JP4020204B2 - Man conveyor inspection device - Google Patents

Man conveyor inspection device Download PDF

Info

Publication number
JP4020204B2
JP4020204B2 JP2003301783A JP2003301783A JP4020204B2 JP 4020204 B2 JP4020204 B2 JP 4020204B2 JP 2003301783 A JP2003301783 A JP 2003301783A JP 2003301783 A JP2003301783 A JP 2003301783A JP 4020204 B2 JP4020204 B2 JP 4020204B2
Authority
JP
Japan
Prior art keywords
measurement
measurement data
time
signal
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003301783A
Other languages
Japanese (ja)
Other versions
JP2005067847A (en
Inventor
広幸 蔦田
隆史 平位
公好 小林
寛 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno Service Co Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2003301783A priority Critical patent/JP4020204B2/en
Publication of JP2005067847A publication Critical patent/JP2005067847A/en
Application granted granted Critical
Publication of JP4020204B2 publication Critical patent/JP4020204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Escalators And Moving Walkways (AREA)

Description

この発明は、エスカレーターや動く歩道などの踏段内に加速度センサ等を配置して点検を行うマンコンベア点検装置に関するものである。   The present invention relates to a man conveyor inspection device that performs inspection by placing an acceleration sensor or the like in a step such as an escalator or a moving sidewalk.

従来のマンコンベアの点検装置は、マイクロホン、音信号発信器及び位置信号発信器を装備した発信装置が主枠を循環移動する踏段に設けられる。また、音信号受信器、位置信号受信器、受信を記憶する格納部、音響受信データと基準音響データを比較する演算部及びこの演算部により異常音が発生したときの格納部におけるマイクロホン位置を出力する中央処理部を装備した受信装置が主枠に設けられる。さらに、中央処理部の出力により動作する異常表示手段が主枠に設けられた点検操作盤に設けられる。これによって、主枠の長手に沿って互いに離れた作動的機器の異常音発生及び異常音を発生した作動的機器の位置を異常表示手段によって表示する(例えば、特許文献1参照)。   A conventional man conveyor inspection device is provided on a step in which a transmitter equipped with a microphone, a sound signal transmitter, and a position signal transmitter circulates and moves along a main frame. Also, the sound signal receiver, the position signal receiver, the storage unit for storing the reception, the calculation unit for comparing the received sound data with the reference sound data, and the microphone position in the storage unit when abnormal sound is generated by this calculation unit are output. A receiving device equipped with a central processing unit is provided on the main frame. Furthermore, an abnormality display means that operates according to the output of the central processing unit is provided on an inspection operation panel provided in the main frame. Thereby, the abnormal sound generation of the operational devices separated from each other along the length of the main frame and the position of the operational device that generated the abnormal noise are displayed by the abnormality display means (for example, refer to Patent Document 1).

特開2002−68657号公報(第1頁、図1)Japanese Unexamined Patent Publication No. 2002-68657 (first page, FIG. 1)

上述したような従来のマンコンベアの点検装置では、主枠側に音信号受信器、位置信号受信器といった機器を設置しなければならないので、既設マンコンベアの異常点検を行う際には機器取り付けのために長時間停止する必要があり、利用者の利便性を損なうという問題点があった。   In the conventional inspection apparatus for the man conveyor as described above, equipment such as a sound signal receiver and a position signal receiver must be installed on the main frame side. Therefore, it is necessary to stop for a long time, and there is a problem that the convenience of the user is impaired.

この発明は、上述のような課題を解決するためになされたもので、その目的は、既設マンコンベアの異常点検を行う際に機器取り付けのための停止時間を最小限にすることができ、利用者の利便性を向上させることができるマンコンベア点検装置を得るものである。   The present invention has been made to solve the above-described problems, and its purpose is to minimize the stop time for equipment installation when performing an abnormal inspection of an existing man conveyor. It is possible to obtain a man conveyor inspection device that can improve the convenience of the user.

この発明に係るマンコンベア点検装置は、マンコンベアの所定の踏段内に鉛直方向の感度が得られる向きに設けられ、計測データを出力する加速度センサと、前記加速度センサが設けられた踏段と同じ踏段に設けられ、前記加速度センサからの計測データ及び前記計測データに対応する計測時刻を出力する信号計測装置と、前記信号計測装置から前記加速度センサの計測データを収集し、この収集した計測データから低域信号をローパスフィルタによって取り出し、前記低域信号及び前記計測データに対応する計測時刻を用いて、加速度の正負が反転する時刻を前記加速度センサが設けられた所定の踏段が前記マンコンベアの反転部を通過した時刻である反転部通過時刻として検出し、当該計測データの計測時刻に基づき前記反転部通過時刻からの経過時間を求め、踏段位置と反転部通過時刻からの経過時間の関係を規定したテーブルを参照して当該計測データの計測時刻について踏段位置を同定する演算処理装置とを設けたものである。 Passenger conveyor inspection apparatus according to the present invention is provided in a direction in which the sensitivity of the vertical direction is obtained within a predetermined footstep of the passenger conveyor, and an acceleration sensor for outputting measurement data, the same footstep and the footstep of the acceleration sensor is provided provided, the signal measurement device for outputting a measurement time corresponding to the measurement data and the measurement data from the acceleration sensor to collect measurement data of the acceleration sensor from the signal measurement device, a low from the collected measurement data the frequency signal is taken out by the low-pass filter, the low frequency signal and using the measured time corresponding to the measurement data, given the step is the for the time at which positive and negative acceleration is inverted the acceleration sensor is provided a passenger conveyor of the inverting portion detected as an inverting section passing time is the time that has passed through the reversing section passage time based on the measurement time of the measurement data And an arithmetic processing unit that identifies the step position for the measurement time of the measurement data with reference to a table that defines the relationship between the step position and the elapsed time from the reversing unit passage time. .

この発明に係るマンコンベア点検装置は、主枠側に基準位置を表す手段を設置することなしに、各計測時刻におけるセンサの出力信号と当該踏段位置を対応させることができる。これにより、既設マンコンベアの異常点検を行う際に機器取り付けのための停止時間を最小限にすることができ、利用者の利便性を向上させることができるという効果を奏する。   The man conveyor inspection device according to the present invention can associate the output signal of the sensor with the step position at each measurement time without installing a means for indicating the reference position on the main frame side. Thereby, when the existing man conveyor is inspected abnormally, the stop time for equipment installation can be minimized, and the convenience of the user can be improved.

実施の形態1.
この発明の実施の形態1に係るマンコンベア点検装置について図面を参照しながら説明する。図1は、この発明の実施の形態1に係るマンコンベア点検装置としてのエスカレーター点検装置の構成を示す図である。図1(a)はエスカレーター全体を側面からみた図、同図(b)は踏段を拡大して側面からみた図である。なお、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
A man conveyor inspection device according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of an escalator inspection device as a man conveyor inspection device according to Embodiment 1 of the present invention. Fig.1 (a) is the figure which looked at the whole escalator from the side, The figure (b) is the figure which expanded the step and was seen from the side. In addition, in each figure, the same code | symbol shows the same or equivalent part.

図1において、点検対象となるエスカレーター10の一つまたは複数の踏段11内に、加速度センサ1を、踏段11の鉛直方向の感度が得られる向きに点検時に配置する。この加速度センサ1は、鉛直方向の感度を表す直流成分が測定可能である。   In FIG. 1, the acceleration sensor 1 is disposed in one or a plurality of steps 11 of an escalator 10 to be inspected in a direction in which the vertical sensitivity of the steps 11 can be obtained. The acceleration sensor 1 can measure a direct current component representing the sensitivity in the vertical direction.

また、信号計測装置2も、同じ踏段11内に設ける。この信号計測装置2は、加速度センサ1に信号線により接続され、加速度センサ1のアナログ出力信号をデジタルデータに変換し計測データとして計測時刻とともに送信する。この信号計測装置2は、A/D変換器と、CPU、メモリ等を備えたマイクロコンピュータなどから構成され、無線の送信機能も有する。なお、加速度センサ1や同等の機能を持ったセンサと信号計測装置2とからセンサ部が構成される。   The signal measuring device 2 is also provided in the same step 11. The signal measuring device 2 is connected to the acceleration sensor 1 through a signal line, converts the analog output signal of the acceleration sensor 1 into digital data, and transmits the data as measurement data together with the measurement time. The signal measuring device 2 is composed of an A / D converter, a microcomputer equipped with a CPU, a memory, and the like, and also has a wireless transmission function. The acceleration sensor 1 and a sensor having an equivalent function and the signal measuring device 2 constitute a sensor unit.

さらに、異常判定装置3は、エスカレーター10の踏段11内、あるいは踏段11外の任意位置に設置する。この異常判定装置(演算処理装置)3は、CPU、メモリ等を備えたマイクロコンピュータなどから構成され、無線の受信機能も有する。   Further, the abnormality determination device 3 is installed at an arbitrary position inside the step 11 of the escalator 10 or outside the step 11. The abnormality determination device (arithmetic processing device) 3 is composed of a microcomputer equipped with a CPU, a memory and the like, and also has a wireless reception function.

なお、図1において、エスカレーター10の反転部12及び13は、踏段11が反転する位置を示す。異常判定装置3を信号計測装置2と同じ踏段11内に設ける場合に、両者をデータ線により接続するときには、信号計測装置2の無線の送信機能と異常判定装置3の無線の受信機能は不要となる。   In FIG. 1, the reversing parts 12 and 13 of the escalator 10 indicate positions where the step 11 is reversed. When the abnormality determination device 3 is provided in the same step 11 as the signal measurement device 2, when the two are connected by a data line, the wireless transmission function of the signal measurement device 2 and the wireless reception function of the abnormality determination device 3 are unnecessary. Become.

つぎに、この実施の形態1に係るマンコンベア点検装置の動作について図面を参照しながら説明する。   Next, the operation of the man conveyor inspection device according to the first embodiment will be described with reference to the drawings.

図2は、この発明の実施の形態1に係るマンコンベア点検装置としてのエスカレーター点検装置の異常判定装置の動作を示すフローチャートである。   FIG. 2 is a flowchart showing the operation of the abnormality determination device of the escalator inspection device as the man conveyor inspection device according to Embodiment 1 of the present invention.

まず、ステップ101において、異常判定装置3は、信号計測装置2から無線で送られてくるデータ(信号)を収集する。すなわち、計測時刻とともに加速度センサ1の計測データを一定時間間隔で所定時間分、収集してメモリに記憶する。例えば、1ミリ秒(msec)間隔で10分間の加速度センサ1の計測データを収集してメモリに記憶する。また、計測時刻(例えば、9時〜10時(9:00:00〜9:10:00))も計測データに対応付けてメモリに記憶する。つまり、計測データと計測時刻が1対1で対応付けられてメモリに記憶される。なお、異常判定装置3側のタイマにより発生させた時刻を、信号計測装置2から送られてくる計測データと対応させ、計測時刻としてメモリに記憶してもよい。   First, in step 101, the abnormality determination device 3 collects data (signals) transmitted from the signal measurement device 2 wirelessly. That is, the measurement data of the acceleration sensor 1 is collected at a predetermined time interval for a predetermined time together with the measurement time and stored in the memory. For example, measurement data of the acceleration sensor 1 for 10 minutes is collected at 1 millisecond (msec) intervals and stored in the memory. Further, the measurement time (for example, 9:00 to 10:00 (9:00:00 to 9:10:00)) is also stored in the memory in association with the measurement data. That is, the measurement data and the measurement time are stored in the memory in a one-to-one correspondence. Note that the time generated by the timer on the abnormality determination device 3 side may be associated with the measurement data sent from the signal measurement device 2 and stored in the memory as the measurement time.

次に、ステップ102において、エスカレーター10の踏段11の反転時刻を検出する。すなわち、収集した計測データと計測時刻を用いて、加速度センサ1が設けられた踏段11がエスカレーター10の反転部12あるいは反転部13を通過した時刻である反転部通過時刻を検出する。例えば、計測時刻において反転部13を通過した時刻が9時00分10秒(9:00:10)であれば、それが反転部通過時刻となる。   Next, in step 102, the inversion time of the step 11 of the escalator 10 is detected. That is, using the collected measurement data and measurement time, the reversing section passage time that is the time when the step 11 provided with the acceleration sensor 1 has passed the reversing section 12 or the reversing section 13 of the escalator 10 is detected. For example, if the time passing through the reversing unit 13 at the measurement time is 9:00:10 (9:00:10), this is the reversing unit passing time.

そして、ステップ103において、エスカレーター10の踏段位置を同定する。すなわち、当該計測データの計測時刻に基づき前記反転部通過時刻からの経過時間を求め、「踏段位置」と「反転部通過時刻からの経過時間」の関係を規定したテーブルを参照して、当該計測データの計測時刻について踏段位置を同定する。この後、異常判定を実行する。例えば、踏段11の蛇行による主枠との摩擦等によって発生する所定レベルのノイズが計測データにあれば異常発生と判定する。そして、当該計測データの計測時刻に基づき上記のノイズが発生した踏段位置を異常発生位置として求める。   In step 103, the step position of the escalator 10 is identified. That is, the elapsed time from the reversing unit passage time is obtained based on the measurement time of the measurement data, and the measurement is performed with reference to the table that defines the relationship between the “step position” and the “elapsed time from the reversing unit passage time”. The step position is identified for the data measurement time. Thereafter, abnormality determination is performed. For example, if a predetermined level of noise generated by friction with the main frame due to meandering of the step 11 is present in the measurement data, it is determined that an abnormality has occurred. And the step position where said noise generate | occur | produced is calculated | required as an abnormality occurrence position based on the measurement time of the said measurement data.

ここで、上述のテーブルは、予め、エスカレーター10における踏段位置と、踏段11が反転部12あるいは反転部13を通過してから経過した時間との関係を求めて異常判定装置3のメモリに記憶しておく。なお、図3(a)は、エスカレーターにおける各踏段位置を示す図、図3(b)は踏段位置と踏段11が反転部13を通過してからの経過時間の関係を求めたテーブルの例を示す図である。   Here, the above-mentioned table obtains the relationship between the step position in the escalator 10 and the time elapsed since the step 11 passed through the reversing unit 12 or 13, and stores it in the memory of the abnormality determination device 3. Keep it. 3A is a diagram showing each step position in the escalator, and FIG. 3B is an example of a table in which the relationship between the step position and the elapsed time after the step 11 passes the reversing unit 13 is obtained. FIG.

エスカレーター10の点検時には、収集した加速度センサ1の計測データから反転部通過時刻が得られるので、上記テーブルを用いて各経過時間における踏段位置を求めることができる。例えば、図3(b)に示すテーブルを用いて、反転部通過時刻が9時00分10秒(9:00:10)の場合に、当該計測データの計測時刻が9時00分12秒(9:00:12)のときには、経過時間が2秒(2.0sec)となり、踏段位置(3)と同定する。なお、本実施の形態1では、エスカレーターの運転方向を上昇(アップ)運転(下部から上部へ乗客を輸送する運転)の場合について説明したが、下降(ダウン)運転(上部から下部へ乗客を輸送する運転)についても図3(b)に示すテーブルを変更することにより同様の方法で踏段位置が求められることは言うまでもない。   When the escalator 10 is inspected, the reversing section passage time is obtained from the collected measurement data of the acceleration sensor 1, so that the step position at each elapsed time can be obtained using the table. For example, using the table shown in FIG. 3B, when the reversing section passage time is 9:00:10 (9:00:10), the measurement time of the measurement data is 9:00:12 ( At 9:00:12), the elapsed time is 2 seconds (2.0 sec), and the step position (3) is identified. In addition, in this Embodiment 1, although the case where the driving | running direction of the escalator was raised (up) driving | operation (driving a passenger from the lower part to the upper part) was demonstrated, the lowering (down) driving | operation (passenger transports a passenger from the upper part to the lower part) It is needless to say that the step position is obtained in the same manner by changing the table shown in FIG.

ここで、反転部通過時刻の検出について図4を参照して説明する。   Here, the detection of the reversing section passage time will be described with reference to FIG.

図4(a)は、加速度センサ1の出力信号(計測データ)の一例を図示している。反転部12と反転部13では、踏段11の向きが表裏反転するため、鉛直方向に感度が得られるように設置した加速度センサ1の計測データは反転部12及び13において正負逆転することになる。従って、加速度センサ1の計測データの正負が反転する時刻を「反転部通過時刻」として検出すればよい。図4(a)中では、加速度センサ1の計測データが負(−)から正(+)へ変わる時刻、例えば9時00分10秒(9:00:10)、すなわち反転部13を通過する瞬間を反転部通過時刻としたが、加速度センサ1の計測データが正(+)から負(−)へ変わる時刻を反転部通過時刻としてもよい。   FIG. 4A illustrates an example of an output signal (measurement data) of the acceleration sensor 1. In the reversing unit 12 and the reversing unit 13, the direction of the step 11 is reversed, so that the measurement data of the acceleration sensor 1 installed so as to obtain sensitivity in the vertical direction is reversed in the reversing units 12 and 13. Therefore, the time at which the positive / negative of the measurement data of the acceleration sensor 1 is reversed may be detected as the “reversing section passage time”. In FIG. 4A, the time when the measurement data of the acceleration sensor 1 changes from negative (−) to positive (+), for example, 9:00:10 (9:00:10), that is, passes through the reversing unit 13. Although the instant is the reversal section passage time, the time when the measurement data of the acceleration sensor 1 changes from positive (+) to negative (−) may be the reversal section passage time.

ただし、踏段11の走行振動の振幅が大きい場合には、反転部12、13以外でもゼロレベルをまたぐことがあり、このような場合、踏段11の走行振動を反転部通過時刻として誤検出してしまう恐れがある。そこで、反転部12、13で観測される正負反転信号は、踏段11の走行振動の信号と比較して周波数帯域が低いという性質があるため、図4(b)に示すように、デジタルローパスフィルタを用いて、加速度センサ1の計測データの低域信号を取り出し、この低域信号の符号が反転する時刻を反転部通過時刻として検出してもよい。本実施の形態1では、反転部通過時刻の検出のためにデジタルローパスフィルタを使用したが、アナログ回路によりローパスフィルタを構成し低域信号を取り出すようにしてもよい。   However, if the amplitude of the running vibration of the step 11 is large, it may cross the zero level other than the reversing units 12 and 13, and in such a case, the traveling vibration of the step 11 is erroneously detected as the reversing unit passing time. There is a risk. Therefore, since the positive and negative inversion signals observed by the inversion units 12 and 13 have a property that the frequency band is lower than the traveling vibration signal of the step 11, as shown in FIG. The low frequency signal of the measurement data of the acceleration sensor 1 may be taken out using and the time when the sign of the low frequency signal is inverted may be detected as the reversing unit passage time. In the first embodiment, the digital low-pass filter is used to detect the inversion unit passage time. However, a low-pass signal may be extracted by configuring the low-pass filter with an analog circuit.

なお、本実施の形態1では、鉛直方向の感度を表す直流成分が測定可能な加速度センサ1を用いて反転部通過時刻を求めるように構成したが、鉛直方向の傾斜が測定可能な一般的な傾斜センサを使用して、反転部通過時刻を求めるよう構成してもよい。   In the first embodiment, the acceleration sensor 1 capable of measuring the DC component representing the sensitivity in the vertical direction is used to obtain the reversing unit passage time. However, the general inclination in the vertical direction can be measured. You may comprise so that an inversion part passage time may be calculated | required using an inclination sensor.

本実施の形態1によれば、主枠側に基準位置を表す手段を設置することなしに、各計測時刻における加速度センサ1の計測データと当該踏段位置を対応させることができる。これにより、既設エスカレーターの異常点検を行う際に機器取り付けのための停止時間を最小限にすることができ、利用者の利便性を向上させることができる。   According to the first embodiment, it is possible to associate the measurement data of the acceleration sensor 1 at each measurement time with the step position without installing a means for indicating the reference position on the main frame side. Thereby, when performing an abnormal check of the existing escalator, the stop time for equipment attachment can be minimized, and the convenience for the user can be improved.

また、センサとして光学素子などを使用しないので、汚れの影響を受けにくく、長期間にわたり安定した動作を行うことができる。   In addition, since no optical element or the like is used as a sensor, the sensor is hardly affected by dirt and can operate stably over a long period of time.

実施の形態2.
この発明の実施の形態2に係るマンコンベア点検装置について図面を参照しながら説明する。この発明の実施の形態2に係るマンコンベア点検装置の構成は、異常判定装置の機能を除き、上記実施の形態1と同様である。
Embodiment 2. FIG.
A man conveyor inspection device according to Embodiment 2 of the present invention will be described with reference to the drawings. The configuration of the man conveyor inspection device according to the second embodiment of the present invention is the same as that of the first embodiment except for the function of the abnormality determination device.

この実施の形態2に係るマンコンベア点検装置の動作について図面を参照しながら説明する。   The operation of the man conveyor inspection device according to the second embodiment will be described with reference to the drawings.

図5は、この発明の実施の形態2に係るマンコンベア点検装置としてのエスカレーター点検装置の異常判定装置の動作を示すフローチャートである。また、図6は、この発明の実施の形態2に係るマンコンベア点検装置としてのエスカレーター点検装置の加速度センサの出力信号の一例及び処理された信号を示す図である。   FIG. 5 is a flowchart showing the operation of the abnormality determination device of the escalator inspection device as the man conveyor inspection device according to Embodiment 2 of the present invention. Moreover, FIG. 6 is a figure which shows an example of the output signal of the acceleration sensor of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 2 of this invention, and the processed signal.

図5のステップ201〜203の動作は、上記実施の形態1の図2のステップ101〜103と同様である。   The operations in steps 201 to 203 in FIG. 5 are the same as those in steps 101 to 103 in FIG. 2 in the first embodiment.

ステップ204において、異常判定装置3は、区間分割を実行する。すなわち、ステップ203で得られた各計測時刻における踏段位置の情報を用いて、加速度センサ1の出力信号(計測データ)列を1周毎の区間に分割する。図6(a)及び(b)で示す例では、加速度センサ1の連続した計測データ列から10周分の計測データ列を取り出している。   In step 204, the abnormality determination device 3 performs section division. That is, using the information on the step position at each measurement time obtained in step 203, the output signal (measurement data) sequence of the acceleration sensor 1 is divided into sections for each round. In the example shown in FIGS. 6A and 6B, ten measurement data strings are extracted from the continuous measurement data string of the acceleration sensor 1.

次に、ステップ205において、信号処理を実行する。すなわち、ステップ204で取り出した10周分の計測データ列に対して信号処理演算を行い、図6(b)及び(c)に示すように、10周分の信号処理済の信号(データ)列を得る。図6(c)で示す例では、10周分の計測データ列について1周毎における特定周波数帯域の強度を取り出す信号処理演算を行った結果を、10周分の信号処理済のデータ列としている。   Next, in step 205, signal processing is executed. That is, signal processing calculation is performed on the measurement data sequence for 10 rounds extracted in step 204, and the signal (data) sequence for which signal processing has been performed for 10 rounds as shown in FIGS. 6B and 6C. Get. In the example shown in FIG. 6C, the result of signal processing calculation for extracting the intensity of the specific frequency band for each round for the measurement data string for 10 rounds is the data stream for which signal processing has been performed for 10 rounds. .

ステップ205の信号処理演算は、正常時と異常時の差異が大きくなるような演算であればよく、例えば、FFTやウェーブレット変換等を用いて各時間における周波数強度分布を求め、正常時と異常時の差異が大きくなるような重み係数を周波数強度分布に掛けた値を時間毎に求めるようにしてもよい。   The signal processing operation in step 205 may be an operation that increases the difference between the normal time and the abnormal time. For example, the frequency intensity distribution at each time is obtained using FFT, wavelet transform, etc. Alternatively, a value obtained by multiplying the frequency intensity distribution by a weighting coefficient that increases the difference between the two may be obtained every time.

次に、ステップ206において、平均処理を実行する。すなわち、複数周分の信号処理済のデータ列における振幅値を踏段位置毎に平均した、平均信号(平均データ)列を演算する。図6(d)の上段で示す例では、10周分の信号処理済のデータ列を踏段位置毎に平均して平均データ列を求めている。   Next, in step 206, an averaging process is executed. That is, an average signal (average data) sequence is calculated by averaging the amplitude values in the signal sequence processed data for a plurality of rounds for each step position. In the example shown in the upper part of FIG. 6D, an average data string is obtained by averaging the signal-processed data strings for 10 laps for each step position.

図6(c)に示すように、大半の異常(異物が踏段間や踏段と主枠の間に挟まったり、踏段などの一部が欠けたりする機械的な異常)は、特定位置において定常的に発生するため、全ての周回の信号処理済のデータ列において同一位置で同一振幅値の信号となる。一方、乗客等による外乱は、周回毎に発生位置がランダムであるので、周回毎に異なる位置で異なる振幅値の信号となる。従って、複数周分の信号処理済のデータ列における振幅値を踏段位置毎に平均していくと、乗客等による外乱は抑制され、特定位置において発生している異常のみが強調されるので、乗客等の外乱が抑制された平均データ列が得られ、乗客等の外乱による誤検知が無くなる。   As shown in FIG. 6 (c), most abnormalities (mechanical abnormalities in which foreign matter is caught between steps, between a step and a main frame, or some parts such as steps are missing) are steady at a specific position. Therefore, the signals having the same amplitude value are obtained at the same position in all the rounded signal-processed data strings. On the other hand, the disturbance caused by passengers or the like has a random occurrence position for each lap, and therefore becomes a signal having a different amplitude value at a different position for each lap. Therefore, when the amplitude values in the signal sequence data sequence for a plurality of rounds are averaged for each step position, disturbances caused by passengers and the like are suppressed, and only abnormalities occurring at specific positions are emphasized. An average data string in which disturbances such as the above are suppressed is obtained, and erroneous detection due to disturbances such as passengers is eliminated.

そして、ステップ207において、異常判定を実行する。すなわち、予め求めておいた正常時の平均データ列と、ステップ206で得られた平均データ列を比較して差異があれば異常発生と判定する。具体的には、踏段位置毎に、予め求めておいた正常時の平均データ列と点検時の平均データ列の差分をとり、差分値が予め設定された値以上になった踏段位置を異常発生位置として求める。   In step 207, abnormality determination is executed. That is, the normal average data string obtained in advance and the average data string obtained in step 206 are compared, and if there is a difference, it is determined that an abnormality has occurred. Specifically, for each step position, the difference between the average data string obtained during normal operation and the average data string obtained during inspection is taken, and the step position where the difference value is equal to or greater than the preset value is abnormally generated. Find as position.

本実施の形態2によれば、エスカレーターの特定箇所で定常的に発生している異常に対応する信号を強調し、乗客等の外乱によって発生するランダムな信号を抑制した上で、エスカレーターに異常が発生していないかどうか判定するようにしたので、誤検知を抑制し確実に異常を検知することができるとともに、異常発生位置を確実に特定することができる。   According to the second embodiment, after emphasizing a signal corresponding to an abnormality that is constantly occurring at a specific part of the escalator and suppressing a random signal that is generated due to a disturbance such as passengers, the escalator has an abnormality. Since it has been determined whether or not it has occurred, it is possible to suppress erroneous detection and reliably detect an abnormality, and to reliably identify the position where the abnormality has occurred.

実施の形態3.
この発明の実施の形態3に係るマンコンベア点検装置について図面を参照しながら説明する。この発明の実施の形態3に係るマンコンベア点検装置の構成は、異常判定装置の機能を除き、上記実施の形態1と同様である。
Embodiment 3 FIG.
A man conveyor inspection device according to Embodiment 3 of the present invention will be described with reference to the drawings. The configuration of the man conveyor inspection device according to Embodiment 3 of the present invention is the same as that of Embodiment 1 except for the function of the abnormality determination device.

この実施の形態3に係るマンコンベア点検装置の動作について図面を参照しながら説明する。   The operation of the man conveyor inspection device according to the third embodiment will be described with reference to the drawings.

図7は、この発明の実施の形態3に係るマンコンベア点検装置としてのエスカレーター点検装置の加速度センサの出力信号を処理した信号を示す図である。   FIG. 7 is a diagram showing a signal obtained by processing the output signal of the acceleration sensor of the escalator inspection device as the man conveyor inspection device according to Embodiment 3 of the present invention.

この実施の形態3では、上記実施の形態2のステップ206の平均処理を乗算処理に変更して乗算信号(乗算データ)列を求め、ステップ207の異常判定において、予め求めておいた正常時の乗算データ列と、点検時の乗算データ列を比較して差異があれば異常発生と判定するようにしたものである。   In the third embodiment, the average processing in step 206 in the second embodiment is changed to multiplication processing to obtain a multiplication signal (multiplication data) sequence, and in the abnormality determination in step 207, the normal time obtained in advance is obtained. The multiplication data string and the multiplication data string at the time of inspection are compared, and if there is a difference, it is determined that an abnormality has occurred.

上記乗算処理について図7を用いて詳細に説明する。上記実施の形態2では、複数周分の信号処理済のデータ列における振幅値を踏段位置毎に平均していたが、この実施の形態3では、複数周分の信号処理済のデータ列における振幅値を踏段位置毎に掛け算(乗算)を行い、乗算データ列を得る。   The multiplication process will be described in detail with reference to FIG. In the second embodiment, the amplitude values in the data sequence for which signals have been processed for a plurality of rounds are averaged for each step position. However, in this third embodiment, the amplitude in the data sequence for which signals have been processed for a plurality of turns. The value is multiplied (multiplied) for each step position to obtain a multiplication data string.

図7(a)に示すように、大半の異常(異物が挟まったり、一部が欠けたりする機械的な異常)は、特定位置において定常的に発生するため、全ての周回の信号処理済のデータ列において同一位置で同一振幅値の信号となる。一方、乗客等による外乱は、周回毎に発生位置がランダムであるので、周回毎に異なる位置で異なる振幅値の信号となる。従って、複数周分の信号処理済のデータ列における振幅値を踏段位置毎に掛け算(乗算)をしていくと、乗客等による外乱は抑制され、特定位置において発生している異常のみが強調されるので、乗客等による外乱が抑制された乗算データ列が得られ、乗客等の外乱による誤検知が無くなる。   As shown in FIG. 7 (a), most of the abnormalities (mechanical abnormalities in which a foreign object is caught or partially missing) occur constantly at a specific position, so that all the round signal processing has been completed. It becomes a signal having the same amplitude value at the same position in the data string. On the other hand, the disturbance caused by passengers or the like has a random occurrence position for each lap, and therefore becomes a signal having a different amplitude value at a different position for each lap. Therefore, when the amplitude values in the signal sequence data sequence for a plurality of rounds are multiplied (multiplied) for each step position, disturbances caused by passengers and the like are suppressed, and only the abnormality occurring at the specific position is emphasized. Therefore, a multiplication data string in which disturbance due to passengers or the like is suppressed is obtained, and erroneous detection due to disturbances such as passengers is eliminated.

本実施の形態3によれば、エスカレーターの特定箇所で定常的に発生している異常に対応する信号を強調し、乗客等の外乱によって発生するランダムな信号を抑制した上で、エスカレーターに異常が発生していないかどうか判定するようにしたので、誤検知を抑制し確実に異常を検知することができるとともに、異常発生位置を確実に把握することができる。   According to the third embodiment, after emphasizing a signal corresponding to an abnormality that is constantly occurring at a specific part of the escalator and suppressing a random signal that is generated due to a disturbance such as passengers, the escalator has an abnormality. Since it has been determined whether or not it has occurred, it is possible to suppress erroneous detection and reliably detect an abnormality, and to reliably grasp the position where the abnormality has occurred.

実施の形態4.
この発明の実施の形態4に係るマンコンベア点検装置について図面を参照しながら説明する。図8は、この発明の実施の形態4に係るマンコンベア点検装置としてのエスカレーター点検装置の構成を示す図である。
Embodiment 4 FIG.
A man conveyor inspection device according to Embodiment 4 of the present invention will be described with reference to the drawings. FIG. 8 is a diagram showing a configuration of an escalator inspection device as a man conveyor inspection device according to Embodiment 4 of the present invention.

図8において、この実施の形態4は、上記実施の形態1の構成に加えて、踏段11の左端(図上)とスカートガード14間の距離を測定する距離センサ4と、踏段11の右端(図上)とスカートガード14間の距離を測定する距離センサ5を、踏段11内に配置し、距離センサ4、5の出力値が予め設定された正常範囲外となった位置をスカートガード隙間異常発生位置として検出するものである。   In FIG. 8, in addition to the configuration of the first embodiment, the fourth embodiment includes a distance sensor 4 for measuring the distance between the left end (on the drawing) of the step 11 and the skirt guard 14, and the right end ( A distance sensor 5 for measuring the distance between the skirt guard 14 and the skirt guard 14 is disposed in the step 11, and the position where the output value of the distance sensors 4 and 5 is outside the preset normal range is indicated as an abnormal skirt guard gap. It is detected as a generation position.

つぎに、この実施の形態4に係るマンコンベア点検装置の動作について図面を参照しながら説明する。   Next, the operation of the man conveyor inspection device according to the fourth embodiment will be described with reference to the drawings.

図9は、この発明の実施の形態4に係るマンコンベア点検装置としてのエスカレーター点検装置の異常判定装置の動作を示すフローチャートである。また、図10は、この発明の実施の形態4に係るマンコンベア点検装置としてのエスカレーター点検装置の加速度センサ及び距離センサの出力信号を示す図である。   FIG. 9 is a flowchart showing the operation of the abnormality determination device of the escalator inspection device as the man conveyor inspection device according to Embodiment 4 of the present invention. Moreover, FIG. 10 is a figure which shows the output signal of the acceleration sensor and distance sensor of an escalator inspection apparatus as a man conveyor inspection apparatus concerning Embodiment 4 of this invention.

距離センサ4、5は、踏段11の進行方向に対して直角の左右方向に配置され、踏段11の左右端からスカートガード14までの距離をそれぞれ計測する。この距離センサの種類としては、一般的に距離計測に使用されている渦電流センサ、磁気センサ、光学センサ、超音波センサ等を使用する。測定レンジが0〜5mmの範囲において精度が得られる距離センサであればよい。   The distance sensors 4 and 5 are arranged in the left-right direction perpendicular to the traveling direction of the step 11, and measure the distance from the left and right ends of the step 11 to the skirt guard 14, respectively. As the type of the distance sensor, an eddy current sensor, a magnetic sensor, an optical sensor, an ultrasonic sensor or the like generally used for distance measurement is used. Any distance sensor may be used as long as accuracy is obtained in a measurement range of 0 to 5 mm.

信号計測装置2では、加速度センサ1のアナログ出力信号に加えて、距離センサ4、5のアナログ出力信号をデジタルデータに変換して計測する。また、これらの計測データとともに計測時刻を送信する。   In the signal measuring device 2, in addition to the analog output signal of the acceleration sensor 1, the analog output signals of the distance sensors 4 and 5 are converted into digital data and measured. Moreover, measurement time is transmitted with these measurement data.

まず、ステップ301において、異常判定装置3は、信号計測装置2から無線で送られてくるデータ(信号)を収集する。すなわち、計測時刻とともに加速度センサ1と距離センサ4、5の計測データを同一タイミングの一定時間間隔で所定時間分、収集してメモリに記憶する。つまり、加速度センサ1、距離センサ4、5の計測データと計測時刻が1対1で対応付けられてメモリに記憶される。   First, in step 301, the abnormality determination device 3 collects data (signals) transmitted wirelessly from the signal measurement device 2. That is, the measurement data of the acceleration sensor 1 and the distance sensors 4 and 5 are collected together with the measurement time for a predetermined time at a constant time interval of the same timing and stored in the memory. That is, the measurement data of the acceleration sensor 1 and the distance sensors 4 and 5 and the measurement time are associated with each other and stored in the memory.

次に、ステップ302〜303において、上記実施の形態1の図2のステップ102〜103と同様の処理を実行する。   Next, in steps 302 to 303, processing similar to that in steps 102 to 103 in FIG.

ステップ304のスカートガードの隙間異常位置の検出について、図10を用いて詳細に説明する。   The detection of the abnormal skirt guard gap position in step 304 will be described in detail with reference to FIG.

ステップ303で、各計測時刻における踏段位置が得られているので、踏段位置に対応した距離センサ4、5の計測データを得ることができる。図10(b)に示すように、距離センサ4、5の計測データの振幅値が予め設定しておいた正常範囲外となった計測時刻に対応する踏段位置をスカートガード隙間異常発生位置とする。例えば、距離センサ4、5の出力値が0.5mm〜4mmの場合を正常とし、それ以外の場合を異常とする。   In step 303, since the step position at each measurement time is obtained, the measurement data of the distance sensors 4, 5 corresponding to the step position can be obtained. As shown in FIG. 10B, the step position corresponding to the measurement time when the amplitude value of the measurement data of the distance sensors 4 and 5 falls outside the preset normal range is set as the skirt guard gap abnormality occurrence position. . For example, the case where the output values of the distance sensors 4 and 5 are 0.5 mm to 4 mm is normal, and the other cases are abnormal.

なお、エスカレーターの機構上、反転部12、13付近およびエスカレーターの帰路側などのスカートガード14が存在しない踏段位置においては、距離センサ4、5の出力値が正常範囲外となることが考えられるので、スカートガード14が存在しない踏段位置の距離センサ4、5の出力値については異常検出を行わないように構成してもよい。   In addition, because of the mechanism of the escalator, the output values of the distance sensors 4 and 5 may be out of the normal range at the step positions where the skirt guard 14 is not present, such as the vicinity of the reversing parts 12 and 13 and the return path side of the escalator. The output values of the distance sensors 4 and 5 at the step position where the skirt guard 14 does not exist may be configured not to detect abnormality.

また、本実施の形態4を上記実施の形態1に追加する構成で説明したが、上記実施の形態2あるいは上記実施の形態3に追加する構成としてもよい。   Further, although the fourth embodiment has been described with the configuration added to the first embodiment, the configuration may be added to the second embodiment or the third embodiment.

本実施の形態4によれば、スカートガード14毎にセンサを配置することなく、少ないセンサ個数で踏段11とスカートガード14間の隙間異常が発生している位置を正確に特定できる。   According to the fourth embodiment, it is possible to accurately specify the position where the gap abnormality between the step 11 and the skirt guard 14 is generated with a small number of sensors without disposing a sensor for each skirt guard 14.

さらに、上記実施の形態1〜4では、踏段11内に加速度センサ1及び距離センサ4、5を配置しているが、運転時に発生する可聴音を用いて点検を行う場合はマイクロホンを追加してもよいし、運転時に発生する超音波を用いて点検を行う場合はアコースティックエミッション(AE:Acoustic Emission)センサを追加してもよい。この場合、加速度センサ1の計測時刻と同期してマイクロホンあるいはAEセンサの計測を行うよう構成することで、同様の方法でマイクロホンあるいはAEセンサの出力値についても各計測時刻における踏段位置を求めることができ、平均データ列や乗算データ列を算出して異常判定するよう構成できることは言うまでもない。   Furthermore, in Embodiments 1 to 4, the acceleration sensor 1 and the distance sensors 4 and 5 are arranged in the step 11, but a microphone is added when checking using audible sound generated during driving. Alternatively, an acoustic emission (AE) sensor may be added when inspection is performed using ultrasonic waves generated during operation. In this case, by configuring so that the microphone or the AE sensor is measured in synchronization with the measurement time of the acceleration sensor 1, the step position at each measurement time can be obtained for the output value of the microphone or the AE sensor by the same method. Needless to say, an abnormality determination can be made by calculating an average data string or a multiplication data string.

この発明の実施の形態1に係るマンコンベア点検装置としてのエスカレーター点検装置の構成を示す図である。It is a figure which shows the structure of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るマンコンベア点検装置としてのエスカレーター点検装置の異常判定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the abnormality determination apparatus of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るマンコンベア点検装置としてのエスカレーター点検装置の踏段位置と反転部を通過してからの経過時間の関係を示す図である。It is a figure which shows the relationship between the step position of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 1 of this invention, and the elapsed time after passing the inversion part. この発明の実施の形態1に係るマンコンベア点検装置としてのエスカレーター点検装置の加速度センサの出力信号(計測データ)の一例及び出力信号から取出された低域信号を示す図である。It is a figure which shows an example of the output signal (measurement data) of the acceleration sensor of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 1 of this invention, and the low-pass signal taken out from the output signal. この発明の実施の形態2に係るマンコンベア点検装置としてのエスカレーター点検装置の異常判定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the abnormality determination apparatus of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るマンコンベア点検装置としてのエスカレーター点検装置の加速度センサの出力信号の一例及び処理された信号を示す図である。It is a figure which shows an example of the output signal of the acceleration sensor of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 2 of this invention, and the processed signal. この発明の実施の形態3に係るマンコンベア点検装置としてのエスカレーター点検装置の加速度センサの出力信号を処理した信号を示す図である。It is a figure which shows the signal which processed the output signal of the acceleration sensor of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係るマンコンベア点検装置としてのエスカレーター点検装置の構成を示す図である。It is a figure which shows the structure of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係るマンコンベア点検装置としてのエスカレーター点検装置の異常判定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the abnormality determination apparatus of the escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係るマンコンベア点検装置としてのエスカレーター点検装置の加速度センサ及び距離センサの出力信号を示す図である。It is a figure which shows the output signal of the acceleration sensor and distance sensor of an escalator inspection apparatus as a man conveyor inspection apparatus which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 加速度センサ、2 信号計測装置、3 異常判定装置、4、5 距離センサ、10 エスカレーター、11 踏段、12、13 反転部、14 スカートガード。   DESCRIPTION OF SYMBOLS 1 Acceleration sensor, 2 signal measuring device, 3 abnormality determination device, 4, 5 distance sensor, 10 escalator, 11 step, 12, 13 inversion part, 14 skirt guard.

Claims (4)

マンコンベアの所定の踏段内に鉛直方向の感度が得られる向きに設けられ、計測データを出力する加速度センサと、
前記加速度センサが設けられた踏段と同じ踏段に設けられ、前記加速度センサからの計測データ及び前記計測データに対応する計測時刻を出力する信号計測装置と、
前記信号計測装置から前記加速度センサの計測データを収集し、この収集した計測データから低域信号をローパスフィルタによって取り出し、前記低域信号及び前記計測データに対応する計測時刻を用いて、加速度の正負が反転する時刻を前記加速度センサが設けられた所定の踏段が前記マンコンベアの反転部を通過した時刻である反転部通過時刻として検出し、当該計測データの計測時刻に基づき前記反転部通過時刻からの経過時間を求め、踏段位置と反転部通過時刻からの経過時間の関係を規定したテーブルを参照して当該計測データの計測時刻について踏段位置を同定する演算処理装置と
を備えたことを特徴とするマンコンベア点検装置。
Vertical sensitivity within a predetermined footstep of the passenger conveyor is provided in a direction which is obtained, an acceleration sensor for outputting measurement data,
A signal measuring device that is provided on the same step as the step on which the acceleration sensor is provided, and outputs measurement data from the acceleration sensor and a measurement time corresponding to the measurement data;
Collecting measurement data of the acceleration sensor from the signal measuring device , taking out a low-frequency signal from the collected measurement data by a low-pass filter, and using the measurement time corresponding to the low-frequency signal and the measurement data, the sign of acceleration Is detected as a reversing section passage time, which is a time when a predetermined step provided with the acceleration sensor has passed the reversing section of the man conveyor, and based on the measurement time of the measurement data, And an arithmetic processing unit that identifies the step position for the measurement time of the measurement data with reference to a table that defines the relationship between the step position and the elapsed time from the reversing unit passage time. Man conveyor inspection device.
前記演算処理装置は、各計測時刻における踏段位置の情報を用いて前記加速度センサの連続した計測データ列を1周毎の区間に分割して複数周分の計測データ列を取り出し、前記複数周分の計測データ列に対して正常時と異常時の差異が大きくなるような信号処理演算を行い、複数周分の信号処理済のデータ列における振幅値を踏段位置毎に平均した平均データ列を演算し、予め求めておいた正常時の平均データ列と前記演算で得られた平均データ列を比較して所定の差異があれば異常発生と判定する
ことを特徴とする請求項1記載のマンコンベア点検装置。
The arithmetic processing device divides a continuous measurement data sequence of the acceleration sensor into sections for every one turn using information on the step position at each measurement time, takes out a measurement data sequence for a plurality of turns, Signal processing calculation is performed on the measured data sequence so that the difference between normal and abnormal is large, and the average data sequence is calculated by averaging the amplitude values in the signal sequence for multiple laps for each step position. 2. The man conveyor according to claim 1, wherein a normal data sequence obtained in advance and an average data sequence obtained by the calculation are compared to determine that an abnormality has occurred if there is a predetermined difference. Inspection device.
前記演算処理装置は、各計測時刻における踏段位置の情報を用いて前記加速度センサの連続した計測データ列を1周毎の区間に分割して複数周分の計測データ列を取り出し、前記複数周分の計測データ列に対して正常時と異常時の差異が大きくなるような信号処理演算を行い、複数周分の信号処理済のデータ列における振幅値を踏段位置毎に掛け合わせた乗算データ列を演算し、予め求めておいた正常時の乗算データ列と前記演算で得られた乗算データ列を比較して所定の差異があれば異常発生と判定する
ことを特徴とする請求項1記載のマンコンベア点検装置。
The arithmetic processing device divides a continuous measurement data sequence of the acceleration sensor into sections for every one turn using information on the step position at each measurement time, takes out a measurement data sequence for a plurality of turns, A signal processing operation is performed on the measured data sequence so that the difference between the normal time and the abnormal time becomes large, and a multiplication data sequence obtained by multiplying the amplitude values in the signal processing data sequence for multiple laps for each step position is obtained. 2. A man-hour according to claim 1, wherein a normal multiplication data sequence obtained in advance is compared with a multiplication data sequence obtained by the calculation, and if there is a predetermined difference, it is determined that an abnormality has occurred. Conveyor inspection device.
前記所定の踏段内に設けられ、踏段端とスカートガード間の距離を測定する距離センサをさらに備え、
前記信号計測装置は、前記距離センサの出力信号を計測して出力し、
前記演算処理装置は、前記信号計測装置から前記距離センサの計測データを収集し、この収集した計測データに対応する各計測時刻における踏段位置の情報を用いて前記距離センサの計測データが予め設定された正常範囲外となった計測時刻に対応する踏段位置をスカートガード隙間異常発生位置として検出する
ことを特徴とする請求項1、2又は3記載のマンコンベア点検装置。
A distance sensor provided in the predetermined step and measuring a distance between the step end and the skirt guard;
The signal measuring device measures and outputs an output signal of the distance sensor,
The arithmetic processing unit collects the measurement data of the distance sensor from the signal measurement device , and the measurement data of the distance sensor is preset using information on the step position at each measurement time corresponding to the collected measurement data. The man conveyor inspection device according to claim 1, 2 or 3, wherein a step position corresponding to a measurement time outside the normal range is detected as a skirt guard gap abnormality occurrence position.
JP2003301783A 2003-08-26 2003-08-26 Man conveyor inspection device Expired - Fee Related JP4020204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301783A JP4020204B2 (en) 2003-08-26 2003-08-26 Man conveyor inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301783A JP4020204B2 (en) 2003-08-26 2003-08-26 Man conveyor inspection device

Publications (2)

Publication Number Publication Date
JP2005067847A JP2005067847A (en) 2005-03-17
JP4020204B2 true JP4020204B2 (en) 2007-12-12

Family

ID=34406304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301783A Expired - Fee Related JP4020204B2 (en) 2003-08-26 2003-08-26 Man conveyor inspection device

Country Status (1)

Country Link
JP (1) JP4020204B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105434A (en) * 2009-11-16 2011-06-02 Toshiba Elevator Co Ltd Escalator control device
JP2013107711A (en) * 2011-11-17 2013-06-06 Toshiba Elevator Co Ltd Man conveyor inspection device
JP2020029326A (en) * 2018-08-22 2020-02-27 東芝エレベータ株式会社 Abnormality detection system of passenger conveyor, abnormality detection apparatus, step apparatus, and abnormality detection method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305342B2 (en) * 2004-09-10 2009-07-29 株式会社日立製作所 Passenger conveyor
JP4791093B2 (en) * 2005-07-04 2011-10-12 三菱電機株式会社 Passenger conveyor diagnostic equipment
JP4534155B2 (en) * 2005-08-31 2010-09-01 株式会社ダイフク Article conveying device
JP4935063B2 (en) * 2005-11-29 2012-05-23 株式会社日立製作所 Passenger conveyor
JP2008201498A (en) * 2007-02-16 2008-09-04 Toshiba Elevator Co Ltd Passenger conveyer monitoring system
JP5367227B2 (en) * 2007-02-09 2013-12-11 東芝エレベータ株式会社 Passenger conveyor monitoring system
JP5257865B2 (en) * 2007-11-16 2013-08-07 東芝エレベータ株式会社 Passenger conveyor monitoring system
JP4761276B2 (en) * 2008-07-10 2011-08-31 東芝エレベータ株式会社 Abnormality diagnosis system for passenger conveyor
JP4577794B2 (en) * 2008-07-29 2010-11-10 東芝エレベータ株式会社 Abnormality diagnosis system for passenger conveyor
JP4829335B2 (en) * 2009-11-04 2011-12-07 株式会社東芝 Diagnostic device for conveyor and diagnostic system therefor
JP2011168354A (en) * 2010-02-16 2011-09-01 Toshiba Corp Device and method for collecting operation sound
JP4937373B2 (en) * 2010-03-30 2012-05-23 株式会社東芝 Data collection system
JP2012192995A (en) * 2011-03-15 2012-10-11 Toshiba Elevator Co Ltd Abnormality diagnosis system for passenger conveyer
JP2013224853A (en) * 2012-04-20 2013-10-31 Hitachi Building Systems Co Ltd Method of diagnosing anomalies in low speed rotational bearing of elevator
JP5879214B2 (en) * 2012-06-27 2016-03-08 株式会社日立製作所 Abnormality diagnosis method, abnormality diagnosis device, and passenger conveyor equipped with abnormality diagnosis device
JP5575839B2 (en) * 2012-06-28 2014-08-20 東芝エレベータ株式会社 Passenger conveyor
EP3543179B1 (en) 2013-07-15 2021-09-01 ABB Schweiz AG Conveyor inspection with unmanned vehicle carrying sensor structure
JP5743347B2 (en) * 2013-09-13 2015-07-01 東芝エレベータ株式会社 Abnormality diagnosis system for passenger conveyor
WO2019016884A1 (en) * 2017-07-19 2019-01-24 三菱電機株式会社 Malfunction detection device for passenger conveyor
JP7053383B6 (en) * 2018-06-19 2022-06-14 三菱電機ビルソリューションズ株式会社 Passenger conveyor control device
EP3819252B1 (en) * 2019-11-08 2023-06-07 OTIS Elevator Company Monitoring systems for inclined passenger conveyors
EP3878793A1 (en) * 2020-03-09 2021-09-15 Otis Elevator Company Monitoring systems for passenger conveyors
CN111606176B (en) * 2020-06-04 2022-10-14 上海三菱电梯有限公司 Passenger conveyor, abnormality diagnosis device and method thereof, and cycle recognition method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105434A (en) * 2009-11-16 2011-06-02 Toshiba Elevator Co Ltd Escalator control device
JP2013107711A (en) * 2011-11-17 2013-06-06 Toshiba Elevator Co Ltd Man conveyor inspection device
JP2020029326A (en) * 2018-08-22 2020-02-27 東芝エレベータ株式会社 Abnormality detection system of passenger conveyor, abnormality detection apparatus, step apparatus, and abnormality detection method

Also Published As

Publication number Publication date
JP2005067847A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4020204B2 (en) Man conveyor inspection device
JP4791093B2 (en) Passenger conveyor diagnostic equipment
JPH11118592A (en) Equipment abnormality diagnosis device and plant device mounting the same
US6951132B2 (en) Rail and train monitoring system and method
US20170108406A1 (en) Method and data processing device for severity assessment of bearing defects using vibration energy
US4415979A (en) Method and apparatus for detecting the presence of an animate body in an inanimate mobile structure
AU2018266424B2 (en) A bearing monitoring method and system
US9220454B2 (en) Device and method for detecting drowsiness using eyelid movement
JP2007198813A (en) Seismograph
JP2019093892A (en) Rail wavy wear detection device, and rail wavy wear detection method
JP2007292489A (en) Insulation abnormality diagnosis system of electric facilities
JP5743347B2 (en) Abnormality diagnosis system for passenger conveyor
EP3720743B1 (en) A system for determining an angular speed of an axle of a railway vehicle and corresponding method
JP6483972B2 (en) Signal processing method and signal processing apparatus
JP2011185846A (en) Reference value creation device and reference value creation method
CN116081186B (en) Method for judging abnormal speed of carrier roller of conveyor belt, storage medium and electronic equipment
JPH06323899A (en) Abnormality diagnostic method for low speed rotating machine
JPH05209782A (en) Bearing abnormality predicting device
EP1769267B1 (en) Movement detection system and method
JP2005247470A (en) Measurement device for elevator
JPH07308847A (en) Method of detecting tool wear/abrasion conditions
JP2839623B2 (en) Abnormal diagnosis device for rocking bearings
JP5833939B2 (en) Train control device and train control system
JP2009112596A (en) Biological information detecting apparatus
JP2000134704A (en) Train location detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4020204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees