてもよい。
【0057】
図34の例は、対角に位置するダイ17、15、および3をどのようにして並列的に試験するかを詳細に示している。その他のすべてのダイがバイパスモードにあって、対角に位置するダイのグループが機能モードに設定して(図33に示した各行の独立して動作するダイセレクタを介して)、対角に位置するダイグループの並列的な(すなわち、同時的な)試験を図34に示したプローブエリアと専用の行および列のバス接続経路を介して実施することで試験時間を更に短縮することができる。図35Aないし図38Cは並列的なダイ試験方式を示しており、ウエハ上に対角に位置するダイのすべてのグループに亘ってその手順が進行する様子を示している。並列的なダイ試験のこれらの手順を、図31のダイ番号を使用して次にリストアップする。
【0058】
工程1−ダイ1の選択および試験(図35A)
工程2−ダイ16および2の選択および試験(図35B)
工程3−ダイ17、15および3の選択および試験(図35C)
工程4−ダイ32、18、14および4の選択および試験(図35D)
工程5−ダイ33、31、19、13および5の選択および試験(図36A)
工程6−ダイ48、34、30、20、12および6の選択および試験(図36B)
工程7−ダイ49、47、35、29、21、11および7の選択および試験(図36C)
工程8−ダイ64、50、46、36、28、22、10および8の選択および試験(図36D)
工程9−ダイ63、51、45、37、27、23および9の選択および試験(図37A)
工程10−ダイ62、52、44、38、26、および24の選択および試験(図37B)
工程11−ダイ61、53、43、39、および25の選択および試験(図37C)
工程12−ダイ60、54、42、および40の選択および試験(図37D)
工程13−ダイ59、55、および41の選択および試験(図38A)
工程14−ダイ58、および56の選択および試験(図38B)
工程15−ダイ57の選択および試験(図38C)
【0059】
上に述べたウエハ上のダイの並列的な試験は、ウエハ上のダイを個別に逐次試験するのと比べてウエハ試験時間を短縮できる。
【0060】
本発明はまた、ウエハ上の各ダイをIDDQ試験するためにも利用できる。IDDQ試験は試験パターンを与えながらIC/ダイへの電流をモニターするものである。特定の試験パターンにおいて予期されるものよりも大きい電流が検出された時は、それは欠陥を意味する。図15AのWVおよびWGバス接続の配置は、WVおよび/またはWG上の任意の予期せぬ電流を機能モードにあるその1つのダイのせいに帰することができるものであるため、図29ないし図30に示したような一時に1つのダイという配置においてIDDQ試験を実施する場合に適している。図34ないし図38の並列的なダイ試験配置に関して、図32に示された型の行に専用のVおよびGのバス接続は、予期せぬVおよびGの電流を試験されている対角グループのその正しいダイのせいに帰することができる。もしこの機能を図34ないし図38の試験配置において必要としないのであれば、その場合は図15Aに示した型のWVおよびWGのバス接続を図34ないし図38において使用することができる。例えば、電源供給用のバス接続用として付加的なプローブアクセスエリアを設けることができ、その場合はPALRnおよびPARRnは電源を供給しなくてよい。
【0061】
上に述べたように、本発明はテスタープローブ設計を従来技術の設計と比べて大幅に簡略化することができ、その結果、より安価なテスターを実現できる。このように、ICベンダーの顧客でさえ、彼ら自身専用のウエハテスターを所有することができるようになる。このことはベンダーが完全なウエハ(切り離されたダイではなく)を顧客に販売することを可能とし、顧客はそこでベンダーのウエハ試験を繰り返してその結果を確認することができ、それによって彼ら自身で有利にダイの切り離しを行うことができる。こうしてベンダーは切り離し工程でのダイに対する損傷の危険から解放され、他方、顧客は未実装のダイを(ウエハ上に)有利に入手でき、そのダイがベンダーから輸送されてくる間に損傷を受けていないことを確認でき、その後で彼ら自身でダイを切り離すことができる。
【0062】
本発明の例示実施例について以上のように説明してきたが、この説明は本発明のスコープを限定するものではなく、本発明は多様な実施例として実施することができる。
【0063】
以上の説明に関して更に以下の項を開示する。
(1)電子的集積回路であって、
集積回路の通常の動作機能を実行するための機能回路であって、互いに電気的に区別される第1と第2のノードを含んでいる機能回路、および
前記第1と第2のノードに対して選択的に接続可能で、切り離し可能な第1と第2のボンディングパッドであって、それらが互いに選択的に接続可能であり、また互いから切り離し可能である第1と第2のボンディングパッド、
を含む集積回路。
【0064】
(2)集積回路ダイがその内部回路として選択的なパッドからパッドへのバイパスを許容する構造73、75、77、79を含んでいる。
【図面の簡単な説明】
【図1】従来の集積回路ダイの、機能コア論理回路、入力および出力パッド、およびパッドバッファリング構造を示す模式図。
【図2】図1の従来のダイの一部分の切り出し側面図。
【図3】AとBは従来のウエハ上に複数個のダイを配置する場合の配置および向きのやり方。
【図4】ウエハ上のダイを試験するための従来の配置。
【図5】本発明に従う集積回路ダイ例の、機能コア論理回路、入力および出力パッド、およびパッドバッファリングを示す模式図。
【図6】バイパスモードにある時に、図5のダイ中に存在するパッドからパッドへの接続を示す模式図。
【図7】Aは機能モードに設定された図5のダイの一部分の切り出し側面図であり、Bはバイパスモードに設定された図5のダイの一部分の切り出し側面図。
【図8】Aは機能モードに設定された図5のダイの一部分の切り出し側面図であり、Bはバイパスモードに設定された図5のダイの一部分の切り出し側面図。
【図9】Aは機能モードに設定された図5のダイの一部分の切り出し側面図であり、Bはバイパスモードに設定された図5のダイの一部分の切り出し側面図。
【図10】Aは機能モードに設定された図5のダイの一部分の切り出し側面図であり、Bはバイパスモードに設定された図5のダイの一部分の切り出し側面図。
【図11】Aは機能モードに設定された図5のダイの一部分の切り出し側面図であり、Bはバイパスモードに設定された図5のダイの一部分の切り出し側面図。
【図12】Aは図7Aの入力状態ホールダの実施例であり、Bは別の実施例。
【図13】Aは図7Aないし図11Aと同様の切り出し側面図であり、Bは図7Bないし図11Bと同様の切り出し側面図。
【図14】Aは図7Aないし図11Aと同様の切り出し側面図であり、Bは図7Bないし図11Bと同様の切り出し側面図。
【図15】Aはウエハ上の各ダイに対して電源およびアースを供給するためのバス接続例であり、Bはその一部分の詳細図。
【図16】Aは本発明に従うダイ区分方式の例であり、Bはその一部分の詳細図。
【図17】Aは図16Aのダイ区分方式の構造であり、Bはその動作を示す模式図。
【図18】Aは図16Aのダイ区分方式の構造であり、BおよびCはその動作を示す時間図。
【図19】Aは図16Aのダイ区分方式のフォールト・トレラント方式の構造であり、BおよびCはその動作を示す時間図であり、Dは複数個のウエハ上の複数個のダイに対して適用された図16Aのダイ区分方式の例。
【図20】Aは本発明に従うダイ区分方式の別の例であり、Bはその一部分の詳細図。
【図21】Aは図20Aのダイセレクタのモデルであり、Bはその動作を示す模式図。
【図22】Aは図20Aのダイ区分方式のモデルであり、BおよびCはその動作を示す時間図。
【図23】AおよびBは図20Aのダイ区分方式の動作を示す時間図。
【図24】Aは図20Aのダイ区分方式のフォールト・トレラント方式のモデルであり、BおよびCはその動作を示す時間図。
【図25】図21Aないし図23Bに定義されたダイセレクタの実施例模式図。
【図26】図21Aないし図23Bに定義されたダイセレクタの実施例模式図。
【図27】図17Aないし図18Cに定義されたダイセレクタの実施例模式図。
【図28】図17Aないし図18Cに定義されたダイセレクタの実施例模式図。
【図29】Aはウエハ上のダイを試験するための本発明に従う配置例であり、B、C、D、Eはその一部分の詳細図。
【図30】図29Aの一部分の詳細図。
【図31】ウエハ上の複数個のダイを並列的に試験するための本発明に従う配置例。
【図32】図31の試験配置と一緒に使用される電源およびアースのバス接続例。
【図33】図31の試験配置と一緒に使用されるダイ選択方式の例。
【図34】図31の一部分の詳細図。
【図35】AないしDは、対角に位置するダイ群が並列的に試験されるようになった、図31の配置によってサポートされる試験工程手順。
【図36】AないしDは、対角に位置するダイ群が並列的に試験されるようになった、図31の配置によってサポートされる試験工程手順。
【図37】AないしDは、対角に位置するダイ群が並列的に試験されるようになった、図31の配置によってサポートされる試験工程手順。
【図38】AないしCは、対角に位置するダイ群が並列的に試験されるようになった、図31の配置によってサポートされる試験工程手順。
【符号の説明】
71 スイッチ
73 接続経路
75 導体
77 スイッチ
79 スイッチ
81 スイッチ
161 ダイセレクタ
191 ウエハ
195 ウエハ
197 ウエハ
201 ダイセレクタ
241 ダイセレクタ状態機械
243,245 入力データバッファ
247,249 出力データバッファ
251,253,255 フリップフロップ
257 ORゲート
259 ANDゲート
261,263 ANDゲート
265,271 ORゲート
267,269 遅延素子
273 ダイセレクタ状態機械
275,277 データ入力バッファ
277,279 データ出力バッファ
281 データ入力バッファ
283,285 フリップフロップ
287,289 ANDゲート
291,293 遅延素子

Claims (1)

  1. 電子的集積回路であって、
    平坦な半導体材料よりなり、各々が長方形に形成された複数のダイ部分を有する基板を有し、
    集積回路の通常の作動機能を実行するために基板の各ダイに形成された機能回路を有し、この機能回路は、長方形の4辺に互いに電気的に離れて形成された複数のノードを含んでおり、
    基板上の各ダイに形成された相互接続構造を有し、この相互接続構造は、長方形の第1辺とそれに相対する第2辺の間を結んでいる1組の複数導体と、長方形の第3辺とそれに相対する第4辺の間を結んでいる他の1組の複数導体とを含んでおり、
    基板上の各ダイの長方形の各辺に沿って形成された複数のボンディングパッドを有し、
    相互接続構造とボンディングパッドの間に接続され、各ダイのため基板に形成されたスイッチ回路を有し、
    i、機能モードにおいて、該スイッチ回路は、ボンディングパッドを、選択的に、機能回路の複数のノードのそれぞれに接続し、かつ相互接続構造の複数の導体を、回路アース電位へ接続しながらボンディングパッドから隔離し、
    ii、バイパスモードにおいて、該スイッチ回路は、長方形の各辺の対応するボンディングパッドを、選択的に、複数導体の相対する端に接続し、かつボンディングパッドを機能回路の複数のノードから隔離する
    電子的集積回路。
JP29082796A 1995-10-31 1996-10-31 集積回路 Expired - Lifetime JP4041550B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US008186 1987-01-28
US710295P 1995-10-31 1995-10-31
US818695P 1995-10-31 1995-10-31
US813895P 1995-10-31 1995-10-31
US818495P 1995-10-31 1995-10-31
US008184 1995-10-31
US007102 1995-10-31
US008138 1995-10-31

Publications (2)

Publication Number Publication Date
JPH09266283A JPH09266283A (ja) 1997-10-07
JP4041550B2 true JP4041550B2 (ja) 2008-01-30

Family

ID=27485659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29082796A Expired - Lifetime JP4041550B2 (ja) 1995-10-31 1996-10-31 集積回路

Country Status (5)

Country Link
EP (1) EP0786667B1 (ja)
JP (1) JP4041550B2 (ja)
KR (1) KR100402868B1 (ja)
DE (1) DE69633713T2 (ja)
TW (1) TW454291B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572564B2 (ja) * 2004-04-05 2010-11-04 パナソニック株式会社 半導体装置
US8716814B2 (en) 2004-07-14 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Wireless processor, wireless memory, information system, and semiconductor device
DE102004059505B4 (de) 2004-12-10 2014-06-18 X-Fab Semiconductor Foundries Ag Anordnung zum Test von eingebetteten Schaltungen mit Hilfe von Testinseln
US7640379B2 (en) * 2005-02-12 2009-12-29 Broadcom Corporation System method for I/O pads in mobile multimedia processor (MMP) that has bypass mode wherein data is passed through without being processed by MMP
DE102007062711A1 (de) 2007-12-27 2009-07-02 Robert Bosch Gmbh Halbleiterwafer mit einer Vielzahl von Sensorelementen und Verfahren zum Vermessen von Sensorelementen auf einem Halbleiterwafer
TWI607670B (zh) 2009-01-08 2017-12-01 半導體能源研究所股份有限公司 發光裝置及電子裝置
US8786080B2 (en) * 2011-03-11 2014-07-22 Altera Corporation Systems including an I/O stack and methods for fabricating such systems
JP2013050860A (ja) * 2011-08-31 2013-03-14 Renesas Electronics Corp マイクロコンピュータ及びマルチマイクロコンピュータシステム
DE102013102155B4 (de) 2013-03-05 2015-04-09 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zum testen von bauelementen und messanordnung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092733A (en) * 1976-05-07 1978-05-30 Mcdonnell Douglas Corporation Electrically alterable interconnection
US4286173A (en) * 1978-03-27 1981-08-25 Hitachi, Ltd. Logical circuit having bypass circuit
JPS62220879A (ja) * 1986-03-22 1987-09-29 Hitachi Ltd 半導体装置

Also Published As

Publication number Publication date
EP0786667A3 (en) 1999-07-07
JPH09266283A (ja) 1997-10-07
EP0786667A2 (en) 1997-07-30
DE69633713T2 (de) 2006-02-02
DE69633713D1 (de) 2004-12-02
KR970023959A (ko) 1997-05-30
KR100402868B1 (ko) 2004-02-05
TW454291B (en) 2001-09-11
EP0786667B1 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
US5969538A (en) Semiconductor wafer with interconnect between dies for testing and a process of testing
US6046600A (en) Process of testing integrated circuit dies on a wafer
US5994912A (en) Fault tolerant selection of die on wafer
US7362093B2 (en) IC selectively connecting logic and bypass conductors between opposing pads
US5760643A (en) Integrated circuit die with selective pad-to-pad bypass of internal circuitry
US7381986B2 (en) Arrangement for testing semiconductor chips while incorporated on a semiconductor wafer
US7348595B2 (en) Semiconductor wiring substrate, semiconductor device, method for testing semiconductor device, and method for mounting semiconductor device
KR100354599B1 (ko) 반도체 구조물 및 반도체 웨이퍼 테스트 방법
US5489538A (en) Method of die burn-in
US5321277A (en) Multi-chip module testing
JPH0677298A (ja) 半導体ウェハ上のダイのテスト方法
JPH0677297A (ja) 半導体ウェハ上のダイへの電力供給方法およびその半導体ウェハ
US7230447B2 (en) Fault tolerant selection of die on wafer
US6326801B1 (en) Wafer of semiconductor material with dies, probe areas and leads
JP4041550B2 (ja) 集積回路
CN112630633A (zh) 测试多个裸片的***及方法
US6166557A (en) Process of selecting dies for testing on a wafer
US6987382B1 (en) System with functional and selector circuits connected by mode lead
US20020024356A1 (en) Method and apparatus for parallel die testing on wafer
WO2001053845A1 (en) A printed circuit assembly with configurable boundary scan paths
JPH1012826A (ja) 半導体装置およびそのテスト方法
JPH07263508A (ja) バーイン試験用回路を有するウエハーおよびバーイン試験方法
JPH04353778A (ja) 多重チップ・モジュール・ベース

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060424

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term