JP4024023B2 - Electronic component measuring apparatus and method - Google Patents

Electronic component measuring apparatus and method Download PDF

Info

Publication number
JP4024023B2
JP4024023B2 JP2001286629A JP2001286629A JP4024023B2 JP 4024023 B2 JP4024023 B2 JP 4024023B2 JP 2001286629 A JP2001286629 A JP 2001286629A JP 2001286629 A JP2001286629 A JP 2001286629A JP 4024023 B2 JP4024023 B2 JP 4024023B2
Authority
JP
Japan
Prior art keywords
electronic component
measuring apparatus
lead
component measuring
smd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001286629A
Other languages
Japanese (ja)
Other versions
JP2003090849A (en
Inventor
隆司 斉藤
Original Assignee
株式会社テセック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テセック filed Critical 株式会社テセック
Priority to JP2001286629A priority Critical patent/JP4024023B2/en
Priority to KR10-2002-0056949A priority patent/KR100508376B1/en
Priority to CNB021424950A priority patent/CN1204615C/en
Publication of JP2003090849A publication Critical patent/JP2003090849A/en
Application granted granted Critical
Publication of JP4024023B2 publication Critical patent/JP4024023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2644Adaptations of individual semiconductor devices to facilitate the testing thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0425Test clips, e.g. for IC's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品測定装置及び方法に関し、特にケルビンコンタクト方式により電子部品を測定する電子部品測定装置及び方法に関する。
【0002】
【従来の技術】
IC、ディスクリートデバイス等のモールド型電子部品(以下、単に電子部品という)の電気特性を測定する電子部品測定装置においては、測定位置に電子部品をセットし、電子部品の複数のリードに測子を接触させ、テスタから測子を介して電流又は電圧を印加し、電子部品の抵抗等の電気特性を測定し、その測定結果に基づいて電子部品をカテゴリ毎に分類、収納している。特性の測定方式としては、印加と測定を共通の測子で行なうシングルコンタクト方式と、印加と測定を別々の測子で行なうケルビンコンタクト方式とがある。通常、高い測定精度が要求されない場合に前者が用いられ、その逆の場合に後者が用いられる。
【0003】
ケルビンコンタクト方式による測定の対象となる電子部品の一つに、SMD(Surface Mount Device)がある。このSMDは、半田等の接合材が付着したパターン上に実装され、加熱により接合材を介してパターンとの電気的接続をとる電子部品である。接合材を介するパターンとの電気的接続が良好となるように、SMD1のリード3の形状は図12に示すようなS字状をしている。なおSMD1において、リード3が形成された面を側面と呼び、この側面より面積が大きく実装基板に対向して配置される面を主面と呼ぶ。
図13は、このようなSMD1を測定対象とする従来の電子部品測定装置の構成を示す図である。(a)は初期状態、(b)は測定時の状態を示している。
【0004】
図13(a)に示すように、この電子部品測定装置は、測定対象のSMD1を紙面に対して垂直な方向に送る測定シュート111を有している。この測定シュート111は、SMD1の通路の下面となる台部111Aと、SMD1の通路の両側面となるガイド部111Bとから構成されている。
測定シュート111におけるSMD1の測定位置の上方には、測定位置に搬送されたSMD1を測定シュート111の台部111Aに押し付けて固定する押圧部材113が配設されている。
【0005】
また測定位置における測定シュート111の台部111Aを挟む両側に、それぞれ第1及び第2の測子121A,121Bを含むコンタクタが配設されている。第1の測子121Aの一端である先端部はSMD1のリード3の側方に配設され、その先端部から水平にのび、略直角に屈曲して下方に向かい、その直下で規制部材123に固定されている。第2の測子121Bの一端である先端部はSMD1のリード3の下方に配設され、その先端部から水平にのび、略直角に屈曲し下方に向かい、揺動部材125に取り付けられている。また第2の測子121Bの他端は接触部を介して第3の測子121Cの一端と接触している。この第3の測子121Cの他端と第1の測子121Aの他端は、図示しないテスタの電気回路に接続されている。
【0006】
このような構成の電子部品測定装置の動作について、図13(b)を参照して説明する。測定シュート111の測定位置にSMD1を搬送し、このSMD1を測定シュート111の台部111Aと押圧部材113とで挟持し固定する。この状態で規制部材123の外側面に、測定シュート111の台部111Aの中心軸に向かう力127を与える。これにより規制部材123に保持された第1の測子121Aの先端部が内側に平行移動し、SMD1のリード3の側面と接触する。また規制部材123の動作に連動して、測定シュート111の台部111Aの両側に配設された2つの揺動部材125が回動し逆ハ字形をなす。この動作により揺動部材125に取り付けられた第2の測子121Bの先端部が上方に移動し、SMD1のリード3の下端と接触する。この結果、図14に拡大して示すようにSMD1のリード3を第1及び第2の測子121A,121Bで挟む形となり、測子121A,121Bをリード3に強い力で接触させることができる。
【0007】
また図15に示すように、矢印▲1▼の方向に第1の測子121Aを移動させ先端部をリード3に押圧すると、第1の測子121Aの先端部はリード3の表面を矢印▲2▼の方向に摺動し、リード3の表面にできた酸化皮膜を削剥する。酸化皮膜でが削剥されたリード3の表面に第1の測子121Aを強い力で接触させることにより、測定誤差の原因となる接触抵抗を低下させることができる。
このように第1及び第2の測子121A,121BをSMD1のリード3に接触させた状態で、SMD1の電気特性を測定する。測定終了後、揺動部材125への力127の付与を停止して測子121A,121Bをリード3から引き離しす。このとき第1の測子121Aの先端部は、図15に示すようにリード3の表面を矢印▲3▼の方向に摺動し、その後矢印▲4▼の方向に離れていく。最後に押圧部材113を所定位置に戻し、測定後のSMD1を送り出す。
【0008】
なお、揺動部材125は比較的大きな振幅で揺振するため、揺動部材125に取り付けられた第2の測子121Bの移動量も大きいが、第2の測子121Bを第3の測子121Cを介してテスタに接続することにより、第2の測子121Bに強いストレスがかかることを防止している。
【0009】
【発明が解決しようとする課題】
しかしながら、上述した従来の電子部品測定装置は、SMD1のリード3を2本の測子121A,121Bで挟む形で接触させているので、接触抵抗を低下させるために強い力で挟むとSMD1のリード3が曲がり、このようなSMD1をパターン上に実装するとリード3のパターンへの接触不良が発生するという問題があった。
また、第2の測子121Bは第3の測子121Cを介してテスタに接続されているので、第2の測子121Bと第3の測子121Cとの接触部で接触抵抗が発生し、測定誤差が大きくなるという問題があった。
【0010】
また、第1の測子121Aは屈曲部の直下で規制部材123に固定されているので、第1の測子121Aの移動方向に対する弾性は小さい。このため、仮に第1の測子121AがSMD1のリード3に接触するときリード3の配列方向(紙面に対して垂直な方向)に位置ずれを生じると、隣り合う2本のリード3の間に第1の測子121Aの先端部が進入し、リード3が曲がってしまうという問題があった。
また、測定終了後、第1の測子121AをSMD1のリード3から引き離すとき、図15に示すように測子121Aの先端部がリード3の表面を矢印▲2▼とは逆の矢印▲3▼の方向に摺動するので、削剥した酸化皮膜の粒子が測子121Aの先端部に付着してしまう。このため順次測定を繰り返すうちに測子121Aの先端部に酸化物が付着し、リード3との接触抵抗が増大するため、短い周期で測子121Aを交換しなければならないという問題があった。
【0011】
本発明はこのような課題を解決するためになされたものであり、その目的は、電子部品の特性測定の際に発生する電子部品のリードの折曲を抑制することにある。
また他の目的は、電子部品の特性測定の正確性を向上させることにある。
また他の目的は、電子部品の特性測定に用いる測子の寿命を延ばすことにある。
【0012】
【課題を解決するための手段】
このような目的を達成するために、本発明の電子部品測定装置は、電子部品のリードに第1及び第2の測子を接触させケルビンコンタクト方式により電子部品を測定する電子部品測定装置において、第1及び第2の測子は、それぞれ弾性を有する導電材料から形成される線状の基部とこの基部の一端に幅広に形成された先端部とを有し、第1及び第2の測子の基部は、互いに平行に配設されるととも、互いに異なる位置で電子部品のリードの方向に折り曲げられ、かつ第1及び第2の測子の先端部が、互いに平行に配設された基部を含む面に平行で基部と垂直な方向に拡がりかつ少なくともその一部が互いに対向することを特徴とする。
【0013】
この電子部品測定装置において、第1及び第2の測子の間に絶縁部材を配設してもよい。ここで、絶縁部材は、第1又は第2の測子の先端部に配設するようにしてもよい
【0014】
また、上記電子部品測定装置において、第1の測子は、電子部品のリードに電流又は電圧を印加し、第2の測子よりも軸方向に垂直な断面積大きくなるようにしてもよい
【0015】
また、上記電子部品測定装置において、電子部品の測定位置で電子部品を挟持する挟持部材をさらに備えるようにしてもよい。
【0016】
また、上記電子部品測定装置において、第1及び第2の測子の互いに平行に配設された基部を含む面内における基部の軸方向に垂直な方向の移動を規制する規制部材をさらに備えるようにしてもよい。
ここで、規制部材は、第1及び第2の測子の基部がそれぞれ挿通される貫通孔を有し、この貫通孔は、前記第1及び第2の測子の互いに平行に配設された前記基部を含む面内における前記先端部が拡がる方向の第1の方向の長さが、前記面内における前記第1の方向に垂直な方向の第2の方向の長さより短いようにしてもよい。
【0017】
また、上記電子部品測定装置において、第1及び第2の測子の基部を保持する保持部材と、規制部材を押圧して第1及び第2の測子を電子部品のリードの方向に移動させるプッシャとを備えるようにしてもよい。
【0018】
【発明の実施の形態】
次に、図面を参照して、本発明の一実施の形態について詳細に説明する。
図1は、本発明の電子部品測定装置の一実施の形態の機械的な構成を示す図である。この図には、電子部品測定装置の初期状態を座標系とともに示している。
図1に示す電子部品測定装置は、測定対象のSMD1をXZ面に垂直なY方向に送る測定シュート11を有している。この測定シュート11は、SMD1の通路の下面となる台部11Aと、SMD1の通路の両側面となるガイド部11Bとを有している。SMD1を送るときのSMD1と台部11Aとの摩擦抵抗を低減するために、SMD1の通路の深さには微小な遊びが設けられている。
【0019】
SMD1の通路の所定位置で、SMD1の電気特性が測定される。その所定位置を測定位置と呼ぶ。測定位置の上方には、測定位置に搬送されたSMD1の主面を台部11Aに押し付けて固定する押圧部材13が配設されている。この押圧部材13と台部11Aとから、SMD1の主面間を挟持する挟持部材が構成される。
また測定位置における測定シュート11の台部11Aを挟む両側に、測子を有するコンタクタ20がそれぞれ配設されている。
【0020】
ここで、図2〜図7を参照して、コンタクタ20の構成について説明する。図2は、コンタクタ20の正面図である。図3は、コンタクタ20の側面図である。図4は、コンタクタ20の平面図である。図5は、図3におけるV部の拡大図である。図6は、図4におけるVI部の拡大図である。図7は、コンタクタ20が有する規制部材の平面図である。図2〜図7にも、図1に対応する座標系を示している。
図2に示すように、このコンタクタ20は、第1の測子21Aと第2の測子21Bとからなる測子対21を4対有している。この測子対21の数は、測定対象のSMD1が有する片側のリード3の本数と等しい。第1の測子21Aと第2の測子21Bとは、交互に、かつ互いに離間してY方向に配列されている。
【0021】
第1及び第2の測子21A,21Bは、例えば銅などの弾性を有する導電材料を線状に形成したものである。第1の測子21Aは電流又は電圧印加用の測子であり、第2の測子21Bは電流又は電圧検出用の測子である。印加用の第1の測子21Aには検出用の第2の測子21Bと比較して大きな電流が流れるので、第1の測子21Aの軸方向の断面積を第2の測子21Bの軸方向の断面積よりも大きくし、第1の測子21Aの電気抵抗を低下させるとよい。
第1及び第2の測子21A,21Bの先端部側は、同方向(X方向)に略直角に折曲されている。ただし図5に示すように、第1の測子21Aは第2の測子21Bよりもやや高い位置で折曲されている。また第1の測子21Aは折曲された部分の長さが第2の測子21Bよりもやや長く、第1の測子21Aの先端部が第2の測子21Bよりも突出している。
【0022】
図6に示すように、第1及び第2の測子21A,21Bはともに先端部で幅が広がり、上下方向に対向した構造となっている。第2の測子21Bの対向領域上には、例えばセラミック等からなる絶縁部材31が固設されている。この絶縁部材31により第1の測子21Aと第2の測子21Bとが絶縁分離されるので、両者の短絡を防止することができる。なお絶縁部材31は第2の測子21Bの折曲された部分の一部の領域(図では先端領域)のみに配設されるので、絶縁部材31の荷重により第2の測子21Bが変形することはない。また絶縁部材31は第1及び第2の測子21A,21Bのそれぞれの対向面の少なくとも一方に固設されればよい。
【0023】
図2に示すように、測子21A,21Bの基部は保持部材23によって共通に保持されている。この保持部材23はプラスチック等の絶縁体からなる。
保持部材23の下部にはプリント基板25が固定され、この基板25上の配線に測子21A,21Bが電気的に接続されている。この基板25がテスタのコネクタに差し込まれ、コンタクタ20とテスタの電気回路との接続が図れる。
また4対の測子対21の両側に測子21A,21Bよりも高さが低い2本の支持部材27が配設され、それらの基部が保持部材23に固定されるとともに、それらの先端部に規制部材29が取り付けられている。支持部材27は弾性材料を帯状に形成したものであり、その厚み方向(X方向)には弾性変形するが、その幅方向(Y方向)には弾性変形しない。
【0024】
支持部材27に取り付けられた規制部材29には、図7に示すように、平面視略矩形の貫通孔29Aが8個形成されている。これらの貫通孔29Aは合計8本の測子21A,21Bに対応して設けられており、各貫通孔29Aに測子21A又は21Bが1本ずつ挿通される。
貫通孔29AのY方向(第1の方向)の長さは、この貫通孔29Aに挿通される測子21A又は21BのY方向の長さと略同一である。実際には貫通孔29A内で測子21A又は21Bがその軸方向に移動可能となるように、貫通孔29AのY方向の長さは測子21A又は21BのY方向の長さよりもやや長めに形成される。
【0025】
これに対し貫通孔29AのX方向(第2の方向)の長さは、測子21A又は21BのX方向の長さより十分大きい。例えば前者は後者の2倍程度の長さに形成することができる。
このように形成された貫通孔29Aに測子21A,21Bを挿通することにより、測子21A,21BのY方向の移動は規制される一方、X方向の自由度は確保される。なお図7には、各貫通孔29Aに挿通される測子21A,21Bの断面を斜線で示している。
ここでは各貫通孔29Aに測子21A又は21Bを1本ずつ挿通することとしたが、各貫通孔に測子対を一対ずつ挿通するようにしてもよい。この場合、測子対を構成する第1の測子21Aと第2の測子21Bとの間は完全に絶縁されているものとする。
【0026】
このような構成のコンタクタ20は、図1に示すように測子21A,21Bの配列方向とSMD1のリード3の配列方向とが一致するように配置され、保持部材23のネジ孔23Aに通されたコンタクタ固定ネジ15により、測定シュート11の台部11Aに固定される。このとき測子21A,21Bの先端部はともにSMD1のリード3の側方に配置され、特に測子21Aの先端部がリード3の基部側に、測子21Bの先端部がリード3の先端側に配置される。
またコンタクタ20の規制部材29にはプッシャ17の先端部が接続される。このプッシャ17は規制部材29を測定シュート11の台部11Aの中心軸に向かう方向に押圧するものである。
【0027】
図8は、図1に示した電子部品測定装置の電気的な構成を示すブロック図である。制御部41は電子部品測定装置全体の動作を制御するものである。この制御部41には、コンタクタ20に接続されるテスタ43と、押圧部材13を駆動する押圧部材駆動部13Aと、プッシャ17を駆動するプッシャ駆動部17Aとに接続されている。
【0028】
次に、図9〜図11を参照して、図1及び図8に示した電子部品測定装置の動作について説明する。図9は、電子部品測定装置の動作の流れを示すフローチャートである。図10は、電子部品測定装置の測定時の状態を示す図である。図11は、第1の測子21Aの先端部の移動を説明するための図である。
まず、測定シュート11の測定位置にSMD1を搬送し、押圧部材13を降下させ、測定位置のSMD1を測定シュート11の台部11Aと押圧部材13とで挟持し固定する(図9:ステップS1)。
この状態でプッシャ17を駆動し、コンタクタ20の規制部材29を測定シュート11の台部11Aの中心軸に向かう方向に押圧する。これにより規制部材29は、図10(a)に示すように台部11Aの中心軸に向って移動する。この規制部材29の移動に伴って測子21A,21Bが湾曲し、それぞれの先端部がSMD1のリード3の同一側面に接触する(図9:ステップS2)。
【0029】
このとき、貫通孔29Aにより測子21A,21BのY方向の移動は規制されるので、Y方向の測子21A,21Bの先端部の位置ずれを抑制することができる。しかし仮に位置ずれが生じたとても、貫通孔29A内におけるX方向の測子21A,21Bの自由度が確保されているので、規制部材29と保持部材23との間の部分の測子21A,21Bの弾性を活用し、その先端部が隣り合う2本のリードの間に進入しリードを曲げてしまうことを防止できる。また、測子21A,21Bは先端部で幅が広がっているので、これによっても先端部がリードの間に進入しリードを曲げてしまうことを防止できる。この結果、SMD1をパターン上に実装したときのリード3とパターンとの接触不良を低減することができる。
【0030】
図11に示すように第1の測子21Aの先端部をSMD1のリード3に対しリード3の基部側からみて鈍角θをなす矢印▲1▼の方向から押し付けると、測子21Aの先端部はリード3の側面をその基部に向かって矢印▲2▼の方向に摺動する。その結果、図10(b)に示すように第1の測子21Aの先端部と第2の測子21Bの先端部との間隔が広がり、前者と後者とがそれぞれリード3の基部側と先端側とに分かれて接触する。
一方、第1の測子21Aは折曲された部分の長さが第2の測子21Bよりもやや長く、第1の測子21Aの先端部が第2の測子21Bよりも突出しているので、前者が後者よりも強い力でSMD1のリード3を押圧する。リード3側からみれば、第1の測子21Aが接触する基部側には比較的大きな力がかかるが、第2の測子21Bが接触する先端側には比較的小さな力しかかからないことになる。このためリード3の折曲を抑制し、SMD1をパターン上に実装したときのリード3とパターンとの接触不良を低減することができる。
【0031】
このように第1及び第2の測子21A,21BをSMD1のリード3に接触させ、それぞれの先端部が開いた状態で、ケルビンコンタクト方式によりSMD1の電気特性を測定する(図9:ステップS3)。すなわち、テスタ43から第1の測子21Aを介してSMD1のリード3に電流又は電圧を印加し、その結果得られる電流又は電圧を第2の測子21Bで検出し、検出結果をテスタ43で解析することにより、SMD1の電気特性を得ることができる。
【0032】
印加用の測子の接触抵抗は測子先端部で発生する熱による破損原因となるが、検出用の測子は接触抵抗の与える影響が小さい。したがって、SMD1のリード3を比較的強い力で押圧しリード3との接触抵抗が比較的小さくなる第1の測子21Aを印加用として用い、リード3を比較的弱い力で押圧し接触抵抗が比較的大きくなる第2の測子21Bを測定用として用いることにより、測子の寿命を延ばすことができる。
また、図11に示したように第1の測子21Aがリード3の表面を矢印▲2▼の方向に摺動するとき、リード3の表面にできた酸化皮膜が削剥されるので、酸化皮膜が削剥されたリード3の表面に第1の測子21Aを強い力で接触させることにより、測定誤差の原因となる接触抵抗を低下させ、測定の正確性を向上させることができる。
【0033】
なお、SMD1の測定は測子21A,21Bのそれぞれの先端部が開いた状態で行なうが、仮に先端部が開かない状態で第1の測子21Aからリード3に電流又は電圧を印加してしまったとしても、測子21A,21Bのそれぞれの先端部の間に絶縁部材31が配設されているので接触抵抗が大きくなり、測定誤差に影響し測定の正確性が低下することはない。
【0034】
測定終了後、押圧部材13を元に位置に上昇させ、測定シュート11の台部11Aと押圧部材13とによるSMD1の挟持固定を停止する(図9:ステップS4)。これによりSMD1は上下方向(Z方向)の移動が可能となる。
この状態でプッシャ17による規制部材29への押圧を停止する。これにより測子21A,21Bは反発力で元の状態に戻り、測子21A,21Bの先端部はSMD1のリード3から離れていく(図9:ステップS5)。このようにSMD1を上下方向移動可能な状態にして、SMD1のリード3から測子21Aの先端部を引き離すことにより、図11に示した矢印▲2▼の方向と逆方向へ摺動させずに、直接矢印▲3▼の方向に測子21Aの先端部を引き離すことができる。したがって、測子21Aの先端部に削剥した酸化皮膜の粒子が付着することを防止し、測子21Aの寿命を延ばすことができる。
【0035】
なお、測子21A,21BをSMD1のリード3から引き離し、それぞれの先端部が閉じた状態で仮に第1の測子21Aに電流又は電圧が印加されていたとしても、測子21A,21Bのそれぞれの先端部の間に絶縁部材31が配設されているので、測子21A,21Bが短絡することにより発生する測定エラーを防止することができる。
この電子部品測定装置では、測子21A,21Bの先端部をSMD1のリード3の同一側面に接触させることにより、測子21A,21Bの移動量が図13に示した測子121Bより小さくなる。このため測子21A,21Bの途中に接触部を設ける必要がないので、測定誤差の原因となる接触抵抗を低下させ、測定の正確性を向上させることができる。
【0036】
なお、本実施の形態では、測定対象が図12に示したSMD1である場合を例にして説明したが、SMD1以外の他の電子部品であってもよい。例えば対向するリードがその基部からハの字状に直線的に広がっている電子部品であってもよい。
【0037】
【発明の効果】
以上説明したように、本発明は、第1及び第2の測子がそれぞれ弾性を有する導電材料から形成される線状の基部とこの基部の一端に幅広に形成された先端部とを有し、第1及び第2の測子の基部は、互いに平行に配設されるととも、互いに異なる位置で電子部品のリードの方向に折り曲げられ、かつ第1及び第2の測子の先端部が、互いに平行に配設された基部を含む面に平行で基部と垂直な方向に拡がりかつ少なくともその一部が互いに対向するものである。これにより、測定の正確性を向上させることができる。
【0038】
また、規制部材の貫通孔において、電子部品のリードの配列方向(第1の方向)と垂直な第2の方向の長さを第1又は第2の測子の第2の方向の長さより大きくする。これにより貫通孔内における第2の方向の第1及び第2の測子の自由度を確保し、規制部材と保持部材との間の部分の第1及び第2の測子の弾性を活用することができる。したがって、仮に第1及び第2の測子の先端部がリードの配列方向に位置ずれを起こしても、その先端部が隣り合う2本のリードの間に進入しリードを曲げてしまうことを防止できる。
また、第1及び第2の測子の幅を先端部で広げることにより、仮に第1及び第2の測子の先端部がリードの配列方向に位置ずれを起こしても、その先端部が隣り合う2本のリードの間に進入しリードを曲げてしまうことを防止できる。
【0039】
また、電子部品の挟持を停止した後に電子部品のリードから第1及び第2の測子を引き離すことにより、測子の先端部をリードの表面上で摺動させずに測子を引き離すことができる。これにより測子の先端部に削剥した酸化皮膜の粒子が付着することを防止し、測子の寿命を延ばすことができる。
【図面の簡単な説明】
【図1】 本発明の電子部品測定装置の一実施の形態の機械的な構成を示す図である。
【図2】 コンタクタの正面図である。
【図3】 コンタクタの側面図である。
【図4】 コンタクタの平面図である。
【図5】 図3におけるV部の拡大図である。
【図6】 図4におけるVI部の拡大図である。
【図7】 規制部材の平面図である。
【図8】 図1に示した電子部品測定装置の電気的な構成を示す図である。
【図9】 図1及び図8に示した電子部品測定装置の動作の流れを示すフローチャートである。
【図10】 図1に示した電子部品測定装置の測定時の状態を示す図である。
【図11】 第1の測子の先端部の移動を説明するための図である。
【図12】 SMDの正面図である。
【図13】 SMDを測定対象とする従来の電子部品測定装置の構成を示す図である。
【図14】 従来の電子部品測定装置における測子とリードとの接続状態を示す図である。
【図15】 第1の測子の先端部の移動を説明するための図である。
【符号の説明】
1…SMD、3…リード、11…測定シュート、11A…台部、11B…ガイド部、13…押圧部材、13A…押圧部材駆動部、15…コンタクタ固定ネジ、17…プッシャ、17A…プッシャ駆動部、20…コンタクタ、21…測子対、21A…第1の測子(印加用)、21B…第2の測子(検出用)、23…保持部材、23A…ネジ孔、25…プリント基板、27…支持部材、29…規制部材、29A…貫通孔、31…絶縁部材、41…制御部、43…テスタ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component measuring apparatus and method, and more particularly to an electronic component measuring apparatus and method for measuring an electronic component by a Kelvin contact method.
[0002]
[Prior art]
In an electronic component measuring apparatus that measures the electrical characteristics of a molded electronic component (hereinafter simply referred to as an electronic component) such as an IC or discrete device, the electronic component is set at a measurement position, and a probe is applied to a plurality of leads of the electronic component. Contact is made, current or voltage is applied from a tester through a gauge, electrical characteristics such as resistance of the electronic component are measured, and the electronic component is classified and stored for each category based on the measurement result. As a characteristic measurement method, there are a single contact method in which application and measurement are performed with a common gauge, and a Kelvin contact method in which application and measurement are performed with different gauges. Usually, the former is used when high measurement accuracy is not required, and the latter is used in the opposite case.
[0003]
One of electronic components to be measured by the Kelvin contact method is SMD (Surface Mount Device). This SMD is an electronic component that is mounted on a pattern to which a bonding material such as solder is attached and is electrically connected to the pattern through the bonding material by heating. The shape of the lead 3 of the SMD 1 is S-shaped as shown in FIG. 12 so that electrical connection with the pattern through the bonding material is good. In the SMD 1, the surface on which the leads 3 are formed is called a side surface, and the surface having a larger area than the side surface and disposed to face the mounting substrate is called a main surface.
FIG. 13 is a diagram showing a configuration of a conventional electronic component measuring apparatus that uses SMD 1 as a measurement target. (A) shows the initial state, and (b) shows the state at the time of measurement.
[0004]
As shown in FIG. 13A, this electronic component measuring apparatus has a measurement chute 111 for sending the SMD 1 to be measured in a direction perpendicular to the paper surface. The measurement chute 111 includes a base portion 111A that is a lower surface of the passage of the SMD 1 and guide portions 111B that are both side surfaces of the passage of the SMD 1.
Above the measurement position of the SMD 1 in the measurement chute 111, a pressing member 113 that presses and fixes the SMD 1 conveyed to the measurement position against the base 111A of the measurement chute 111 is disposed.
[0005]
In addition, contactors including first and second measuring elements 121A and 121B are disposed on both sides of the base 111A of the measurement chute 111 at the measurement position. The distal end, which is one end of the first stylus 121A, is disposed on the side of the lead 3 of the SMD 1, extends horizontally from the distal end, bends substantially at a right angle, faces downward, and directly below the restriction member 123. It is fixed. The distal end, which is one end of the second probe 121B, is disposed below the lead 3 of the SMD 1, extends horizontally from the distal end, bends substantially at a right angle, faces downward, and is attached to the swing member 125. . The other end of the second probe 121B is in contact with one end of the third probe 121C through the contact portion. The other end of the third probe 121C and the other end of the first probe 121A are connected to an electric circuit of a tester (not shown).
[0006]
The operation of the electronic component measuring apparatus having such a configuration will be described with reference to FIG. The SMD 1 is transported to the measurement position of the measurement chute 111, and the SMD 1 is sandwiched and fixed between the base 111 A of the measurement chute 111 and the pressing member 113. In this state, a force 127 directed toward the central axis of the base 111 </ b> A of the measurement chute 111 is applied to the outer surface of the regulating member 123. As a result, the tip of the first stylus 121A held by the regulating member 123 translates inward and contacts the side surface of the lead 3 of the SMD 1. In conjunction with the operation of the restricting member 123, the two swinging members 125 disposed on both sides of the base portion 111A of the measurement chute 111 rotate to form an inverted C shape. By this operation, the tip of the second stylus 121B attached to the swing member 125 moves upward and contacts the lower end of the lead 3 of the SMD1. As a result, as shown in an enlarged view in FIG. 14, the lead 3 of the SMD 1 is sandwiched between the first and second measuring elements 121A and 121B, and the measuring elements 121A and 121B can be brought into contact with the lead 3 with a strong force. .
[0007]
Further, as shown in FIG. 15, when the first probe 121A is moved in the direction of the arrow (1) and the tip is pressed against the lead 3, the tip of the first probe 121A moves the surface of the lead 3 with the arrow (▲). 2) Slide in the direction of 2 and scrape off the oxide film formed on the surface of the lead 3. By bringing the first probe 121A into contact with the surface of the lead 3 from which the oxide film has been removed with a strong force, the contact resistance that causes measurement errors can be reduced.
In this manner, the electrical characteristics of the SMD 1 are measured in a state where the first and second styluses 121A and 121B are in contact with the leads 3 of the SMD 1. After the measurement is finished, the application of the force 127 to the swing member 125 is stopped, and the tracing stylus 121A, 121B is pulled away from the lead 3. At this time, as shown in FIG. 15, the tip of the first stylus 121A slides on the surface of the lead 3 in the direction of arrow (3), and then moves away in the direction of arrow (4). Finally, the pressing member 113 is returned to a predetermined position, and the measured SMD 1 is sent out.
[0008]
Since the swing member 125 swings with a relatively large amplitude, the amount of movement of the second probe 121B attached to the swing member 125 is large, but the second probe 121B is used as the third probe. By connecting to the tester via 121C, it is possible to prevent the second probe 121B from being subjected to strong stress.
[0009]
[Problems to be solved by the invention]
However, since the conventional electronic component measuring apparatus described above is in contact with the lead 3 of the SMD 1 sandwiched between the two measuring elements 121A and 121B, the lead of the SMD 1 when sandwiched with a strong force to reduce the contact resistance. When the SMD 1 is mounted on the pattern, there is a problem that a contact failure of the lead 3 to the pattern occurs.
Further, since the second probe 121B is connected to the tester via the third probe 121C, a contact resistance is generated at the contact portion between the second probe 121B and the third probe 121C. There was a problem that the measurement error increased.
[0010]
Further, since the first tracing 121A is fixed to the restricting member 123 directly below the bent portion, the elasticity of the first tracing 121A in the moving direction is small. For this reason, if a displacement occurs in the arrangement direction of the leads 3 (a direction perpendicular to the paper surface) when the first tracing 121A contacts the leads 3 of the SMD 1, the gap between the two adjacent leads 3 is generated. There was a problem that the leading end of the first tracing 121A entered and the lead 3 bent.
Further, after the measurement is finished, when the first tracing 121A is pulled away from the lead 3 of the SMD 1, as shown in FIG. 15, the tip of the tracing 121A faces the surface of the lead 3 with an arrow ▲ 3 opposite to the arrow ▲ 2 ▼. Since it slides in the direction of ▼, the scraped oxide film particles adhere to the tip of the tracing 121A. For this reason, the oxide adheres to the tip of the tracing stylus 121A while repeating the measurement sequentially, and the contact resistance with the lead 3 increases, which causes a problem that the tracing stylus 121A has to be replaced in a short cycle.
[0011]
The present invention has been made to solve such problems, and an object of the present invention is to suppress bending of the lead of the electronic component that occurs when measuring the characteristics of the electronic component.
Another object is to improve the accuracy of characteristic measurement of electronic components.
Another object is to extend the life of the measuring element used for measuring the characteristics of the electronic component.
[0012]
[Means for Solving the Problems]
  In order to achieve such an object, the electronic component measuring apparatus of the present invention includes:In the electronic component measuring apparatus for measuring the electronic component by the Kelvin contact method by bringing the first and second measuring elements into contact with the lead of the electronic component,First and second probeRespectivelyConductive material with elasticityFromFormedA linear base and a wide tip formed at one end of the base. The bases of the first and second styluses are arranged in parallel to each other, and electrons are located at different positions. The leading ends of the first and second measuring elements are bent in the direction of the lead of the component, and extend in a direction perpendicular to the base and parallel to the plane including the bases arranged in parallel to each other, and at least a part of them Opposite each otherIt is characterized by that.
[0013]
  In this electronic component measuring apparatus, an insulating member may be disposed between the first and second measuring elements.. ThisHere, the insulating member is the first or second measuring element.TipArranged inLikeMay.
[0014]
  Also,In the electronic component measuring apparatus,First probeApplies a current or voltage to the lead of an electronic component,Second probethanCross section perpendicular to the axial directionButbigEven if it becomesGood.
[0015]
  Also,The electronic component measuring apparatus may further include a clamping member that clamps the electronic component at a measurement position of the electronic component.
[0016]
  AlsoIn the electronic component measuring apparatus,First and second probeThere may be further provided a restricting member for restricting the movement of the base in the direction perpendicular to the axial direction in the plane including the bases arranged in parallel to each other.
Here, the regulating member has a through hole through which the base portions of the first and second measuring elements are inserted, and the through holes are arranged in parallel to each other of the first and second measuring elements. The length in the first direction in the direction in which the tip end portion expands in the plane including the base may be shorter than the length in the second direction in the direction perpendicular to the first direction in the plane. .
[0017]
  AlsoIn the electronic component measuring apparatus, the holding member that holds the bases of the first and second measuring elements, and the pusher that moves the first and second measuring elements toward the lead of the electronic component by pressing the regulating member. May be provided.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a mechanical configuration of an embodiment of an electronic component measuring apparatus according to the present invention. This figure shows an initial state of the electronic component measuring apparatus together with a coordinate system.
The electronic component measuring apparatus shown in FIG. 1 has a measurement chute 11 that sends the SMD 1 to be measured in the Y direction perpendicular to the XZ plane. The measurement chute 11 includes a base portion 11A that is a lower surface of the passage of the SMD 1 and guide portions 11B that are both side surfaces of the passage of the SMD 1. In order to reduce the frictional resistance between the SMD 1 and the base portion 11A when the SMD 1 is sent, a small play is provided in the depth of the passage of the SMD 1.
[0019]
The electrical characteristics of the SMD 1 are measured at a predetermined position in the SMD 1 passage. The predetermined position is called a measurement position. Above the measurement position, a pressing member 13 that presses and fixes the main surface of the SMD 1 conveyed to the measurement position against the base 11A is disposed. The pressing member 13 and the base portion 11A constitute a clamping member that clamps between the main surfaces of the SMD 1.
Further, contactors 20 having measuring elements are disposed on both sides of the measurement chute 11 at the measurement position with the base 11A interposed therebetween.
[0020]
Here, the configuration of the contactor 20 will be described with reference to FIGS. FIG. 2 is a front view of the contactor 20. FIG. 3 is a side view of the contactor 20. FIG. 4 is a plan view of the contactor 20. FIG. 5 is an enlarged view of a portion V in FIG. FIG. 6 is an enlarged view of a VI portion in FIG. FIG. 7 is a plan view of a regulating member included in the contactor 20. 2 to 7 also show a coordinate system corresponding to FIG.
As shown in FIG. 2, this contactor 20 has four pairs of tracing pairs 21 including a first tracing 21A and a second tracing 21B. The number of measuring pairs 21 is equal to the number of leads 3 on one side of the SMD 1 to be measured. The first and second measuring elements 21A and 21B are arranged in the Y direction alternately and spaced apart from each other.
[0021]
The first and second measuring elements 21A and 21B are formed by linearly forming a conductive material having elasticity such as copper. The first probe 21A is a current or voltage application probe, and the second probe 21B is a current or voltage detection probe. Since a larger current flows in the first probe 21A for application than in the second probe 21B for detection, the sectional area of the first probe 21A in the axial direction of the first probe 21A is the same as that of the second probe 21B. It is preferable to make it larger than the cross-sectional area in the axial direction and to reduce the electrical resistance of the first measuring element 21A.
The tip end sides of the first and second measuring elements 21A and 21B are bent at substantially right angles in the same direction (X direction). However, as shown in FIG. 5, the first tracing 21A is bent at a slightly higher position than the second tracing 21B. Further, the length of the bent portion of the first trace 21A is slightly longer than that of the second trace 21B, and the tip of the first trace 21A protrudes from the second trace 21B.
[0022]
As shown in FIG. 6, both the first and second measuring elements 21 </ b> A and 21 </ b> B have a structure in which the width is widened at the tip portion and opposed in the vertical direction. An insulating member 31 made of, for example, ceramic or the like is fixed on a region facing the second probe 21B. Since the first tracing 21A and the second tracing 21B are insulated and separated by the insulating member 31, it is possible to prevent a short circuit between them. Since the insulating member 31 is disposed only in a part of the bent portion of the second probe 21B (the tip region in the figure), the second probe 21B is deformed by the load of the insulating member 31. Never do. The insulating member 31 may be fixed to at least one of the opposing surfaces of the first and second measuring elements 21A and 21B.
[0023]
As shown in FIG. 2, the bases of the measuring elements 21 </ b> A and 21 </ b> B are held in common by a holding member 23. The holding member 23 is made of an insulator such as plastic.
A printed circuit board 25 is fixed to the lower part of the holding member 23, and measuring elements 21 </ b> A and 21 </ b> B are electrically connected to the wiring on the substrate 25. The board 25 is inserted into the connector of the tester, so that the contactor 20 can be connected to the electric circuit of the tester.
In addition, two support members 27 having a height lower than that of the measuring elements 21A and 21B are disposed on both sides of the four pairs of measuring elements 21, and their base parts are fixed to the holding member 23, and their tip parts are also provided. A restricting member 29 is attached to the head. The support member 27 is formed of an elastic material in a band shape, and elastically deforms in the thickness direction (X direction), but does not elastically deform in the width direction (Y direction).
[0024]
As shown in FIG. 7, the regulating member 29 attached to the support member 27 is formed with eight through holes 29A having a substantially rectangular shape in plan view. These through holes 29A are provided corresponding to a total of eight measuring elements 21A and 21B, and one measuring element 21A or 21B is inserted into each through hole 29A.
The length in the Y direction (first direction) of the through hole 29A is substantially the same as the length in the Y direction of the measuring element 21A or 21B inserted through the through hole 29A. Actually, the length in the Y direction of the through hole 29A is slightly longer than the length in the Y direction of the measure 21A or 21B so that the measuring element 21A or 21B can move in the axial direction in the through hole 29A. It is formed.
[0025]
On the other hand, the length of the through hole 29A in the X direction (second direction) is sufficiently larger than the length of the tracing stylus 21A or 21B in the X direction. For example, the former can be formed about twice as long as the latter.
By inserting the measuring elements 21A and 21B through the thus formed through-holes 29A, the movement of the measuring elements 21A and 21B in the Y direction is restricted, while the degree of freedom in the X direction is ensured. In FIG. 7, cross sections of the measuring elements 21 </ b> A and 21 </ b> B inserted through the respective through holes 29 </ b> A are indicated by hatching.
Here, one measuring element 21A or 21B is inserted through each through hole 29A, but a pair of measuring elements may be inserted through each through hole. In this case, it is assumed that the first probe 21A and the second probe 21B constituting the probe pair are completely insulated.
[0026]
As shown in FIG. 1, the contactor 20 having such a configuration is arranged so that the arrangement direction of the measuring elements 21 </ b> A and 21 </ b> B coincides with the arrangement direction of the leads 3 of the SMD 1, and is passed through the screw hole 23 </ b> A of the holding member 23. The contactor fixing screw 15 fixes the measurement chute 11 to the base 11A. At this time, the leading ends of the measuring elements 21A and 21B are both arranged on the side of the lead 3 of the SMD 1. In particular, the leading end of the measuring element 21A is on the base side of the lead 3, and the leading end of the measuring element 21B is on the leading end side of the lead 3. Placed in.
Further, the tip of the pusher 17 is connected to the regulating member 29 of the contactor 20. The pusher 17 presses the regulating member 29 in a direction toward the central axis of the base portion 11 </ b> A of the measurement chute 11.
[0027]
FIG. 8 is a block diagram showing an electrical configuration of the electronic component measuring apparatus shown in FIG. The control unit 41 controls the operation of the entire electronic component measuring apparatus. The control unit 41 is connected to a tester 43 connected to the contactor 20, a pressing member driving unit 13 A that drives the pressing member 13, and a pusher driving unit 17 A that drives the pusher 17.
[0028]
Next, the operation of the electronic component measuring apparatus shown in FIGS. 1 and 8 will be described with reference to FIGS. FIG. 9 is a flowchart showing an operation flow of the electronic component measuring apparatus. FIG. 10 is a diagram illustrating a state during measurement by the electronic component measuring apparatus. FIG. 11 is a diagram for explaining the movement of the tip portion of the first probe 21A.
First, the SMD 1 is transported to the measurement position of the measurement chute 11, the pressing member 13 is lowered, and the SMD 1 at the measurement position is sandwiched and fixed between the base portion 11A of the measurement chute 11 and the pressing member 13 (FIG. 9: Step S1). .
In this state, the pusher 17 is driven, and the regulating member 29 of the contactor 20 is pressed in a direction toward the central axis of the base portion 11A of the measurement chute 11. As a result, the regulating member 29 moves toward the central axis of the base portion 11A as shown in FIG. With the movement of the regulating member 29, the measuring elements 21A and 21B are bent, and the respective leading ends thereof contact the same side surface of the lead 3 of the SMD 1 (FIG. 9: Step S2).
[0029]
At this time, the movement of the measuring elements 21A and 21B in the Y direction is restricted by the through-hole 29A, so that it is possible to suppress the positional deviation of the tips of the measuring elements 21A and 21B in the Y direction. However, if the positional deviation has occurred, the degree of freedom of the X direction measuring elements 21A and 21B in the through hole 29A is ensured. Therefore, the measuring elements 21A and 21B in the portion between the regulating member 29 and the holding member 23 are secured. It is possible to prevent the leading end of the lead from entering between two adjacent leads and bending the lead. Further, since the widths of the measuring elements 21A and 21B are widened at the tip portions, it is possible to prevent the tip portions from entering between the leads and bending the leads. As a result, contact failure between the lead 3 and the pattern when the SMD 1 is mounted on the pattern can be reduced.
[0030]
As shown in FIG. 11, when the tip of the first tracing 21A is pressed against the lead 3 of the SMD 1 from the direction of the arrow (1) that forms an obtuse angle θ when viewed from the base side of the lead 3, the leading end of the tracing 21A is The side surface of the lead 3 is slid toward the base in the direction of the arrow (2). As a result, as shown in FIG. 10 (b), the distance between the tip of the first stylus 21A and the tip of the second stylus 21B is widened, and the former and the latter are respectively the base side and the tip of the lead 3. Contact with the side.
On the other hand, the length of the bent portion of the first tracer 21A is slightly longer than that of the second tracer 21B, and the tip of the first tracer 21A protrudes from the second tracer 21B. Therefore, the former presses the lead 3 of the SMD 1 with a stronger force than the latter. When viewed from the lead 3 side, a relatively large force is applied to the base side where the first measuring element 21A contacts, but a relatively small force is applied to the distal end side where the second measuring element 21B contacts. . For this reason, bending of the lead 3 can be suppressed, and contact failure between the lead 3 and the pattern when the SMD 1 is mounted on the pattern can be reduced.
[0031]
In this way, the first and second measuring elements 21A and 21B are brought into contact with the lead 3 of the SMD 1, and the respective electrical characteristics of the SMD 1 are measured by the Kelvin contact method with the respective tips open (FIG. 9: Step S3). ). That is, a current or voltage is applied from the tester 43 to the lead 3 of the SMD 1 via the first tracer 21A, the resulting current or voltage is detected by the second tracer 21B, and the detection result is detected by the tester 43. By analyzing, the electrical characteristics of the SMD 1 can be obtained.
[0032]
The contact resistance of the application probe causes damage due to heat generated at the probe tip, but the detection probe has a small influence on the contact resistance. Therefore, the lead 3 of the SMD 1 is pressed with a relatively strong force and the first measuring element 21A having a relatively small contact resistance with the lead 3 is used for application, and the lead 3 is pressed with a relatively weak force to reduce the contact resistance. By using the second measuring element 21B that is relatively large for measurement, the life of the measuring element can be extended.
Further, as shown in FIG. 11, when the first tracing 21A slides on the surface of the lead 3 in the direction of the arrow (2), the oxide film formed on the surface of the lead 3 is scraped off. By bringing the first probe 21A into contact with the surface of the lead 3 that has been scraped off with a strong force, the contact resistance that causes measurement errors can be reduced, and the measurement accuracy can be improved.
[0033]
The SMD1 is measured with the tips of the measuring elements 21A and 21B open, but if the tip is not opened, a current or voltage is applied from the first measuring element 21A to the lead 3. Even so, since the insulating member 31 is disposed between the tip portions of the measuring elements 21A and 21B, the contact resistance is increased, and the measurement error is not affected by the measurement error.
[0034]
After the measurement is completed, the pressing member 13 is raised to a position based on the pressing member 13, and the clamping and fixing of the SMD 1 by the base portion 11A of the measuring chute 11 and the pressing member 13 is stopped (FIG. 9: Step S4). As a result, the SMD 1 can move in the vertical direction (Z direction).
In this state, the pressing to the regulating member 29 by the pusher 17 is stopped. As a result, the measuring elements 21A and 21B return to the original state by the repulsive force, and the leading ends of the measuring elements 21A and 21B move away from the lead 3 of the SMD 1 (FIG. 9: Step S5). In this way, the SMD 1 can be moved in the vertical direction, and the tip of the tracing stylus 21A is pulled away from the lead 3 of the SMD 1 without sliding in the direction opposite to the direction of the arrow (2) shown in FIG. The tip of the measuring element 21A can be pulled away in the direction of the arrow (3) directly. Therefore, it is possible to prevent the oxide film particles that have been scraped off from adhering to the tip of the tracing stylus 21A, thereby extending the life of the tracing stylus 21A.
[0035]
Note that, even if the current or voltage is applied to the first measuring element 21A in the state where the measuring elements 21A and 21B are separated from the lead 3 of the SMD 1 and the respective distal ends thereof are closed, the measuring elements 21A and 21B respectively. Since the insulating member 31 is disposed between the tip portions of the two, the measurement error that occurs when the measuring elements 21A and 21B are short-circuited can be prevented.
In this electronic component measuring apparatus, the amount of movement of the measuring elements 21A and 21B becomes smaller than that of the measuring element 121B shown in FIG. 13 by bringing the tips of the measuring elements 21A and 21B into contact with the same side surface of the lead 3 of the SMD1. For this reason, since it is not necessary to provide a contact part in the middle of measuring element 21A, 21B, the contact resistance which causes a measurement error can be reduced and the accuracy of a measurement can be improved.
[0036]
In the present embodiment, the case where the measurement target is the SMD 1 shown in FIG. 12 has been described as an example, but other electronic components other than the SMD 1 may be used. For example, it may be an electronic component in which opposing leads are linearly expanded from the base to a square shape.
[0037]
【The invention's effect】
  As explained above, in the present invention, the first and second measuring elements areEach has a linear base formed of a conductive material having elasticity and a wide tip formed at one end of the base, and the bases of the first and second measuring elements are arranged in parallel to each other. At the same time, the leading ends of the first and second measuring elements are bent at different positions in the direction of the lead of the electronic component, and are parallel to the plane including the base portions arranged in parallel to each other and perpendicular to the base portion. Spread in the direction and at least some of them face each otherIs. Thereby, the accuracy of measurement can be improved.
[0038]
Further, in the through hole of the restricting member, the length in the second direction perpendicular to the arrangement direction (first direction) of the leads of the electronic component is larger than the length in the second direction of the first or second measuring element. To do. As a result, the first and second degree of freedom in the second direction in the through hole is ensured, and the elasticity of the first and second degree members in the portion between the regulating member and the holding member is utilized. be able to. Therefore, even if the leading ends of the first and second measuring elements are displaced in the lead arrangement direction, the leading ends are prevented from entering between two adjacent leads and bending the lead. it can.
Further, by expanding the widths of the first and second measuring elements at the tip, even if the leading ends of the first and second measuring elements are displaced in the lead arrangement direction, the leading ends are adjacent to each other. It is possible to prevent the lead from entering between two matching leads and bending the lead.
[0039]
Further, by pulling the first and second measuring elements away from the lead of the electronic component after stopping the clamping of the electronic component, the measuring element can be separated without sliding the tip of the measuring element on the surface of the lead. it can. As a result, the scraped oxide film particles can be prevented from adhering to the tip of the tracing stylus, thereby extending the life of the tracing stylus.
[Brief description of the drawings]
FIG. 1 is a diagram showing a mechanical configuration of an embodiment of an electronic component measuring apparatus according to the present invention.
FIG. 2 is a front view of a contactor.
FIG. 3 is a side view of the contactor.
FIG. 4 is a plan view of a contactor.
FIG. 5 is an enlarged view of a V portion in FIG. 3;
6 is an enlarged view of a VI part in FIG. 4;
FIG. 7 is a plan view of a regulating member.
FIG. 8 is a diagram showing an electrical configuration of the electronic component measuring apparatus shown in FIG.
9 is a flowchart showing a flow of operations of the electronic component measuring apparatus shown in FIGS. 1 and 8. FIG.
10 is a diagram showing a state at the time of measurement by the electronic component measuring apparatus shown in FIG. 1. FIG.
FIG. 11 is a diagram for explaining the movement of the tip of the first tracer.
FIG. 12 is a front view of an SMD.
FIG. 13 is a diagram showing a configuration of a conventional electronic component measuring apparatus for measuring SMD.
FIG. 14 is a diagram showing a connection state between a probe and a lead in a conventional electronic component measuring apparatus.
FIG. 15 is a diagram for explaining the movement of the tip of the first tracer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... SMD, 3 ... Lead, 11 ... Measurement chute, 11A ... Base part, 11B ... Guide part, 13 ... Pressing member, 13A ... Pressing member drive part, 15 ... Contactor fixing screw, 17 ... Pusher, 17A ... Pusher drive part 20 ... contactors, 21 ... probe pairs, 21A ... first probe (for application), 21B ... second probe (for detection), 23 ... holding member, 23A ... screw hole, 25 ... printed circuit board, 27: Support member, 29 ... Restriction member, 29A ... Through hole, 31 ... Insulating member, 41 ... Control part, 43 ... Tester.

Claims (8)

電子部品のリードに第1及び第2の測子を接触させケルビンコンタクト方式により前記電子部品を測定する電子部品測定装置において、
前記第1及び第2の測子は、それぞれ弾性を有する導電材料から形成される線状の基部とこの基部の一端に幅広に形成された先端部とを有し、
前記第1及び第2の測子の前記基部は、互いに平行に配設されるととも、互いに異なる位置で前記電子部品のリードの方向に折り曲げられ、かつ前記第1及び第2の測子の前記先端部が、互いに平行に配設された前記基部を含む面に平行で前記基部と垂直な方向に拡がりかつ少なくともその一部が互いに対向する
ことを特徴とする電子部品測定装置。
In the electronic component measuring apparatus for measuring the electronic component by the Kelvin contact method by bringing the first and second measuring elements into contact with the lead of the electronic component,
It said first and second Hakako has a linear base that will be formed of a conductive material having elasticity respectively and the wide-formed tip portion at one end of the base portion,
The base portions of the first and second tracers are arranged in parallel to each other, bent at different positions in the direction of the lead of the electronic component, and the first and second tracers The electronic component measuring apparatus according to claim 1, wherein the distal end portion extends in a direction perpendicular to the base portion and parallel to a plane including the base portions arranged in parallel to each other, and at least a part thereof faces each other .
請求項1記載の電子部品測定装置において、
前記第1及び第2の測子の間に絶縁部材が配設されていることを特徴とする電子部品測定装置。
The electronic component measuring apparatus according to claim 1,
An electronic component measuring apparatus, wherein an insulating member is disposed between the first and second measuring elements.
請求項2記載の電子部品測定装置において、
前記絶縁部材は、前記第1又は第2の測子の前記先端部に配設されていることを特徴とする電子部品測定装置。
In the electronic component measuring apparatus according to claim 2,
The electronic component measuring apparatus according to claim 1, wherein the insulating member is disposed at the tip of the first or second stylus.
請求項1〜3のいずれか1つに記載された電子部品測定装置において、
前記第1の測子は、前記電子部品のリードに電流又は電圧を印加し、前記第2の測子よりも軸方向に垂直な断面積が大きいこと
を特徴とする電子部品測定装置。
In the electronic component measuring device according to any one of claims 1 to 3,
The electronic component measuring apparatus according to claim 1, wherein the first probe applies a current or a voltage to the lead of the electronic component, and has a cross-sectional area perpendicular to the axial direction larger than that of the second probe.
請求項1〜4のいずれか1つに記載された電子部品測定装置において、
前記電子部品の測定位置で前記電子部品を挟持する挟持部材をさらに備えたことを特徴とする電子部品測定装置。
In the electronic component measuring device according to any one of claims 1 to 4 ,
An electronic component measuring apparatus further comprising a clamping member for clamping the electronic component at a measurement position of the electronic component.
請求項1〜5のいずれか1つに記載された電子部品測定装置において、
記第1及び第2の測子の互いに平行に配設された前記基部を含む面内における前記基部の軸方向に垂直な方向の移動を規制する規制部材をさらに備える
ことを特徴とする電子部品測定装置。
In the electronic component measuring apparatus according to any one of claims 1 to 5,
Electrons, characterized in that the pre-Symbol further comprising a regulating member for regulating the movement in the direction perpendicular to the axial direction of the base portion in a plane including the base portion disposed parallel to one another in the first and second Hakako Parts measuring device.
請求項6に記載された電子部品測定装置において、
前記規制部材は、前記第1及び第2の測子の前記基部がそれぞれ挿通される貫通孔を有し、
この貫通孔は、前記第1及び第2の測子の互いに平行に配設された前記基部を含む面内における前記先端部が拡がる方向の第1の方向の長さが、前記面内における前記第1の方向に垂直な方向の第2の方向の長さより短い
ことを特徴とする電子部品測定装置。
The electronic component measuring apparatus according to claim 6,
The regulating member has a through hole through which the base portions of the first and second measuring elements are respectively inserted.
The through hole has a length in a first direction in a direction in which the tip end portion expands in a plane including the base portions of the first and second tracers arranged in parallel to each other. An electronic component measuring apparatus having a length shorter than a length in a second direction perpendicular to the first direction .
請求項1〜7のいずれか1つに記載された電子部品測定装置において、In the electronic component measuring apparatus according to any one of claims 1 to 7,
前記第1及び第2の測子の基部を保持する保持部材と、  A holding member for holding the bases of the first and second measuring elements;
前記規制部材を押圧して前記第1及び第2の測子を前記電子部品のリードの方向に移動させるプッシャとを備えた  A pusher that presses the regulating member to move the first and second measuring elements in the direction of the leads of the electronic component.
ことを特徴とする電子部品測定装置。  An electronic component measuring apparatus.
JP2001286629A 2001-09-20 2001-09-20 Electronic component measuring apparatus and method Expired - Lifetime JP4024023B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001286629A JP4024023B2 (en) 2001-09-20 2001-09-20 Electronic component measuring apparatus and method
KR10-2002-0056949A KR100508376B1 (en) 2001-09-20 2002-09-18 Apparatus and method for measuring electronic parts
CNB021424950A CN1204615C (en) 2001-09-20 2002-09-20 Electronic device measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286629A JP4024023B2 (en) 2001-09-20 2001-09-20 Electronic component measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2003090849A JP2003090849A (en) 2003-03-28
JP4024023B2 true JP4024023B2 (en) 2007-12-19

Family

ID=19109574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286629A Expired - Lifetime JP4024023B2 (en) 2001-09-20 2001-09-20 Electronic component measuring apparatus and method

Country Status (3)

Country Link
JP (1) JP4024023B2 (en)
KR (1) KR100508376B1 (en)
CN (1) CN1204615C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314974C (en) * 2004-08-06 2007-05-09 中国科学院上海微***与信息技术研究所 Device structure for detecting nano electronic device property and preparing method
WO2006068156A1 (en) * 2004-12-22 2006-06-29 Opto System Co., Ltd. Kelvin probe
JP4831614B2 (en) * 2006-08-15 2011-12-07 株式会社ヨコオ Kelvin inspection jig
JP5144997B2 (en) * 2007-09-21 2013-02-13 東京特殊電線株式会社 Contact probe unit and manufacturing method thereof
JP5086872B2 (en) * 2008-04-07 2012-11-28 ルネサスエレクトロニクス株式会社 Contact mechanism of electronic component measuring device and electronic component measuring device using the same
KR20140020892A (en) * 2011-05-26 2014-02-19 이스메카 세미컨덕터 홀딩 에스.아. Clamp
CN111366811B (en) * 2020-03-19 2022-06-21 北京广利核***工程有限公司 Integrated automatic inspection device and method for electronic components
CN114325339B (en) * 2021-12-31 2024-04-05 苏州思迈尔电子设备有限公司 Sensor circuit board detection device and detection method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158939A (en) * 1982-03-16 1983-09-21 Nec Corp Measurement of semiconductor wafer chip
JPH05144895A (en) * 1991-11-20 1993-06-11 Nec Yamagata Ltd Probe card
US6121783A (en) * 1997-04-22 2000-09-19 Horner; Gregory S. Method and apparatus for establishing electrical contact between a wafer and a chuck
KR19980084369A (en) * 1997-05-23 1998-12-05 배순훈 Kelvin Probe Tips
JPH1164385A (en) * 1997-08-21 1999-03-05 Hitachi Electron Eng Co Ltd Probe for substrate for inspection

Also Published As

Publication number Publication date
KR20030025839A (en) 2003-03-29
CN1204615C (en) 2005-06-01
CN1405873A (en) 2003-03-26
KR100508376B1 (en) 2005-08-17
JP2003090849A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US6023171A (en) Dual-contact probe tip for flying probe tester
KR20210018087A (en) Electrical Contactor and Electrical Connecting Apparatus
JP4024023B2 (en) Electronic component measuring apparatus and method
JP3558298B2 (en) Electrode assembly, IC socket, IC tester, and method of manufacturing electrode assembly
JP2017036997A (en) Inspection device and inspection method of double-sided circuit board
TW200819755A (en) Electronic component inspection probe
JP2000131340A (en) Contact probe device
JP4886422B2 (en) Four-terminal measurement probe
JPH0797114B2 (en) probe
JP7393873B2 (en) Electrical contacts and probe cards
JP2007232558A (en) Electronic component inspection probe
KR102182216B1 (en) Probe Card
WO2021149668A1 (en) Probe, measuring device, and measuring method
JP4334684B2 (en) Substrate inspection sensor and substrate inspection apparatus
JP2985432B2 (en) Electrical characteristic inspection device
JP2635054B2 (en) Probing card
JP2003066101A (en) Contact sheet and measuring tool using the same
JP3396316B2 (en) Connectors for electronic components
JP2007178143A (en) Contact probe device and circuit board inspection device
JP2000241443A (en) Probe contact device
JP6152513B2 (en) Multilayer contact probe
JPH0747740Y2 (en) Contact structure of probe
JPH0649994U (en) Vertical probe card
JP2023093708A (en) Method for inspecting wiring circuit board
JPH0729497Y2 (en) Multi-pin probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Ref document number: 4024023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term