JP4022341B2 - Dehumidification method and apparatus - Google Patents

Dehumidification method and apparatus Download PDF

Info

Publication number
JP4022341B2
JP4022341B2 JP16331299A JP16331299A JP4022341B2 JP 4022341 B2 JP4022341 B2 JP 4022341B2 JP 16331299 A JP16331299 A JP 16331299A JP 16331299 A JP16331299 A JP 16331299A JP 4022341 B2 JP4022341 B2 JP 4022341B2
Authority
JP
Japan
Prior art keywords
film
hygroscopic liquid
porous membrane
hydrophobic
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16331299A
Other languages
Japanese (ja)
Other versions
JP2000350918A (en
Inventor
章 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP16331299A priority Critical patent/JP4022341B2/en
Publication of JP2000350918A publication Critical patent/JP2000350918A/en
Application granted granted Critical
Publication of JP4022341B2 publication Critical patent/JP4022341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、吸湿性の液体を用いて水蒸気を選択的に除去する除湿方法および除湿装置において、前記吸湿性液体の多孔質膜への保持を安定化した除湿方法および除湿装置に関する。
【0002】
【従来技術】
水蒸気を選択的に除去する従来技術としては、1,トリエチレングリコール、塩化リチウム水溶液などの吸湿性液体を用いた吸収法による除湿プロセスは工業的に多く用いられる。しかし、この吸収法は吸湿液体を再利用するには、再生操作が必要である点で簡便なプロセスとは言い難い。また、吸着剤を用いる除湿機もあるが、この場合も再生操作が必要でありプロセス的、およびエネルギー的にあまり良くない。これに対して、2,水蒸気選択透過性の高分子膜(ポリイミドなど)を用いる除湿方法は、連続操作ができ、1,のような再生操作が必要でない点、およびエネルギー的にも有利である。しかし固体高分子膜を通して選択的に水蒸気を透過させるものであるため、透過量が小さいこと、また、膜が高価である等の問題がある。
【0003】
更に、3,多孔質膜内にトリエチレングリコールなどの吸湿性液体を保持させた水蒸気を選択的に吸収、移送する膜を用いて水蒸気を除去する除湿方法も公知である(米国特許第4900448号明細書、1990年)。この方法では、吸湿性の液体を保持したセルロース製の多孔質中空膜(平行に多数配列して結束した)を用い、中空部を減圧にした状態で水蒸気を含む空気と接触させ、前記吸湿性液体を保持した膜により水蒸気を選択的に除去するものである。しかしながらこの方法では、膜の両側の圧力勾配が大きいと液が漏れ出し、蒸気を選択的に吸収・移送する液体膜がその機能がなくなってしまうという不都合があり、高い減圧による水蒸気の選択的膜透過操作ができないという欠点がある。
【0004】
【発明が解決しようとする課題】
従って、本発明の課題は、上記従来技術、特に3,に挙げた技術における、高い減圧下(圧力勾配)において操作ができないことの不都合を取り除いた除湿方法および除湿装置、換言すれば高い減圧下(大きな圧力勾配)で選択的に水蒸気を除去できる除湿方法および除湿装置を提供することである。そこで、本発明者は、吸湿性液体を多孔質膜に安定的に保持する手段を検討する中で、吸収性液体が減圧下において漏れるのは、前記液体を保持する多孔質部材が吸湿性液体に濡れやすいことによるものと考え、減圧側に吸湿性液体を反発する機能(撥吸湿性液体特性、すなわち、吸湿性液体であるトリエチレングリコールの侵入圧力が200kPa以上の多孔質膜)を付与すれば、その反発力が減圧による吸引力に打ち勝ち漏れが防げるのではないかと考え、疎水性であるが水蒸気透過性の通気孔を有する多孔質膜を減圧側に設けることを考え、前記課題を解決した。
【0005】
【課題を解決するための手段】
従って、本発明の第1は、吸湿性液体(C)を含浸・保持した親水性処理をしたポリテトラフルオロエチレンからなる多孔質膜(A)とこれに隣接して配置された疎水性および撥吸湿液体性の特性が、水の侵入圧力400kPa以上の疎水性およびトリエチレングリコールの侵入圧力200kPa以上の撥吸湿性液体特性のポリビニリデンジフロライドからなる疎水性多孔質膜(B)とよりなる積層構造の膜の、ポリエチレングリコール、トリエチレングリコール及びテトラエチレングリコールからなる群から選択される少なくとも一種の吸湿性液体を保持した多孔質膜(A)側を水蒸気を含む気体に接触させ、前記疎水性多孔膜(B)側を減圧部に接触させて、前記水蒸気を前記積層構造の膜により減圧部に選択的に透過させ除去することを特徴とする除湿方法であり、好ましくは、積層構造の膜が減圧下において膜形状を保持する部材に支持されていることを特徴とする前記除湿方法である。本発明の第2は、ポリエチレングリコール、トリエチレングリコール及びテトラエチレングリコールからなる群から選択される少なくとも一種の吸湿性の液体(C)を含浸・保持した親水性処理をしたポリテトラフルオロエチレンからなる多孔質膜(A)とこれに隣接して配置された疎水性および撥吸湿液体性の特性が、水の侵入圧力400kPa以上の疎水性およびトリエチレングリコールの侵入圧力200kPa以上の撥吸湿性液体特性のポリビニリデンジフロライドからなる疎水性多孔質膜(B)とよりなる積層構造の膜、前記積層構造の膜を膜形状を保持して支持する部材、前記吸湿性液体を保持した多孔質膜(A)側に水蒸気を含む気体を接触させて通過させる室と前記疎水性多孔膜(B)側を減圧にする装置に接続され、前記積層構造の膜により減圧部に選択的に透過された水蒸気を除去する室を前記積層構造の膜を介して設けたことを特徴とする除湿装置であり、好ましくは、積層構造の膜を膜形状を保持して支持する部材が金属、セラミック焼結板からなることを特徴とする前記除湿装置である。本発明者は、水蒸気を選択的に透過させる膜を、吸湿性の液体を含浸、保持した多孔質膜の減圧側に、水蒸気透過性で撥吸湿性液体特性の疎水性多孔質膜を設けた積層構造の膜にすることによって、前記課題を解決したものである。
【0006】
【本発明の実施の態様】
本発明を詳細に説明する。1.吸湿性液体につき説明する。本発明における水蒸気選択分離性は、使用する液体自身の吸湿性(水蒸気選択吸収性)によるものである。従って、トリエチレングリコール、テトラエチレングリコール及びポリエチレングリコールから選択 される少なくとも一種の吸湿性液体を本出願に係る水蒸気選択吸収除湿プロセスに用いられる材料として挙げることができる。
【0007】
2.前記吸湿性液体を含浸・保持する多孔質膜について。多孔質膜(A)としては、親親水性処理したポリテトラフルオロエチレンからなる多孔膜〔親水化処理としては、界面活性剤、例えばドデシルベンゼンスルホン酸ナトリウムをアセトンで溶かした処理剤でコーティング処理したり、(アドバンテック(株)社)やメタノールで処理しそれをグリコールに浸漬して置換する方法など公知の方法を採用できる。〕が除湿性、安定性などの点から好ましい
【0008】
3.疎水性多孔質膜について。
その機能は、前記撥吸湿性液体特性によって、吸湿性液体が真空側に漏れるのを防ぐと共に、水蒸気の透過を可能とするものであるから、上記機能を持つ、膜材料および多孔質膜構造のものでなければならない。好ましい疎水性多孔質膜には水の侵入圧力400kPa以上およびトリエチレングリコールの侵入圧力200kPa以上の撥吸湿性液体特性のポリビニリデンジフロライドからなる疎水性多孔質膜が使用される。また、多孔質膜構造は、一般に、約0.001から10ミクロン、通常は約0.01から5.0ミクロン、好ましくは0.1から0.5ミクロンの平均孔経を有している。空隙率は30〜85%の範囲である。特に好ましい疎水性多孔質膜を構成するポリマーとしては、疎水性処理を施したフッ化ポリビニリデン(PVDF)(=ポリビニリデンジフロライド)を挙げることができ、そのような材料できた、市販の疎水性多孔質膜としては、ミリポア社製のDurapel膜)(特開平6−9810号公報等参照)を挙げることができる。この疎水性多孔質膜の特性は、空隙率70%、孔径0.1μm、膜厚み120μmであり、さらに疎水性処理を施したものであり、水侵入圧は公称550kPa(この圧力まで多孔質膜内に水は侵入しない。)であり、吸湿性液体として使用したトリエチレングリコールも差圧250kPa程度では、この多孔質膜中に浸透せず、表面張力により膜表面で保持される。なお、前記複合構造の膜は、膜を製造する工程で積層構造にすることができ、また、複合中空膜構造とすることもできる。
【0009】
図1は、本発明の除湿部分の構成の一態様である。疎水性多孔質膜(B)とこれに隣接して積層された吸湿性液体(C)を含浸・保持した親水性多孔質膜(A)とからなる積層構造の膜はステンレス製の焼結板上に保持され、Oリングではさんで膜が固定される。該積層構造の膜の吸湿性液体(C)を含浸、保持した多孔質膜(A)側に、供給気体入口から水蒸気を含む気体が供給され、前記膜と接触し、前記吸湿性液により水蒸気が選択的に吸収され除去され、除湿された気体が出口(供給気体出口)から排出される。また、疎水性多孔質膜(B)の水蒸気透過側は真空ポンプ等排気装置に接続された減圧室に接し、前記積層構造の膜を透過してきた水蒸気を連続的に除去する。この際、透過側の圧力(減圧度・真空度)は、供給気体の水蒸気分圧以下である必要がある。この状態では、前記吸湿液体により水蒸気が吸収され、移送されその反対側で水蒸気が蒸発する。その結果、供給気体中の水蒸気は定常的に吸湿性液体により吸収、移送され積層構造の膜を透過する。供給気体が湿気を含む空気である場合は、空気中の水蒸気のみが吸湿性液体中を選択的に透過し、これに対し、空気は吸湿性液体中の透過量が微小なので、除湿された空気として気体出口から送出される。また、その他の水蒸気を含む混合気体・混合蒸気においても同様に水蒸気を選択的に除去することができる。
【0010】
本発明の原理を用いた除湿方法によれば、従来の吸収法や冷却凝縮法に比較して、膜面積に対応して小流量から大流量の、広い範囲の空気の除湿装置を設計することができる。
【0011】
【実施例】
実施例1
平膜セル(膜面積24.5cm)のステンレス焼結板上に、疎水性多孔膜(B)(前記ミリポア社製のDurapel膜)を置き、その上にポリエチレングリコール液(分子量400)を含浸させた膜厚35μm、多孔度80%の親水性ポリテトラフルオロエチレン多孔質膜(A)を重ねる積層構造の膜を形成する。ポリエチレングリコール液は疎水性多孔質膜(B)の表面で表面張力により支持され、疎水性多孔質膜に中には浸透しない。このポリエチレングリコールを含浸した多孔質膜表面上に所定湿度の空気を供給する。疎水性多孔質膜(B)の透過側を真空ポンプにより0.13kPaに減圧し、この真空度を保つ。これにより前記空気中の水蒸気が、積層構造の膜を選択的に透過し、結果として、除湿された空気が出口(供給気体出口)から排出される。この関係を図2に示す。図2の装置、操作条件は、親水性ポリテトラフルオロエチレン多孔質膜(膜厚35μm)、膜面積24.5cm、空気流量100cm/min、気温18℃、供給側:大気圧、透過側:0.13kPaである。その結果、湿度82%の空気が22%まで除湿された。一方、空気の透過量はごく少ない。(供給空気流量70cm/minに対して、真空側に透過した空気量は0.1cm/min以下であった。)この場合、液体膜の透過係数は、ポリテトラフルオロエチレン多孔質膜の厚み(35μm)を仮の膜厚みにとって推算すると、水蒸気が7.5×10−7cm(STP)・cm/(cm・S・cmHg)、空気が3.1×10−10cm(STP)・cm/(cm・S・cmHg)である。両者の比である理想分離係数は2400。液体膜の耐久性については、6時間の操作を5日間繰り返しても除湿性能に変化は無かった。
【0012】
実施例2上記と同様に積層構造の膜を構成し、該膜に空気/エタノール蒸気/水蒸気の混合気体を供給する。(図3)この混合気体はエタノール水溶液に空気をバブリングすることで得る。供給側は大気圧、透過側を0.13kPaに減圧して、供給出口、透過側両方のエタノール蒸気と水蒸気を冷却捕集する。結果を図3に示す。供給混合蒸気中の水蒸気が積層構造の膜を選択的に透過し、透過蒸気では水蒸気が濃縮されており、その結果供給出口蒸気中ではエタノールが濃縮されている。例えばエタノール36mol%/水蒸気64mol%の組成の混合蒸気を供給した場合、透過側ではエタノール4mol%/水96mol%の凝縮液が得られ、供給側出口ではエタノール77mol%/水蒸気23mol%の濃縮エタノール水溶液が得られる。
【0013】
上記実施例1,2ではともに、吸湿性液体としてはポリエチレングリコール(M=400)を用いているけれども、トリエチレングリコールおよびテトラエチレングリコールを使用する場合にも同程度の水蒸気選択透過性を示した(図3)。
【0014】
【発明の効果】
以上述べたように、本発明において、水蒸気を選択的に吸収、移送して除湿する方法において、水蒸気を選択的に吸収、移送(透過)する膜構造を、吸湿性の液体を含浸、保持した多孔質膜の減圧側に水蒸気透過性で、撥吸湿性液体特性の疎水性多孔質膜を設けた積層構造にすることによって、前記吸湿性液体を減圧下の除湿操作においても安定的に保持でき、操作性の良い除湿方法および除湿装置を設計できるという優れた作用・効果がもたらされる。
【図面の簡単な説明】
【図1】 本発明の吸湿性液体を保持する積層構造の膜と該積層構造の膜を組込ん除湿部の構成の説明図。
【図2】 本発明の積層構造の膜を用いた除湿特性。
【図3】 本発明の積層構造の膜を用いた、エタノール/水蒸気/空気混合からの除湿特性。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehumidifying method and a dehumidifying device for selectively removing water vapor using a hygroscopic liquid, and to a dehumidifying method and a dehumidifying device that stabilize the retention of the hygroscopic liquid in a porous membrane.
[0002]
[Prior art]
As a conventional technique for selectively removing water vapor, a dehumidification process by an absorption method using a hygroscopic liquid such as 1, triethylene glycol or an aqueous lithium chloride solution is often used industrially. However, this absorption method is not a simple process in that a regenerating operation is required to reuse the hygroscopic liquid. There is also a dehumidifier using an adsorbent, but in this case as well, a regenerating operation is required, which is not very good in terms of process and energy. On the other hand, the dehumidification method using a water vapor selective permeable polymer membrane (polyimide, etc.) is advantageous in that it can be operated continuously, the regenerating operation as in 1 is not necessary, and energy. . However, since water vapor is selectively permeated through the solid polymer membrane, there are problems that the permeation amount is small and the membrane is expensive.
[0003]
Further, a dehumidification method is known in which water vapor is removed using a membrane that selectively absorbs and transfers water vapor in which a hygroscopic liquid such as triethylene glycol is held in a porous membrane (US Pat. No. 4,900,388). Specification, 1990). In this method, a porous porous membrane made of cellulose holding a hygroscopic liquid (a large number of parallelly arranged in a bundle) is brought into contact with air containing water vapor in a state where the hollow portion is decompressed, and the hygroscopic property Water vapor is selectively removed by a film holding a liquid. However, this method has the disadvantage that if the pressure gradient on both sides of the membrane is large, the liquid leaks, and the function of the liquid membrane that selectively absorbs and transports the vapor is lost. There is a disadvantage that the transmission operation cannot be performed.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a dehumidifying method and a dehumidifying device that eliminates the disadvantage that the operation cannot be performed under a high pressure reduction (pressure gradient) in the above-described conventional techniques, particularly the techniques listed in 3 above, in other words, a high pressure reduction. To provide a dehumidifying method and a dehumidifying apparatus capable of selectively removing water vapor with (a large pressure gradient). Therefore, the present inventor has studied the means for stably holding the hygroscopic liquid in the porous membrane, and the reason why the absorbent liquid leaks under reduced pressure is that the porous member holding the liquid is the hygroscopic liquid. The function of repelling the hygroscopic liquid on the decompression side (hygroscopic liquid property, that is, a porous film having a penetration pressure of triethylene glycol of the hygroscopic liquid of 200 kPa or more ) is given to the reduced pressure side. For example, the repulsion force overcomes the suction force due to the reduced pressure and the leakage can be prevented, and a porous membrane having a hydrophobic but water vapor permeable vent is provided on the reduced pressure side to solve the above problem. did.
[0005]
[Means for Solving the Problems]
Accordingly, a first aspect of the present invention is a porous membrane (A) made of polytetrafluoroethylene that has been impregnated and retained with a hygroscopic liquid (C) and has been subjected to hydrophilic treatment, and a hydrophobic membrane and a hydrophobic layer that are arranged adjacent to the porous membrane (A). Hydrophobic porous membrane (B) comprising a polyvinylidene difluoride having a hygroscopic liquid property having a hydrophobic property of water intrusion pressure of 400 kPa or more and a hygroscopic liquid property of triethylene glycol of 200 kPa or more. The porous membrane (A) side holding at least one hygroscopic liquid selected from the group consisting of polyethylene glycol, triethylene glycol and tetraethylene glycol is brought into contact with a gas containing water vapor, and the hydrophobic structure The porous porous membrane (B) side is brought into contact with the reduced pressure portion, and the water vapor is selectively permeated to the reduced pressure portion through the laminated structure and removed. A dehumidification method wherein, preferably, the dehumidification method film of the laminated structure is characterized in that it is supported by the member that holds the film shape under reduced pressure. A second aspect of the present invention comprises polytetrafluoroethylene subjected to hydrophilic treatment impregnating and holding at least one hygroscopic liquid (C) selected from the group consisting of polyethylene glycol, triethylene glycol and tetraethylene glycol. The porous membrane (A) and the hydrophobic and hygroscopic liquid properties disposed adjacent to the porous membrane (A) are hydrophobic with a water penetration pressure of 400 kPa or higher and triethylene glycol with a penetration pressure of 200 kPa or higher. A layered structure film comprising a hydrophobic porous film (B) made of polyvinylidene difluoride, a member for supporting the layered structure film while maintaining the film shape, and a porous film holding the hygroscopic liquid (A) connected to a chamber through which a gas containing water vapor is brought into contact with the side and a device for reducing the pressure on the hydrophobic porous membrane (B) side, A dehumidifying device is provided with a chamber for removing water vapor selectively permeated to the decompression section by the structure film through the layered film, preferably the layered film is formed into a film shape. The dehumidifying apparatus is characterized in that the member to be held and supported is made of metal or a ceramic sintered plate. The present inventor provided a hydrophobic porous membrane having a water vapor permeable and hygroscopic liquid property on the pressure-reducing side of the porous membrane impregnated with and holding a hygroscopic liquid as a membrane that selectively transmits water vapor. The above problem is solved by forming a film having a laminated structure.
[0006]
[Embodiments of the present invention]
The present invention will be described in detail. 1. The hygroscopic liquid will be described. The water vapor selective separation in the present invention is due to the hygroscopicity (water vapor selective absorptivity) of the liquid itself used. Thus, triethylene glycol, may be mentioned as tetraethylene glycol and materials found is used to steam selective absorption dehumidification process according to the present application at least one hygroscopic liquid is selected from polyethylene glycol.
[0007]
2. A porous membrane impregnating / holding the hygroscopic liquid. As the porous membrane (A), a porous membrane made of polytetrafluoroethylene subjected to hydrophilic treatment [for hydrophilization treatment, a surface-active agent such as sodium dodecylbenzenesulfonate dissolved in acetone is coated. Or a known method such as (Advantech Co., Ltd.) or a method of treating with methanol and immersing it in glycol for replacement. ] Is preferable from the viewpoints of dehumidification and stability .
[0008]
3. About hydrophobic porous membranes.
Its function is to prevent the hygroscopic liquid from leaking to the vacuum side due to the hygroscopic liquid property and to allow water vapor to pass through. Therefore, the membrane material and porous membrane structure having the above functions can be used. Must be a thing. As a preferred hydrophobic porous membrane, a hydrophobic porous membrane made of polyvinylidene difluoride having a water-absorbing liquid property having a water penetration pressure of 400 kPa or more and a triethylene glycol penetration pressure of 200 kPa or more is used. Also, the porous membrane structure generally has an average pore size of about 0.001 to 10 microns, usually about 0.01 to 5.0 microns, preferably 0.1 to 0.5 microns. The porosity is in the range of 30 to 85%. As a polymer constituting a particularly preferred hydrophobic porous membrane, there can be mentioned polyvinylidene fluoride (PVDF) (= polyvinylidene difluoride) which has been subjected to hydrophobic treatment, and such a material is commercially available. Examples of the hydrophobic porous membrane include Durapel membrane manufactured by Millipore (see JP-A-6-9810, etc.). The characteristics of this hydrophobic porous membrane are a porosity of 70%, a pore diameter of 0.1 μm, a membrane thickness of 120 μm, and a hydrophobic treatment. The water penetration pressure is nominally 550 kPa (the porous membrane up to this pressure) Water does not penetrate into the inside.) When the differential pressure is about 250 kPa, the triethylene glycol used as the hygroscopic liquid does not penetrate into the porous membrane and is retained on the membrane surface by surface tension. The composite structure film can be formed into a laminated structure in the process of manufacturing the film, or can be a composite hollow film structure.
[0009]
FIG. 1 is an embodiment of the configuration of the dehumidifying portion of the present invention. A laminated film comprising a hydrophobic porous membrane (B) and a hydrophilic porous membrane (A) impregnated / held with a hygroscopic liquid (C) laminated adjacent thereto is a sintered plate made of stainless steel It is held on and the membrane is fixed with an O-ring. A gas containing water vapor is supplied from a supply gas inlet to the porous membrane (A) side impregnated and held in the hygroscopic liquid (C) of the film having the laminated structure, and comes into contact with the film. Are selectively absorbed and removed, and the dehumidified gas is discharged from the outlet (supply gas outlet). Further, the water vapor permeation side of the hydrophobic porous membrane (B) is in contact with a decompression chamber connected to an exhaust device such as a vacuum pump, and continuously removes the water vapor that has permeated through the laminated film. At this time, the pressure on the permeation side (decompression degree / vacuum degree) needs to be equal to or lower than the water vapor partial pressure of the supply gas. In this state, water vapor is absorbed by the moisture-absorbing liquid, transferred, and evaporated on the opposite side. As a result, water vapor in the supply gas is steadily absorbed and transferred by the hygroscopic liquid and permeates through the laminated film. When the supply gas is moisture-containing air, only water vapor in the air selectively permeates through the hygroscopic liquid, whereas air has a small amount of permeation through the hygroscopic liquid, so dehumidified air As a gas outlet. Similarly, water vapor can be selectively removed from other mixed gas / mixed vapor containing water vapor.
[0010]
According to the dehumidifying method using the principle of the present invention, compared with the conventional absorption method and cooling condensation method, a dehumidifying device for a wide range of air from a small flow rate to a large flow rate corresponding to the membrane area is designed. Can do.
[0011]
【Example】
Example 1
A hydrophobic porous membrane (B) (Durapel membrane manufactured by Millipore) is placed on a stainless steel sintered plate of a flat membrane cell (membrane area 24.5 cm 2 ), and impregnated with polyethylene glycol liquid (molecular weight 400). A film having a laminated structure in which the hydrophilic polytetrafluoroethylene porous film (A) having a thickness of 35 μm and a porosity of 80% is stacked is formed. The polyethylene glycol liquid is supported by the surface tension on the surface of the hydrophobic porous membrane (B) and does not penetrate into the hydrophobic porous membrane. Air with a predetermined humidity is supplied onto the surface of the porous membrane impregnated with polyethylene glycol. The permeation side of the hydrophobic porous membrane (B) is decompressed to 0.13 kPa by a vacuum pump, and this degree of vacuum is maintained. As a result, the water vapor in the air selectively permeates the film having the laminated structure, and as a result, the dehumidified air is discharged from the outlet (supply gas outlet). This relationship is shown in FIG. The apparatus and operating conditions in FIG. 2 are hydrophilic polytetrafluoroethylene porous membrane (film thickness 35 μm), membrane area 24.5 cm 2 , air flow rate 100 cm 3 / min, air temperature 18 ° C., supply side: atmospheric pressure, permeation side : 0.13 kPa. As a result, air with a humidity of 82% was dehumidified to 22%. On the other hand, the amount of air permeation is very small. (For the supply air flow rate of 70 cm 3 / min, the amount of air permeated to the vacuum side was 0.1 cm 3 / min or less.) In this case, the permeability coefficient of the liquid membrane was that of the polytetrafluoroethylene porous membrane. When the thickness (35 μm) is estimated for the tentative film thickness, water vapor is 7.5 × 10 −7 cm 3 (STP) · cm / (cm 2 · S · cmHg), and air is 3.1 × 10 −10 cm 3. (STP) · cm / (cm 2 · S · cmHg). The ideal separation factor that is the ratio of the two is 2400. Regarding the durability of the liquid film, there was no change in the dehumidifying performance even when the operation for 6 hours was repeated for 5 days.
[0012]
Example 2 A film having a laminated structure is formed in the same manner as described above, and a mixed gas of air / ethanol vapor / water vapor is supplied to the film. (FIG. 3) This mixed gas is obtained by bubbling air into an aqueous ethanol solution. The supply side is depressurized to atmospheric pressure and the permeate side to 0.13 kPa, and ethanol vapor and water vapor on both the supply outlet and permeate side are cooled and collected. The results are shown in FIG. The water vapor in the supply mixed vapor selectively permeates the laminated structure membrane, the water vapor is concentrated in the permeated vapor, and as a result, the ethanol is concentrated in the supply outlet vapor. For example, when a mixed steam having a composition of ethanol 36 mol% / water vapor 64 mol% is supplied, a condensate of ethanol 4 mol% / water 96 mol% is obtained on the permeate side, and a concentrated ethanol aqueous solution of ethanol 77 mol% / water vapor 23 mol% on the supply side outlet. Is obtained.
[0013]
In both Examples 1 and 2, polyethylene glycol (M = 400) was used as the hygroscopic liquid, but the same water vapor selective permeability was exhibited when triethylene glycol and tetraethylene glycol were used. (Figure 3 ).
[0014]
【The invention's effect】
As described above, in the present invention, in the method of selectively absorbing and transferring water vapor to dehumidify, the film structure that selectively absorbs and transfers (permeates) water vapor is impregnated and held with a hygroscopic liquid. By adopting a laminated structure in which a hydrophobic porous membrane with water vapor permeability and hygroscopic liquid properties is provided on the reduced pressure side of the porous membrane, the hygroscopic liquid can be stably held even in a dehumidifying operation under reduced pressure. Thus, it is possible to design a dehumidifying method and a dehumidifying device with good operability.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a structure of a laminated structure for holding a hygroscopic liquid according to the present invention and a dehumidifying unit incorporating the film of the laminated structure.
FIG. 2 shows dehumidification characteristics using the laminated film of the present invention.
FIG. 3 shows dehumidification characteristics from an ethanol / water vapor / air mixture using the laminated film of the present invention.

Claims (4)

吸湿性液体(C)を含浸・保持した親水性処理をしたポリテトラフルオロエチレンからなる多孔質膜(A)とこれに隣接して配置された疎水性および撥吸湿液体性の特性が、水の侵入圧力400kPa以上の疎水性およびトリエチレングリコールの侵入圧力200kPa以上の撥吸湿性液体特性のポリビニリデンジフロライドからなる疎水性多孔質膜(B)とよりなる積層構造の膜の、ポリエチレングリコール、トリエチレングリコール及びテトラエチレングリコールからなる群から選択される少なくとも一種の吸湿性液体を保持した多孔質膜(A)側を水蒸気を含む気体に接触させ、前記疎水性多孔膜(B)側を減圧部に接触させて、前記水蒸気を前記積層構造の膜により減圧部に選択的に透過させ除去することを特徴とする除湿方法。The porous membrane (A) made of hydrophilic polytetrafluoroethylene impregnated and retained with the hygroscopic liquid (C) and the properties of the hydrophobic and hygroscopic liquid disposed adjacent thereto are water A polyethylene glycol having a laminated structure composed of a hydrophobic porous membrane (B) made of polyvinylidene difluoride having a hydrophobic property of an intrusion pressure of 400 kPa or more and a hygroscopic liquid property of an infiltration pressure of 200 kPa or more of triethylene glycol; The porous membrane (A) side holding at least one hygroscopic liquid selected from the group consisting of triethylene glycol and tetraethylene glycol is brought into contact with a gas containing water vapor, and the hydrophobic porous membrane (B) side is depressurized. The dehumidification method is characterized in that the water vapor is selectively permeated to the reduced pressure part through the film having the laminated structure to be removed by contacting with the part. 積層構造の膜が減圧下において膜形状を保持する部材に支持されていることを特徴とする請求項1に記載の除湿方法。The dehumidification method according to claim 1, wherein the film having a laminated structure is supported by a member that maintains the shape of the film under reduced pressure. ポリエチレングリコール、トリエチレングリコール及びテトラエチレングリコールからなる群から選択される少なくとも一種の吸湿性の液体(C)を含浸・保持した親水性処理をしたポリテトラフルオロエチレンからなる多孔質膜(A)とこれに隣接して配置された疎水性および撥吸湿液体性の特性が、水の侵入圧力400kPa以上の疎水性およびトリエチレングリコールの侵入圧力200kPa以上の撥吸湿性液体特性のポリビニリデンジフロライドからなる疎水性多孔質膜(B)とよりなる積層構造の膜、前記積層構造の膜を膜形状を保持して支持する部材、前記吸湿性液体を保持した多孔質膜(A)側に水蒸気を含む気体を接触させて通過させる室と前記疎水性多孔膜(B)側を減圧にする装置に接続され、前記積層構造の膜により減圧部に選択的に透過された水蒸気を除去する室を前記積層構造の膜を介して設けたことを特徴とする除湿装置。A porous membrane (A) made of polytetrafluoroethylene subjected to hydrophilic treatment impregnating and holding at least one hygroscopic liquid (C) selected from the group consisting of polyethylene glycol, triethylene glycol and tetraethylene glycol ; Hydrophobic and hygroscopic liquid properties that are arranged adjacent to this are from polyvinylidene difluoride that has a hydrophobic property of water penetration of 400 kPa or higher and a hygroscopic liquid property of triethylene glycol of 200 kPa or higher. A layered structure film composed of a hydrophobic porous film (B), a member for supporting the film of the layered structure while maintaining the film shape, and water vapor on the porous film (A) side holding the hygroscopic liquid Connected to an apparatus for reducing the pressure of the chamber containing the gas in contact with and passing through the hydrophobic porous membrane (B), Dehumidifier, characterized in that the chamber for selectively removing the transmitted water vapor pressure portion is provided through the film of the laminated structure. 積層構造の膜を膜形状を保持して支持する部材が金属、セラミック焼結板からなることを特徴とする請求項3に記載の除湿装置。Dehumidifying device according to claim 3, members for supporting the film of the laminated structure holding the membrane shape is characterized by comprising a metal, a ceramics sintered plate.
JP16331299A 1999-06-10 1999-06-10 Dehumidification method and apparatus Expired - Fee Related JP4022341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16331299A JP4022341B2 (en) 1999-06-10 1999-06-10 Dehumidification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16331299A JP4022341B2 (en) 1999-06-10 1999-06-10 Dehumidification method and apparatus

Publications (2)

Publication Number Publication Date
JP2000350918A JP2000350918A (en) 2000-12-19
JP4022341B2 true JP4022341B2 (en) 2007-12-19

Family

ID=15771450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16331299A Expired - Fee Related JP4022341B2 (en) 1999-06-10 1999-06-10 Dehumidification method and apparatus

Country Status (1)

Country Link
JP (1) JP4022341B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445758B1 (en) * 2002-04-12 2004-08-25 신학기 Emulsion For Removing Moisture And Method of Manufacturing The Same
US7758671B2 (en) * 2006-08-14 2010-07-20 Nanocap Technologies, Llc Versatile dehumidification process and apparatus
JP5056302B2 (en) * 2007-09-20 2012-10-24 東洋インキScホールディングス株式会社 Organic solvent recovery method
JP2009072698A (en) * 2007-09-20 2009-04-09 Toyo Ink Mfg Co Ltd Method for recovering organic solvent and method for re-utilizing recovered solvent
JP2012206062A (en) 2011-03-30 2012-10-25 Nihon Gore Kk Composite membrane
JP6453537B2 (en) 2013-12-27 2019-01-16 日東電工株式会社 Moisture permeable filter media
KR101572105B1 (en) * 2013-12-27 2015-12-16 한국수자원공사 Membrane for desalination and the method for manufacturing the same
JP2017056456A (en) * 2015-09-16 2017-03-23 株式会社東芝 Steam separator and dehumidifier with use thereof
US10184674B2 (en) 2015-09-16 2019-01-22 Kabushiki Kaisha Toshiba Vapor separator and dehumidifier using the same
JP2016155129A (en) * 2016-04-04 2016-09-01 日本ゴア株式会社 Composite membrane
JP6564840B2 (en) * 2017-12-22 2019-08-21 日東電工株式会社 Moisture permeable filter media

Also Published As

Publication number Publication date
JP2000350918A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
US6635104B2 (en) Gas separation device
JP2607527Y2 (en) Moisture removal module
US4875908A (en) Process for selectively separating gaseous mixtures containing water vapor
TWI716574B (en) Acidic gas separation membrane, acidic gas separation method using the same, acid gas separation module and acidic gas separation device
RU2579125C2 (en) Membrane with selective vapour permeability and method for use thereof for separation of vapour from gas mixture
JP3999423B2 (en) Carbon dioxide separation and dehumidification method and apparatus using liquid membrane
JP4022341B2 (en) Dehumidification method and apparatus
JPS642408B2 (en)
US20090272692A1 (en) Thin film membranes with additives for forward and pressure retarded osmosis
JP2010506365A (en) Humidifier membrane
CA2761826A1 (en) Water transport membrane featuring desiccant-loaded substrate and polymer coating
KR100783784B1 (en) Organic/inorganic composite hollow fiber membrane for dehumidifying module
KR100638322B1 (en) Hollow fiber membrane for dehumidifying module
JP6667603B2 (en) Composite membrane
JP2006130453A (en) Liquid membrane for separating gas and steam, production method therefor and gas and steam membrane separating device
JP5019672B2 (en) Humidifier
JP2015112502A (en) Laminate and gas separation membrane, and method of manufacturing the laminate
JPS5959236A (en) Dehumidification and heat recovery of wet hot air
JPH0415016B2 (en)
JP2006179273A (en) Composite steam-permeable film
RU2720247C1 (en) Composite membrane for drying gas mixtures based on a microporous polymer in porous matrix
JPH01249123A (en) Dehumidifying method
JP2023180222A (en) Gas separation composite membrane and gas production method using the same
JP2006160966A (en) Water vapor-permeable membrane
KR20020013036A (en) Gas separation membraines for dehumidifying module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees