JP4019593B2 - 電気光学装置および電子機器 - Google Patents

電気光学装置および電子機器 Download PDF

Info

Publication number
JP4019593B2
JP4019593B2 JP2000048047A JP2000048047A JP4019593B2 JP 4019593 B2 JP4019593 B2 JP 4019593B2 JP 2000048047 A JP2000048047 A JP 2000048047A JP 2000048047 A JP2000048047 A JP 2000048047A JP 4019593 B2 JP4019593 B2 JP 4019593B2
Authority
JP
Japan
Prior art keywords
electro
liquid crystal
optical device
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000048047A
Other languages
English (en)
Other versions
JP2000310787A (ja
Inventor
英仁 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000048047A priority Critical patent/JP4019593B2/ja
Publication of JP2000310787A publication Critical patent/JP2000310787A/ja
Application granted granted Critical
Publication of JP4019593B2 publication Critical patent/JP4019593B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶装置などの電気光学装置に関するものである。更に詳しくは、電気光学装置における電気光学物質の駆動技術に関するものである。
【0002】
【従来の技術】
一対の基板間に挟持された電気光学物質の配向状態を制御する電気光学装置として代表的なものとしては、電気光学物質として液晶を用いた液晶装置がある。この液晶装置では、従来、一対の基板の少なくとも一方にラビング処理を施した配向膜が形成され、電界を加えない状態ではこの配向膜のラビング方向に沿って液晶の分子が配列し、電界を加えた状態では電界方向に基いて液晶分子の配向状態が切り換わる。また、電界の印加を停止したとき、液晶分子の配向状態は、配向膜のラビング方向に沿う方向に戻る。
【0003】
この様子をTN(Twisted Nematic/ねじれネマティック)モードの液晶を例に、図20を参照して説明する。
【0004】
図20はTNモードの表示原理を示す概略図であり、この図には、電極52a、52b間に電界がない状態(図20に向かって左側)と、電極52a、52b間に電界がある状態(図20に向かって右側)とを示してある。電界がない状態では、液晶53の分子はラビング方向に従ってツイスト配向しているのに対して、電界がある状態では、液晶53の分子は電界方向に沿って配向する。ここで、ノーマリー・ホワイトモードの場合には、偏光板51a、51bは偏光軸が直交するように配置されている。このため、電極52a、52b間に電圧を印加しないときには、液晶53の層がもつ旋光性によって上方から入射した光Lは、偏光板51bを通過する。これに対して、電極52a、52b間に電圧を印加したときには、上方から入射した光は、液晶53の層を透過した後、偏光板51bで遮断される。
【0005】
このように、従来の液晶装置では、液晶53を挟持する一対の基板の少なくとも一方にラビング処理を施した配向膜52a、52bを形成し、配向膜52a、52bの配向規制力によって初期の配向状態(第1の配向状態)を実現する一方、縦電界(基板面に対して垂直な電界)により液晶を第2の配向状態に遷移させるものである。
【0006】
なお、縦電界に代えて横電界(基板面に対して平行な電界)により液晶の配向状態を遷移させる液晶装置もあるが、この液晶装置においても、液晶を挟持する一対の基板の少なくとも一方にラビング処理を施した配向膜を形成し、配向膜による規制力によって初期の配向状態(第1の配向状態)を実現し、横電界(基板面に対して平行な電界)により液晶を第2の配向状態に遷移させる。
【0007】
【発明が解決しようとする課題】
このように、従来の電気光学装置では、液晶を配向させるために配向膜が不可欠であるが、配向膜を形成するプロセスに起因する歩留まりの低下や、長時間の使用による配向膜の劣化、それにともなう表示品質の低下等、いまだ大きな問題として存在する。
【0008】
また、投射型表示装置(プロジェクター装置)などのライトバルブに用いるような、ひとつの画素が数10μm程度と小さい液晶装置では、各画素に画素スイッチング素子を設けたことによる基板表面の凹凸や、配線部などからの漏れ電界の影響も無視できなくなる。これらの問題を改善するために、通常のブラックマトリクスを形成し画素間の光漏れを隠すなどの方策が取られるが、開口率が小さくなるため、液晶装置の光利用効率が下がる原因となっている。
【0009】
本発明の課題は、上記問題点を解決するものであり、配向膜を用いることなく電界のみで電気光学物質の配向状態を制御でき、一様な視覚特性を有する電気光学装置、およびこの電気光学装置を用いた電子機器を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明では、第1の基板と第2の基板との間に電気光学物質が挟持されてなり、前記第1の基板および前記第2の基板には前記電気光学物質を第1の配向状態と該第1の配向状態とは異なる第2の配向状態とに制御するための電極群が形成されてなる電気光学装置において、前記電極群には、単位画素あたり、少なくとも、前記第1の基板において前記第2の基板と対向する側の表面に形成された第1の駆動用電極と、前記第2の基板において前記第1の基板と対向する側の表面に前記第1の駆動用電極と対向して形成された第2の駆動用電極と、前記第2の基板において前記第1の基板と対向する側の表面に前記第2の駆動用電極と絶縁されて形成された第3の駆動用電極とが含まれていることを特徴とする。
【0011】
本発明に係る電気光学装置では、配向膜などといった初期配向手段を用いることなしに、縦電界と横電界の二つの電界で液晶分子などの電気光学物質の配向状態を制御することができる。また、従来の方式では、配線などからの漏れ電界が画素内の液晶などの電気光学物質の配向に影響を与えるほど画素サイズが小さいプロジェクター用のライトバルブとして用いられる電気光学装置においても、それら余分な電界の影響を小さくできる。それ故、高い透過率とコントラストを有するすぐれた電気光学装置を得ることができる。また、配向処理工程が不必要となるため、製造工程が簡単になり歩留まりが上がる。さらに、配向膜による配向規制力がないので、液晶などの電気光学物質の応答性を向上するのにも貢献できるとともに、配向膜がないため、長期使用により配向膜が劣化するなどの信頼性上の不具合もなくなる。
【0012】
本発明においては、前記の各電極に印加される信号に基づいて前記電気光学物質が前記第1の配向状態と前記第2の配向状態とに制御される。このような構成により、前記第1の配向状態および前記第2の配向状態が各電極に印加される電圧のみで変更可能となるので、各電気光学装置に応じて印加電圧を選択決定すればよい。
【0013】
本発明において、前記電気光学物質は、例えば液晶である。ここで、前記電気光学物質が正または負の誘電率異方性を持つネマティック液晶である場合には、該ネマチティック液晶の屈性率異方性を利用して光の透過状態を制御する。このような液晶を使用することにより、その屈折率異方性に起因する光学的な効果により光の透過状態を制御することができる。また、ネマティック液晶は、従来から一般的に使われている液晶材料であり、扱いが容易である。
【0014】
本発明において、前記第1の基板および前記第2の基板は、前記電気光学物質に電界が印加されていない状態で各基板表面が前記液晶に配向規制力を発生しない表面状態を有している。すなわち、第1の基板および第2の基板のいずれにも配向膜が形成されていないとともに、配向規制力を発揮する凹凸などが形成されていない。このように構成すると、液晶の分子は、電界のみによって配向状態が制御され、表面の凹凸などによる配向規制力の影響を受けない。従って、液晶の配向を電界制御することが容易になるので、表示特性が劣化しない。
【0015】
本発明において、前記第2の駆動用電極および前記第3の駆動用電極に印加される電圧をそれぞれVd、Vsとしたとき、Vd、Vsが下式
Vd≠Vs
を満たす関係にあるときには、前記電気光学物質は第1の配向状態に制御され、
Vd、Vsが下式
Vd=Vs
を満たす関係にあるときには、前記電気光学物質は前記第2の配向状態に制御される。このように構成すると、第2の駆動用電極に印加する電圧Vdの変化だけで、液晶の分子を第1の配向状態に制御する横電界と、液晶の分子を第2の配向状態に制御する縦電界を発生させることができる。
【0016】
また、本発明において、前記第1の駆動用電極、前記第2の駆動用電極および前記第3の駆動用電極に印加される電圧をそれぞれVc、Vd、Vsとしたとき、Vc、Vd、Vsが下式
Vd=Vc≠Vs
を満たす関係にあるときには、前記液晶の分子が前記基板面と略平行な第1の配向状態に制御され、
Vc、Vd、Vsが下式
Vd=Vs≠Vc
を満たす関係にあるときには、前記液晶の分子が基板面に対してほぼ垂直方向となる前記第2の配向状態に制御される。このように構成した場合は、第2の駆動用電極に印加する電圧Vdだけでなく、第3の駆動用電極に印加する電圧Vsも制御することにより、液晶の分子を第1の配向状態に制御する横電界と、液晶の分子を第2の配向状態に制御する縦電界を、より効率的に発生させることができる。
【0017】
本発明において、前記第3の駆動用電極は、例えば、前記単位画素内で前記第2の駆動用電極の周囲を囲むように形成されていることが好ましい。このような電極配置を採用すると、第1の配向状態における電界の状態を、画素の中心に対して対称に形成することが可能になる。従って、表示特性の角度依存性を軽減することが可能になる。
【0018】
本発明において、前記第2の駆動用電極と前記第3の駆動用電極は、前記単位画素内で交互に配列されていることが好ましい。このように構成すると、第1の配向状態を実現するための横電界がさらに強くなり、液晶層の第1の配向状態と第2の配向状態でのリタデーションの差を大きくすることができる。従って、より鮮明なコントラストを得ることができる。
【0019】
本発明において、前記第2の駆動用電極および前記第3の駆動用電極は、前記単位画素内で複数に分割されていることが好ましい。このように構成すると、第1の配向状態を実現するための横電界がさらに強くなり、液晶層の第1の配向状態と第2の配向状態でのリタデーションの差を大きくすることができる。従って、より鮮明なコントラストを得ることができる。
【0020】
本発明において、前記第3の駆動用電極、または該第3の駆動用電極の一部は、前記電気光学物質の層の厚さの3分の1以上の厚さを有することが好ましい。このような電極構造を採用すると、第1の配向状態を得るために必要な水平方向の電界を強くすることができるとともに、電界の強さを均一にすることができる。従って、さらに鮮明なコントラストを得ることができる。
【0021】
本発明において、前記第2の駆動用電極は、前記単位画素の各々に形成されたスイッチング素子を介して信号が供給される。
【0022】
また、本発明において、前記第2の駆動用電極は、前記単位画素の各々に形成された第1のスイッチング素子を介して信号が供給され、前記第3の駆動用電極は、前記単位画素の各々に形成された第2のスイッチング素子を介して信号が供給される構成を採用することもできる。このように構成すると、第2の駆動用電極に印加される信号と、第3の駆動用電極に印加される信号の双方によって電気光学物質の配向状態を制御できる。これにより画素に発生させる2種類の電界を、電気光学物質の状態を切り換えるのに、より適した状態にすることができるとともに、電気光学装置において、1フィールド毎に、1水平走査ライン毎に極性を反転させる駆動方式などを容易に採用することができる。
【0023】
本発明において、前記第2の駆動用電極と前記第3の駆動用電極の両方、または少なくともその一方は、前記スイッチング素子と該スイッチング素子に接続する配線の全体、または少なくとも一部を絶縁膜を介して覆うように形成されている構成を採用することができる。このような多層構造を採用すると、アレイ基板の開口率をあげることができる。その結果、液晶セルの光透過率の向上につながり、光の利用効率を向上させることができる。さらに配線などが前記第2、もしくは第3の駆動用電極で覆われているので、配線による電界が液晶配向に影響を及ぼさない。
【0024】
本発明において、前記スイッチング素子は、シリコン基板に形成されたMOSトランジスタなどといったMISトランジスタを利用できる。また、前記スイッチング素子としては、基板上に形成した半導体膜を利用した薄膜トランジスタであってもよい。
【0025】
本発明において、前記第1の基板および前記第2の基板のうち、少なくとも光が入射してくる一方の基板に対して偏光手段が配置される場合があり、この場合には、当該一方の基板と前記偏光手段との間に少なくとも1枚の位相差フィルムが配置されていることが好ましい。例えば、一対の基板を2枚の偏光フィルムなどの偏光手段で挟み込むとともに、一方の基板と偏光フィルムの間には位相差フィルムを設けることにより、液晶層によるリタデーションの変化をより有効に光の透過、吸収の制御に用いることができる。従って、より表示品質の高い電気光学装置を得ることができる。また、一方の基板に反射板を設け、また他方の基板の外側に位相差フィルムと偏光フィルムを設けることにより、本発明に係る電気光学装置を反射型として機能するように構成してもよい。
【0026】
本発明において、電気光学装置を反射型として構成する場合には、例えば、前記第1の基板および前記第2の基板のうち、少なくとも光が入射してくる一方の基板と対向する他方側の基板に対して、前記一方の基板に反射面を向ける反射手段を配置すればよい。
【0027】
本発明において、電気光学装置をカラー表示用として構成する場合には、例えば、前記第1の基板および前記第2の基板のいずれか一方の基板にカラーフィルタ層が形成される。
【0028】
本発明に係る電気光学装置は、各種の電子機器に搭載される。このような電気光学装置を備える電子機器にあっては、より光の利用効率を高めることが可能になるので、表示装置の明るさの向上や表示装置における消費電力の低減が可能になる。
【0029】
【発明の実施の形態】
図面を参照して、本発明の実施の形態を説明する。
【0030】
[実施の形態1]
図1は、本発明の実施の形態1に係る電気光学装置の基本的な構成を模式的に示す等価回路図である。
【0031】
図1において、本形態の電気光学装置100は、アクティブマトリクス型の液晶装置であり、詳しくは後述するように、対向基板(第1の基板)とアクティブマトリクス基板(第2の基板)との間で、電気光学物質としての液晶を駆動する装置である。この電気光学装置100では、マトリクス状に形成された複数の画素の各々に、薄膜トランジスタなどの画素スイッチング素子30が形成され、この画素スイッチング素子30のソースには、画像信号S1、S2・・・が供給されるデータ線21が電気的に接続されている。また、画素スイッチング素子30のゲートには走査線20が電気的に接続され、所定のタイミングで、走査線20にパルス的に走査信号G1、G2・・・をこの順に線順次で印加するように構成されている。
【0032】
この電気光学装置100では、等価回路的には、対向基板の側において各画素間で等電位に保持された第1の駆動用電極5と、各画素毎の画素スイッチング素子30のドレインに接続する第2の駆動用電極3との間に液晶容量50が形成されているものとして表わすことができる。
【0033】
また、本形態の電気光学装置100では、等価回路的には、各画素毎の画素スイッチング素子30のドレインに接続する第2の駆動用電極3と、各画素間で等電位に保持された第3の電極4との間にも液晶容量50が形成されているものとして表わすことができるが、この第3の駆動用電極4は、後述するように、画素スイッチング素子30などと一緒にアクティブマトリクス基板の側に形成されている。
【0034】
さらに、本形態の電気光学装置100では、等価回路的には、対向基板において各画素間で等電位に保持された第1の駆動用電極5(共通電極)と、第2の画素スイッチング素子30bのドレインに電気的に接続する第3の駆動用電極4との間にも液晶容量50が形成されているものとして表わすことができる、
なお、本形態の電気光学装置1において、第1の駆動用電極5および第3の駆動用電極4は定電位に保持され、この状態で、画素スイッチング素子30を介して第2の駆動電極3に印加される画像信号S1、S2・・・と、第3の駆動用電極4に印加される電位との電位差によっては、第1の駆動用電極5と第2の駆動用電極3との間、第2の駆動用電極3と第3の駆動用電極4との間、および第3の駆動用電極4と第1の駆動用電極5との間のいずれにおいて液晶が駆動されるかが切り換わるので、図1において、液晶容量50は、便宜的に3つのキャパシタC1、C2、C3で表わしてある。実際の液晶装置においては、C1、C2、C3は別々の液晶ではなく、単位画素内に含まれる同一部分の液晶である。ここでの説明は、画素内の電界状態によって、液晶が上記に示すような容量として作用することを示すものである。
【0035】
(電気光学装置の全体構成)
図2(a)は、本発明を適用した電気光学装置の一例をそのアクティブマトリクス基板上に形成された各構成要素と共に対向基板の側から見た平面図であり、図2(b)は、図2(a)のH−H′断面図である。図3(a)は、単位画素における各駆動用電極の位置関係などを示す平面図、図3(b)は、図3(a)のA−A′断面を模式的に示す説明図である。なお、各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。また、保持された画像信号がリークするのを防ぐために、液晶容量と並列に蓄積容量を付加することがあるが、本発明の特徴点を明確に図示することを目的に、図3には蓄積容量の図示を省略してある。
【0036】
図2(a)、(b)において、本形態の電気光学装置100は、画素ピッチが20μm以下の液晶装置であり、ガラス基板1a′などを用いたアクティブマトリクス基板1aと、このアクティブマトリクス基板1aに対向するように配置されたガラス基板1b′などからなる対向基板1bとが、シール材6によって所定の間隙を介して張り合わされているとともに、これらの基板間には、正または負の誘電率異方性を持つネマティック液晶(液晶10)が挟持されている。また、アクティブマトリクス基板1aでは、基板辺に沿って多数の接続端子(図示せず)が形成され、これらの接続端子には、液晶駆動回路からの電気信号をアクティブマトリクス基板1aに供給するためのフレキシブル基板11が接続されている。
【0037】
図2(b)において、対向基板1bの内側表面(アクティブマトリクス基板1aと対向する面側)には、カラーフィルター8と、共通電極としての第1の駆動用電極5がこの順に積層されている。第1の駆動用電極5は、ITO(Indium Oxide)等の透明電極として、対向基板1bの略全面に形成されている。また、対向基板1bの外側表面上には、位相差フィルム7と偏光板2bがこの順に積層されている。なお、従来の液晶装置と違って、対向基板1bの内側表面には配向膜が形成されていない。
【0038】
アクティブマトリクス基板1aの内側表面(対向基板1bと対向する面側)上には、制御電極としての第2の駆動用電極3と、補助電極としての第3の駆動用電極4が形成され、後述するTFTやMOSFETなどからなるスイッチング素子、および各種の信号線(図示せず)が形成されている。ここで、第2の駆動用電極3および第3の駆動用電極4には、ITO(Indium Oxide)等からなる透明電極が用いられる。また、アクティブマトリクス基板1aの外側表面上には、偏光板2aが配設されている。なお、従来の液晶装置と違って、アクティブマトリクス板1aの内側表面には配向膜が形成されていない。
【0039】
本形態において、第3の駆動用電極4は、第2の駆動用電極3を囲むように形成されており(図3(a)を参照)、基板全体でひとつの電極として形成されている。第2の駆動用電極3は、先述の画素スイッチング素子30を介して配線に接続されている。
【0040】
本形態では、好ましくは、液晶10が接する電極表面などにはサブミクロン以下の規則性を有する凹凸などができないように、もしくは液晶10の配向に影響を与えるような極性基が表面上に存在しないような処理を施すのが良い。例えば、液晶10の配向に影響を与えるようなサブミクロンサイズの細かな凹凸などが存在すると、それらは液晶10に小さいながらも配向規制力を与えるきっかけとなり、電界による液晶10の配列が複雑になるだけでなく、その均一性も損なわれるからである。
【0041】
この実施例の場合、液晶層10として用いる液晶材料、及び表示モードにはさまざまなものを用いられるが、それについては後で説明する。
【0042】
(各画素の構成)
図3(a)、(b)において、アクティブマトリクス基板1aでは、ポリシリコン等からなる走査線20と、アルミニウム等からなるデータ線21とが交差するように格子状に配設され、各格子の目の部分にほぼ矩形状の第2の駆動用電極3が設けられている。各画素に形成された画素スイッチング素子30は、データ線21の一部としてのソース電極、走査線の一部としてのゲート電極、ドレイン電極201を備えている。このため、ソース電極はデータ線21に接続され、ゲート電極は走査線20に接続され、ドレイン電極201は第2の駆動用電極3に接続されている。さらに、データ線21、走査線20および画素スイッチング素子30の大部分を覆うように、第3の駆動用電極4が各画素の境界領域に沿って格子状に形成されている。
【0043】
なお、第2の駆動用電極3と第3の駆動用電極4とは一定の間隔を以って離間されており、また、第3の駆動用電極4と画素スイッチング素子30を構成する各電極および各配線との間は、図3(b)に示すように、絶縁層22や層間絶縁膜などによって絶縁されている。ここで、第3の駆動用電極4は基板全面、全画素において同じ電位に保持される。よって、本形態において、第3の駆動用電極4については、特別な配線を形成せずに、基板周辺部において外部から電位Vsを与えるための電極が接続されている。
【0044】
(アクティブマトリクス基板の構成例)
図4は、ガラス基板を用いたアクティブマトリクス基板1aの図3のB−B′における断面図である。この構成例に基づきアクティブマトリクス基板1aの内側表面上に形成される第2の駆動用電極3、第3の駆動用電極4、および画素スイッチング素子30について詳述する。ここに示す例において、画素スイッチング素子30は、薄膜トランジスタにより構成される。
【0045】
図4に示すアクティブマトリクス基板1aにおいて、1a′は、例えば無アルカリガラスや石英などからなる透明なガラス基板であり、300は、アクティブマトリクス基板1a表面に直接、あるいはガラス基板1a′の表面に形成した下地保護膜(図示せず)を介して表面に減圧CVD法などにより形成されたポリシリコンからなる半導体膜である。半導体膜300は、厚さは約20nm〜約200nm、好ましくは約100nmである。
【0046】
半導体膜300の表面にはCVD法などにより、厚さが約50nm〜約150nmのシリコン酸化膜からなるゲート酸化膜22が形成されている。
【0047】
ゲート酸化膜22の表面には、タンタル膜などからなる走査線20が通っており、この走査線20をマスクとして、約0.1×1013/cm2〜約10×1013/cm2のドーズ量で低濃度の不純物イオン(リンイオン)の打ち込みが行われ、この打ち込みによって、走査線20に対して自己整合的に低濃度のソース領域、および低濃度のドレイン領域を形成した後、走査線20より幅の広いレジストマスクを形成して高濃度の不純物イオン(リンイオン)を打ち込み、高濃度のソース領域301およびドレイン領域302が形成される。ここで、走査線20の真下に位置しているため不純物イオンが導入されなかった部分は、もとの半導体膜のままチャネル領域20bとなる。
【0048】
走査線20の表面側には、CVD法などにより形成された酸化シリコン膜やNSG膜(ボロンやリンを含まないシリケートガラス膜)などからなる第1の層間絶縁膜23が形成され、この第1の層間絶縁膜23は、膜厚が300nm〜1500nm程度である。
【0049】
第1の層間絶縁膜23の表面には、第1の層間絶縁膜23のコンタクトホールを介してソース領域301およびドレイン領域302に電気的に接続するデータ線21およびドレイン電極201が形成され、これらのデータ線21およびドレイン電極201はアルミニウム等で構成される。
【0050】
データ線21およびドレイン電極201の表面側には、ペルヒドロポリシラザンまたはこれを含む組成物の塗布膜を焼成した絶縁膜24aが形成され、さらに、この絶縁膜24aの表面には、シリコン酸化膜からなる絶縁膜24bが形成されている。これらの絶縁膜24a、24bによって、第2の層間絶縁膜24が形成されている。
【0051】
第2の層間絶縁膜24のドレイン電極201には、コンタクトホールを介して厚さが約40nm〜約200nmのITOからなる透明な第2の駆動用電極3が電気的に接続し、第2の層間絶縁膜24の他の部分には、厚さが約40nm〜約200nmのITOからなる透明な第3の駆動用電極4が形成されている。ここで、第2の駆動用電極3と第3の駆動用電極4は一定の間隔を以って絶縁されている。
【0052】
以上、透過型の電気光学装置100の構成例について説明したが、本発明を反射型の電気光学装置に適用することもできる。例えば、図3における第2の駆動用電極3および第3の駆動用電極4をアルミニウム等の反射特性を有する材料により形成することにより反射電極とすれば反射型電気光学装置を形成することができる。なお、この際には、アクティブマトリクス基板1aに形成されている偏光手段(ここでは偏光板2a)は不要となる。また、各電極の反射特性を制御する上でアルミニウムに他の材料を添加することも可能である。
【0053】
(アクティブマトリクス基板の別の構成例)
これ以外のアクティブマトリクス基板1bの構成を、図5を参照して説明する。図5は、本発明を適用した反射型電気光学装置において、シリコン基板を用いたアクティブマトリクス基板1aの断面構成を示す図であり、図4に対応する部分の断面図である。なお、図5はマトリクス状に配置されている画素のうち一画素部分の断面を示す。ここに示す例において、画素スイッチング素子30は、MOSFETにより構成される。
【0054】
図5にアクティブマトリクス基板1aにおいて、1a″は単結晶シリコンのようなP型半導体基板、102はこの半導体基板1a″の表面に形成されたP型ウェル領域、103は半導体基板1a″の表面に形成された素子分離用のフィールド酸化膜(いわゆるLOCOS)である。ウェル領域102は、特に限定されないが、マトリクス状に画素が配置されてなる画素領域の共通ウェル領域として形成されている。フィールド酸化膜103は、選択熱酸化によって500nm〜700nmのような厚さに形成される。
【0055】
このフィールド酸化膜103には一画素ごとに6つの開口部が形成され、そのうち3つの開口部の内側中央にはゲート酸化膜(絶縁膜)104bを介してポリシリコンあるいはメタルシリサイド等からなる走査線20が形成されている。この走査線20の両側の基板表面には高濃度のN型不純物導入層(以下、ドーピング層という)からなるソース、ドレイン領域301、302が形成され、画素スイッチング素子30としてのMOSFETが構成されている。走査線20は走査線方向(画素行方向)に延在されている。
【0056】
また、フィールド酸化膜103に形成された他の開口部の内側の基板表面にはP型ドーピング領域108が形成されているとともに、このP型ドーピング領域108の表面には絶縁膜109bを介してポリシリコンあるいはメタルシリサイド等からなる電極109aが形成されている。この電極109aとP型ドーピング領域108とを利用して蓄積容量が構成されている。
【0057】
なお、電極109aは、MOSFETの走査線20となるポリシリコンあるいはメタルシリサイド層と同一工程にて形成できる。また、電極109aの下の絶縁膜109bは、ゲート絶縁膜104bとなる絶縁膜と同一工程にて形成することができる。
【0058】
絶縁膜104b、109bは、熱酸化によって上記開口部の内側の半導体基板表面に400〜80nmのような厚さに形成される。データ線21および電極109aは、ポリシリコン層を100nm〜200nmのような厚さに形成し、その上にMoあるいはWのような高融点金属のシリサイド層を100nm〜300nmのような厚さに形成した構造とされている。ソース、ドレイン領域301、302は、走査線20をマスクとしてその両側の基板表面にN型不純物をイオン打ち込みで注入することで自己整合的に形成される。
【0059】
データ線21および電極109aからフィールド酸化膜103上にかけては第1の層間絶縁膜106が形成され、この第1の層間絶縁膜106上にはアルミニウムを主体とするメタル層からなりMOSFETのソース領域301に接続するデータ線21、およびMOSFETのドレイン領域302と第2の駆動用電極3とを接続するドレイン電極107bが形成され、それぞれ第1の層間絶縁膜106に形成されたコンタクトホールを介して接続されている。ドレイン電極107bは、蓄積容量の電極109aに対してコンタクトホールを介して接続されている。
【0060】
データ線21およびドレイン電極107bから第1の層間絶縁膜106上にかけては第2の層間絶縁膜111が形成され、この第2の層間絶縁膜111上にはアルミニウムを主体とする二層目のメタル層112からなる遮光膜が形成されている。この遮光膜を構成する二層目のメタル層112は、画素領域の周囲に形成される駆動回路等の周辺回路において素子間の接続用配線を構成するメタル層と同一のメタル層で形成することができる。従って、このメタル層112のみを形成するために工程を追加する必要がなく、プロセスが簡略化される。また、メタル層112は、ドレイン電極107bに対応する位置に、第2の駆動用電極3と画素スイッチング素子30としてのMOSFETを電気的に接続するための柱状の接続プラグ115を貫通させるための開口部が形成され、それ以外は画素領域全面を覆うように形成される。これによって、基板上方から入射する光をほぼ完全に遮断して画素スイッチング素子30(チャネル領域およびウェル領域)を光が通過してリーク電流が流れるのを防止することができる。
【0061】
この実施形態においては、遮光膜112の上に第3の層間絶縁膜113が形成され、この第3の層間絶縁膜113の上に、第2の駆動用電極3が形成されている。この第2の駆動用電極3はアルミニウムを主体としたメタル層で構成されている。そして、遮光膜112に形成された開口部に対応してその内側に位置するように、第3の層間絶縁膜113および第2の層間絶縁膜111を貫通するコンタクトホール116が形成され、このコンタクトホール116内にドレイン電極107bと第2の駆動用電極3とを電気的に接続するタングステン等の高融点金属からなる柱状の接続プラグ115が充填されている。
【0062】
また、第3の層間絶縁膜113の表面には第2の駆動用電極3と一定の間隔を以って絶縁された第3の駆動用電極4が形成されており、この第3の駆動用電極4もアルミニウムを主体としたメタル層で構成されている。
【0063】
ここで、メタル層で構成されている第2の駆動用電極3および第3の駆動用電極4は、対向基板1bに反射面を向けた反射手段を兼ねた電極である。また、アクティブマトリクス基板1aの外側表面に偏光板が不要である点が透過型電気光学装置と異なっている。
【0064】
(電気光学装置の動作)
本発明に係る電気光学装置100の制御方法および制御状態、表示方式について説明する。
【0065】
図6は単位画素内における駆動用電極の構造を示す平面図である。図7(a)は第1の制御状態(第1の配向状態)を示す断面図で、図7(b)は第2の制御状態(第2の配向状態)を示す断面図である。
【0066】
以下の説明において、第1の駆動用電極5、第2の駆動用電極3および第3の駆動用電極4に印加する電圧をそれぞれVc、Vd、Vsとする。ここで、VcおよびVsは、大きさが異なる一定電圧になっている一方、Vdには前述したTFTやMOSFET等のスイッチング素子30を介して大きさが変えられるようになっている。
【0067】
第1の制御状態は、下式
Vd=Vc≠Vs
を満たす電圧をそれぞれの駆動用電極3、4、5に印加した状態では、図6および図7(a)に示すように、第3の駆動用電極4から第2の駆動用電極3および第1の駆動用電極5に向かって(若しくはその逆に)電界E1が発生する。例えば、正の誘電率異方性を持つネマティック液晶の場合、分子の長軸がこの電気力線に沿って配列する(第1の配向状態)。平面で見ると液晶分子は画素の中心に対して対称に配列するため視角特性の向上を図ることができる。
【0068】
第2の制御状態は、下式
Vd=Vs≠Vc
を満たす電圧をそれぞれの電極に印加した状態では、図7(b)に示すように、第2の駆動用電極3および第3の駆動用電極4から第1の駆動用電極5に向かって(若しくはその逆に)電界E2が発生する。第一の状態とは異なり液晶分子の長軸はこの電気力線に沿って配列する(第2の配向状態)。
【0069】
例えば、しきい電圧が2.5V程度の、一般的なネマティック液晶を用いた場合には、Vcを基準電位(0V)に設定し、Vsを3V〜5Vに設定することができる。このときVdの大きさを0Vから3V〜5Vの間で制御することにより表示を行うことができる。
【0070】
ここで、第1の配向状態は、液晶の分子が基板面に対して略水平な状態で、第2の配向状態は、液晶の分子がほぼ垂直な状態であり、この2つの状態における液晶分子の屈折率異方性を利用して光の透過状態を制御することができる。
【0071】
例えば、この電気光学装置100を透過型として用いる場合、2枚の偏光板2a、2bの透過軸をほぼ直角に交わるように配置すると、液晶分子がほぼ垂直になったとき(第2の配向状態)には、入射した光は偏光状態が変化しないので、出射側の偏光板2aを透過することができずに暗状態になる。また液晶分子が基板面に対して略平行になったとき(第1の配向状態)には、偏光して入射した光は面内方向で屈折率異方性を持つ液晶分子層の配列により、その偏光状態が変化し、さらに外側に配置された少なくとも1枚の位相差フィルム7により、出射側に設けた偏光板2aを透過するように偏光が変化を受けるので、明状態を得ることができる。
【0072】
また、図5を参照して説明したように、アクティブマトリクス基板1aの各電極に反射板としての機能を付与した反射型の電気光学装置100においても、ほぼ同じような原理により表示を得ることができる。
【0073】
すなわち、反射型の電気光学装置では、対向基板1bに反射面を向けた反射手段をアクティブマトリクス基板1aに形成し、対向基板1bの外側表面のみに少なくとも1枚の位相差フィルム7、偏光板2aを形成するが、この反射型の電気光学装置において、第2の配向状態の場合には液晶分子、位相差フィルム7などにより偏光状態が変化しないので液晶層内に入射した光は、再び偏光板2bを透過することができる。よって明状態となる。
【0074】
これに対して、第1の配向状態においては、理想的には入射した光の偏光方向が90度回転して偏光板面に到達するような液晶層の厚み、屈折率異方性、位相差フィルム7の位相差などを事前に設計し作り込むことができるので、入射した光を出射時に偏光板によって吸収し、暗状態を得ることができる。
【0075】
これらの表示原理は、従来の直視型表示体に用いられているものを、そのまま用いることができる。異なるのは、従来は初期配向によってひとつの状態を得ていたが、本発明によればそれが必要ない。
【0076】
また、従来のラビングなどによる配向処理では、このような対称性が高い液晶の配向状態を作り出すことができなかったが、このような方法に依れば電極形状と与える電界の強さによって容易に、それを実現することができるので視角特性の改善を図ることができる。
【0077】
ここで、電位VcおよびVsの値は一定で、Vdの値を変化させることにより上述のような電界状態にすることができるため、Vdの値の変化のみで、液晶分子の配向状態を制御することができる。またその大きさを上記2つの制御状態の中間の値とすることで所望の中間調を得ることが可能となる。
【0078】
本実施形態の場合、VcおよびVsの値を一定としたが、この条件は少なくともスイッチング素子によって一旦液晶に貯えられた電位を保持する期間(例えば1垂直走査期間)において必要な条件であり、永続的に必要なものではない。これらの2つの電位の大きさは、フィールド毎に極性が変化しても構わないし、例えば、全画面を一度に消去したいときには、表示内容を書き込むときとは全く異なった値の電位をそれらに与えることもできる。しかしながら、いずれの場合でも、画素毎の液晶の配向状態を決める制御電極の電位Vdはこれら2つの電位との関係の上で決められるので、Vc及びVsの大きさに応じて、その大きさを変更することが必要である。
【0079】
(変形例)
本発明は上記実施例に限定されるものではない。例えば、基本的な電極構造は、図6に示す通りだが、図8に示すように、複数の第2の駆動用電極3(制御電極)と、複数の第3の駆動用電極4(補助電極)とが外周側に向かって交互に並んでいる構成を採用することもできる。これにより発生する電界E3の強さは前述の電界E1よりも強く均一になり、液晶分子の配向状態もより水平に近いものとなる。よって2つの状態におけるリタデーションの差をさらに大きくできるので鮮明なコントラストを得ることが可能となる。
【0080】
また、図9(a)、(b)に示すように、第3の駆動用電極4(補助電極)を所定の厚さ、望ましくは液晶層の厚みの3分の1以上、例えば液晶の層の厚みが4μmの場合は2μmを有するようにすることもできる。この構造によると、図7(a)、(b)に示した構成と比較して、基板に対して水平方向の電界をより強くし、またその均一性を高くすることができる。
【0081】
第3の駆動用電極4(補助電極)の厚みは、厚ければ厚いほど液晶層内における水平方向の電界を強める効果が大きくなり表示品質、特にコントラストが改善されることが実験的に確かめられている。これは図9(a)、(b)に示すように、とくに画素周辺部において水平方向成分の電界が均一に形成されることによっている。その改善効果を図10に示す。
【0082】
図10は、液晶層の厚さに対する補助電極の厚さと、コントラストとの関係を示すグラフである。
【0083】
図10からわかるように、改善効果は、第3の駆動用電極4の厚みが液晶層の厚みの3分の1程度以上にした場合に顕著になり、液晶層と同じ厚さ、つまりセルギャップと同じにしたときに最も大きくなる。しかし、セルギャップと同じ厚みにした場合、第1の駆動用電極5との電気的接触を防ぐために第3の駆動用電極4の表面に絶縁層(図示せず)を形成する必要が生じたり、またこのような厚い第3の駆動用電極4を作る工程自身が困難であること、加えてパネル形成後に液晶をパネル内に注入することが著しく難しくなったりするという欠点が生じる。よって、製造工程および表示品質の改善効果の双方を考えた場合、液晶層の厚さ(セルの厚さ)の3分の1から3分の2程度の厚みに補助電極を設定するのが望ましい。
【0084】
なお、このように数ミクロンの厚みを有する第3の駆動用電極4を形成する方法としては、例えば所定の厚みに製膜したTaやSi、Crなどの金属膜をフォトリソ法でパターニングして形成しても良いし、または金属ペーストなどを用いる方法も可能である。
【0085】
さらに、図8および図9(a)、(b)に示したそれぞれの電極構造を組合せることも当然可能である。例えば図8において、最も外側に配置される第3の駆動用電極4(補助電極)の厚さのみを、図9(a)、(b)に示した構成のように厚くすることができる。
【0086】
以上の実施形態においては、第2の駆動用電極3を取り囲むように第3の駆動用電極4を環状に配置したが、その配置の仕方についてもこの限りではない。例えば、第3の駆動用電極4と第2の駆動用電極3とを交互に並列に配置してもよい。すなわち、駆動用電極を環状に配置にすると、第1の配向状態の時に液晶分子が傾く方向が単位画素に対して比較的等方的になるため、表示特性の角度依存性は改善される。しかし一方で、電気光学装置100を正面方向から見たときのコントラストが低下するなどの不具合も生じる。
【0087】
このような理由から正面でのコントラストが重要になるような用途に対して、本発明の電気光学装置100を使う場合には、例えば図11に示すような上下の2個所に分割して補助電極を配置するような方法が有効となる。こうすることにより、第1の配向状態における液晶分子の向きを一方向(図11に示す例では、図11に向かって上下方向となる)に揃えることができるので、偏光板、位相差フィルムを含む適切な光学設計により、正面方向での高いコントラストを得ることができる。
【0088】
[実施の形態2]
図12は、本発明の実施の形態2に係る電気光学装置の基本的な構成を模式的に示す等価回路図である。
【0089】
図12に示すように、本形態の電気光学装置100も、アクティブマトリクス型の液晶装置であり、詳しくは後述するように、対向基板(第1の基板)とアクティブマトリクス基板(第2の基板)との間で、電気光学物質としての液晶を駆動する。この電気光学装置100では、マトリクス状に形成された複数の画素の各々に、第1の画素スイッチング素子30aと、第2の画素スイッチング素子30bとが形成されている。
【0090】
これらの画素スイッチング素子30a、30bのうち、第1の画素スイッチング素子30aのソースには、画像信号S1A、S2A・・・が供給される第1のデータ線21aが電気的に接続されている。また、第1の画素スイッチング素子30aのゲートには、走査線20が電気的に接続され、所定のタイミングで、走査線20にパルス的に走査信号G1、G2・・・をこの順に線順次で印加するように構成されている。
【0091】
また、第2の画素スイッチング素子30bのソースには、画像信号S1B、S2B・・・が供給される第2のデータ線21bが電気的に接続されている。また、第2の画素スイッチング素子30bのゲートには、第1の画素スイッチング素子30aと共通の走査線20が電気的に接続されている。
【0092】
この電気光学装置100では、等価回路的には、対向基板において各画素間で等電位に保持された第1の駆動用電極5(共通電極)と、アクティブマトリクス基板1aにおいて画素スイッチング素子30aのドレインに電気的に接続する第2の駆動用電極3(第1の制御電極)との間に液晶容量50が形成されている。
【0093】
また、本形態の電気光学装置100では、等価回路的には、第1の画素スイッチング素子30aのドレインに電気的に接続する第2の駆動用電極3と、第2の画素スイッチング素子30bのドレインに電気的に接続する第3の駆動用電極4(第2の制御電極)との間にも液晶容量50が形成されているものとして表わすことができる。この第3の駆動用電極4もアクティブマトリクス基板の側に形成されている。
【0094】
さらに、本形態の電気光学装置100では、等価回路的には、対向基板において各画素間で等電位に保持された第1の駆動用電極5(共通電極)と、第2の画素スイッチング素子30bのドレインに電気的に接続する第3の駆動用電極4との間にも液晶容量50が形成されているものとして表わすことができる。
【0095】
このように構成した本形態の電気光学装置1において、液晶容量50には、画素スイッチング素子30aを介して印加される画像信号S1A、S2A・・・と、画素スイッチング素子30bを介して印加される画像信号S1B、S2B・・・との電位差によっては、第1の駆動用電極5と第2の駆動用電極3との間、第2の駆動用電極3と第3の駆動用電極4との間、および第1の駆動用電極5と第3の駆動用電極4との間のいずれで液晶が駆動されるかが切り換わるので、図12において、液晶容量50は、3つのキャパシタC1、C2、C3で表わしてある。
実際の液晶装置においては、C1、C2、C3は別々の液晶ではなく、単位画素内に含まれる同一部分の液晶である。ここでの説明は、画素内の電界状態によって、液晶が上記に示すような容量として作用することを示すものである。
【0096】
(電気光学装置の全体構成)
図13(a)は、本発明の実施の形態2に係る電気光学装置の一例をそのアクティブマトリクス基板上に形成された各構成要素と共に対向基板の側から見た平面図であり、図13(b)は、図13(a)のH−H′断面図である。図14(a)は、第2の駆動用電極および第3の駆動用電極が形成されている基板の単位画素の概略平面図、図14(b)は図14(a)のC−C′断面図である。なお、各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。また、保持された画像信号がリークするのを防ぐために、液晶容量と並列に蓄積容量を付加することがあるが、本発明の特徴点を明確に図示することを目的に、図14には蓄積容量の図示を省略してある。
【0097】
図13(a)、(b)において、本形態の電気光学装置100は、画素ピッチが20μm以下の液晶装置であり、ガラス基板1a′などを用いたアクティブマトリクス基板1aと、このアクティブマトリクス基板1aに対向するように配置されたガラス基板1b′などからなる対向基板1bとが、シール材6によって所定の間隙を介して張り合わされているとともに、これらの基板間には、正または負の誘電率異方性を持つネマティック液晶10が挟持されている。また、アクティブマトリクス基板1aでは、基板辺に沿って多数の接続端子(図示せず)が形成され、これらの接続端子には、液晶駆動回路からの電気信号をアクティブマトリクス基板1aに供給するためのフレキシブル基板11が接続されている。
【0098】
図13(b)において、対向基板1bの内側表面(アクティブマトリクス基板1aと対向する面側)には、カラーフィルター8と、共通電極としての第1の駆動用電極5がこの順に積層されている。第1の駆動用電極5は、ITO(Indium Oxide)等の透明電極として、対向基板1bの略全面に形成されている。また、対向基板1bの外側表面上には、位相差フィルム7と偏光板2bが積層されて形成されている。なお、従来の液晶装置と違って、対向基板1bの内側表面には配向膜が形成されていない。
【0099】
アクティブマトリクス基板1aの内側表面(対向基板1bと対向する面側)上には、第1の制御電極としての第2の駆動用電極3と、第2の制御電極としての第3の駆動用電極4が形成され、さらに、後述するTFTやMOSFETなどからなるスイッチング素子、および各種の信号線(図示せず)が形成されている。ここで、第2の駆動用電極3および第3の駆動用電極4には、アルミニウム等からなる反射性の電極が用いられている。また、アクティブマトリクス基板1aの外側表面上には、対向基板1bに反射面を向ける反射板2cが配設されている。なお、従来の液晶装置と違って、アクティブマトリクス板1aの内側表面には配向膜が形成されていない。
【0100】
本形態では、好ましくは、液晶が接する電極表面などにはサブミクロン以下の規則性を有する凹凸などができないように、もしくは液晶の配向に影響を与えるような極性基が表面上に存在しないような処理を施すのが良い。例えば、液晶の配向に影響を与えるようなサブミクロンサイズの細かな凹凸などが存在すると、それらは液晶に小さいながらも配向規制力を与えるきっかけとなり、電界による液晶配列が複雑になるだけでなく、その均一性も損なわれるからである。
【0101】
(各画素の構成)
図14(a)、(b)において、アクティブマトリクス基板1aでは、ポリシリコン等からなる走査線20と、アルミニウム等からなる2本のデータ線21a、21bが交差するように格子状に配設され、これらの配線で囲まれた領域内で、第3の駆動用電極4と第2の駆動用電極3とは、交互に並列に配置されている。第2の駆動用電極3は、先述の第1の画素スイッチング素子30aを介してデータ線21aに接続され、第3の駆動用電極4は、先述の第2の画素スイッチング素子30bを介してデータ線21bに接続されている。本形態において、画素スイッチング素子30a、30bはそれぞれ、データ線21の一部としてのソース電極、走査線の一部としてのゲート電極、ドレイン電極201を備えている。このため、ソース電極はデータ線21a、21bに接続され、ゲート電極は走査線20に接続され、ドレイン電極201は第2の駆動用電極3および第3の駆動電極4に接続されている。
【0102】
なお、第2の駆動用電極3と第3の駆動用電極4とは一定の間隔を以って離間されており、また、第3の駆動用電極4と画素スイッチング素子30を構成する各電極および各配線との間は、図14(b)に示すように、層間絶縁膜23などによって絶縁されている。
【0103】
(アクティブマトリクス基板の構成例)
図15は、ガラス基板を用いたアクティブマトリクス基板1aの図14のD−D′における断面図であり、この構成例に基づきアクティブマトリクス基板1aの内側表面上に形成される第2の駆動用電極3、第3の駆動用電極4、および画素スイッチング素子30a、30bについて詳述する。ここに示す例において、画素スイッチング素子30a、30bは、薄膜トランジスタにより構成される。
【0104】
図15に示すアクティブマトリクス基板1aにおいて、1a′は、例えば無アルカリガラスや石英などからなる透明なガラス基板であり、300は、アクティブマトリクス基板1a表面に直接、あるいはガラス基板1a′の表面に形成した下地保護膜(図示せず)を介して表面に減圧CVD法などにより形成されたポリシリコンからなる半導体膜である。半導体膜300は、厚さは約20nm〜約200nm、好ましくは約100nmである。
【0105】
半導体膜300の表面にはCVD法などにより、厚さが約50nm〜約150nmのシリコン酸化膜からなるゲート酸化膜22が形成されている。
【0106】
ゲート酸化膜22の表面には、タンタル膜などからなる走査線20が通っており、この走査線20をマスクとして、約0.1×1013/cm2〜約10×1013/cm2のドーズ量で低濃度の不純物イオン(リンイオン)の打ち込みが行われ、走査線20に対して自己整合的に低濃度のソース領域、および低濃度のドレイン領域を形成した後、走査線20より幅の広いレジストマスクを形成して高濃度の不純物イオン(リンイオン)を打ち込み、高濃度のソース領域301およびドレイン領域302が形成される。ここで、走査線20の真下に位置しているため不純物イオンが導入されなかった部分は、もとの半導体膜のままチャネル領域20bとなる。
【0107】
走査線20の表面側には、CVD法などにより形成された酸化シリコン膜やNSG膜(ボロンやリンを含まないシリケートガラス膜)などからなる第1の層間絶縁膜23が形成され、この第1の層間絶縁膜23は、膜厚が300nm〜1500nm程度である。
【0108】
第1の層間絶縁膜23の表面には、第1の層間絶縁膜23のコンタクトホールを介してソース領域301およびドレイン領域302に電気的に接続するデータ線21a、21b、およびドレイン電極201とが形成されており、これらのデータ線21a、21bおよびドレイン電極201はアルミニウム等で構成される。
【0109】
データ線21a、21bおよびドレイン電極201の表面側に、ペルヒドロポリシラザンまたはこれを含む組成物の塗布膜を焼成した絶縁膜24aが形成され、さらに、この絶縁膜24aの表面には、シリコン酸化膜からなる絶縁膜24bが形成されている。これらの絶縁膜24a、24bによって、第2の層間絶縁膜24が形成されている。
【0110】
第2の層間絶縁膜24のドレイン電極201に対応する部分には、コンタクトホールを介して厚さが約40nm〜約200nmのアルミニウム膜からなる第2の駆動用電極3および第3の駆動用電極4がそれぞれ電気的に接続している。ここで、第2の駆動用電極3と第3の駆動用電極4は一定の間隔を以って絶縁されている。
【0111】
なお、蓄積容量を構成する場合には、半導体膜300においてドレイン側に延設した部分に対して、ゲート酸化膜22を介して対峙するように容量線29を形成すればよい。
【0112】
(アクティブマトリクス基板の別の構成例)
これ以外の構成を図16に説明する。図16は、本発明を適用した反射型電気光学装置において、シリコン基板を用いたアクティブマトリクス基板1aの断面構成を示す図であり、図15に対応する部分の断面図である。なお、図16はマトリクス状に配置されている画素のうち一画素部分の断面を示す。ここに示す例において、画素スイッチング素子30a、30bは、MOSFETにより構成される。
【0113】
図16に示すアクティブマトリクス基板1aにおいて、1a″は単結晶シリコンのようなP型半導体基板、102はこの半導体基板1a″の表面に形成されたP型ウェル領域、103は半導体基板1a″の表面に形成された素子分離用のフィールド酸化膜(いわゆるLOCOS)である。ウェル領域102は、特に限定されないが、マトシクス状に画素が配置されてなる画素領域の共通ウェル領域として形成されている。上記フィールド酸化膜103は選択熱酸化によって500nm〜700nmのような厚さに形成される。
【0114】
このフィールド酸化膜103には一画素ごとに複数の開口部が形成され、開口部の内側中央にはゲート酸化膜(絶縁膜)104bを介してポリシリコンあるいはメタルシリサイド等からなる走査線20が形成されている。この走査線20の両側の基板表面には高不純物濃度のN型不純物導入層(以下、ドーピング層という)からなるソース、ドレイン領域301、302が形成され、画素スイッチング素子30a、30bとしてのMOSFETが構成されている。走査線20は走査線方向(画素行方向)に延在されている。
【0115】
また、フィールド酸化膜103に形成された他の開口部の内側の基板表面にはP型ドーピング領域108が形成されているとともに、このP型ドーピング領域108の表面には絶縁膜109bを介してポリシリコンあるいはメタルシリサイド等からなる電極109aが形成されている。この電極109aとP型ドーピング領域108とを利用して蓄積容量が構成されている。
【0116】
なお、電極109aはMOSFETの走査線20となるポリシリコンあるいはメタルシリサイド層と同一工程にて形成できる。また、電極109aの下の絶縁膜109bはゲート絶縁膜104bとなる絶縁膜と同一工程にて形成することができる。
【0117】
絶縁膜104b、109bは熱酸化によって上記開口部の内側において半導体基板表面に400〜80nmのような厚さに形成される。データ線21a、21bおよび電極109aは、ポリシリコン層を100nm〜200nmのような厚さに形成し、その上にMoあるいはWのような高融点金属のシリサイド層を100nm〜300nmのような厚さに形成した構造とされている。ソース、ドレイン領域301、302は、走査線20をマスクとしてその両側の基板表面にN型不純物をイオン打ち込みで注入することで自己整合的に形成される。
【0118】
データ線21a、21b、および電極109aからフィールド酸化膜103上にかけては第1の層間絶縁膜106が形成されている。この第1の絶縁膜106上には、MOSFETのドレイン領域302と蓄積容量の電極109aとを接続するとともに、MOSFETのドレイン領域302と第2の駆動用電極3および第3の駆動用電極4とをそれぞれ接続するアルミニウム膜からなるドレイン電極107bが形成されている。
【0119】
データ線21a、21bおよびドレイン電極107bから層間絶縁膜106上にかけては第2の層間絶縁膜111が形成され、この第2の層間絶縁膜111上にはアルミニウムを主体とする二層目のメタル層112からなる遮光膜が形成されている。この遮光膜を構成する二層目のメタル層112は、画素領域の周囲に形成される駆動回路等の周辺回路において素子間の接続用配線を構成するメタル層と同一のメタル層で形成することができる。従って、本形態でも、メタル層112のみを形成するために工程を追加する必要がなく、プロセスが簡略化される。また、メタル層112は、ドレイン電極107bに対応する位置に、第2の駆動用電極3と画素スイッチング素子30a、30bとしてのMOSFETを電気的に接続するための柱状の接続プラグ115を貫通させるための開口部が形成され、それ以外は画素領域全面を覆うように形成される。これによって、基板上方から入射する光をほぼ完全に遮断して画素スイッチング素子30a、30B(チャネル領域およびウェル領域)を光が通過してリーク電流が流れるのを防止することができる。
【0120】
この実施形態においては、遮光膜112の上に第3の層間絶縁膜113が形成され、この第3の層間絶縁膜113の上に、第2の駆動用電極3および第3の駆動用電極4が形成されている。これらの第2の駆動用電極3および第3の駆動用電極4はアルミニウムを主体としたメタル層で構成されている。そして、遮光膜112に形成された開口部に対応してその内側に位置するように、第3の層間絶縁膜113および第2の層間絶縁膜111を貫通するコンタクトホール116が設けられており、このコンタクトホール116内にドレイン電極107bと第2の駆動用電極3および第3の駆動用電極4とを電気的に接続するタングステン等の高融点金属からなる柱状の接続プラグ115が充填されている。
【0121】
ここで、メタル層で構成されている第2の駆動用電極3および第3の駆動用電極4は、対向基板1bに反射面を向けた反射手段を兼ねた電極である。また、アクティブマトリクス基板1aの外側表面に偏光板が不要である点が透過型電気光学装置と異なっている。
【0122】
(電気光学装置の動作)
次に、図6および図7を参照して、本形態の電気光学装置の基本となる制御方法および制御状態、表示方式について説明する。
【0123】
以下の説明においても、第1の駆動用電極5、第2の駆動用電極3および第3の駆動用電極4に印加する電圧をそれぞれVc、Vd、Vsとする。ここで、Vcは一定電圧になっている一方、Vd、Vsには前述したTFTやMOSFET等のスイッチング素子30a、30bを介して印加される信号SA1、SA2・・・SB1、SB2・・・によって電位が変えられるようになっている。
【0124】
電極形状について、本実施の形態においては、棒状の駆動用電極3と駆動用電極4が交互に並列配置された形状になっているが、基本動作については、図6、図7に示すような環状電極の場合と同一である。ただし電界E1の向きが、電極の配置方向に一様に向く構造となる点が異なる。
【0125】
第1の制御状態は、下式
Vd<Vc<Vs
もしくは
Vs<Vc<Vd
を満たす電圧をそれぞれの電極に印加した状態で、第3の駆動用電極4から第2の駆動用電極3および第1の駆動用電極5に向かって、またはその逆向きに電界E1が発生する。例えば、正の誘電率異方性を持つネマティック液晶の場合、分子の長軸がこの電気力線に沿って配列する(第1の配向状態)。
【0126】
第2の制御状態は、下式
Vd=Vs≠Vc
を満たす電圧をそれぞれの電極に印加した状態で、第2の駆動用電極3および第3の駆動用電極4から第1の駆動用電極5に向かって電界E2が発生する。第一の状態とは異なり液晶分子の長軸はこの電気力線に沿って配列する(第2の配向状態)。
【0127】
従って、しきい電圧が2.5V程度の一般的なネマティック液晶を用いた場合には、Vcを基準電位(0V)に設定し、Vd、Vsの大きさをそれぞれ±2.5Vの間で制御することによりアナログ式に階調駆動を行うことができる。
【0128】
ここで、図7(a)にあるような第1の配向状態での電界の強さが第2の電極と第3の電極の間の電位差、Vd−Vsによって決まるのに対し、図7(b)のような第2の配向状態での電界の強さは第1の電極と第2、第3の電極の間の電位差、Vc−Vd(またはVc−Vs)によって決まる。よって、上記に説明したようにVcをVdとVsの中間電位に設定した場合には、第1の配向状態での電界の強さを第2の配向状態における電界の強さよりも大きくすることができる。このように、本実施形態の場合には、実施の形態1に比べて、図7(a)に示す第1の状態の電界を強く出来るという特徴がある。また、Vd、Vsの電圧の極性を、第1の駆動用電極5の電位Vcに対して、走査線毎、またはフレーム毎に反転させることで、ライン反転、フレーム反転などの駆動も容易に実現できるという特徴もある。
【0129】
また、従来の構成による電気光学装置では、電界の保持が不充分な場合、フリッカーの発生などの表示上の問題点が発生したが、本実施の形態にあるような構成では、スイッチング素子につながる駆動用電極3、駆動用電極4の2つの電極の保持特性がほぼ同等ならば、たとえ電荷がリークしても電界の方向が変化しないので、液晶の配向が大きく乱れることもなく、よってフリッカーも発生しない。
【0130】
さらに、本形態では、第2の駆動用電極3および第3の駆動用電極4のそれぞれに信号入力が可能であるため、以下の駆動方式を採用できる。すなわち、Vcとして0Vを準備するとともに、Vd用およびVs用として±Vselを準備し、最初の1フレーム目においてVd≠Vsに設定するときには、VdおよびVsとしてそれぞれ+Vselおよび−Vselを用い、次のフレームにおいてVd≠Vsに設定するときには、Vd用およびVs用としてそれぞれ+Vselおよび−Vselを使用する。このとき、Vd≠Vsに設定したパルス幅と、Vd=Vsに設定したパルス幅の比を変えてPWM駆動を行えば、たとえば、1水平走査ライン毎に極性を1フィールド毎に反転させることができる。
【0131】
[電子機器への適用例]
次に、本発明に係る電気光学装置100を備えた電子機器について説明する。
【0132】
(投射型表示装置の構成例)
図17は、本発明に係る透過型の電気光学装置をライトバルブとして備えた液晶プロジェクタの要部を平面的に見た概略構成図である。本発明の電気光学装置は画素の大きさが小さく、画素密度が非常に高い電気光学装置にたいして特に有効なので、液晶プロジェクタに搭載されるライトバルブに用いられることで特に効果を発揮することができる。
【0133】
本実施例で説明した透過型の電気光学装置を使った場合のプロジェクタは、光源部1010と、ダイクロイックミラー1040と、反射ミラー1050と、リレーレンズ1060と、本発明の電気光学装置からなる反射型液晶ライトバルブ1070と、クロスダイクロイックプリズム1080と、投射レンズからなる投射光学系1090とで概略構成されている。
【0134】
光源部1010はメタルハライド等のランプ1020とランプの光を反射するリフレクタ1030とからなる。
【0135】
光源部1010から出射された白色光束のうち青色光と緑色光が第1のダイクロイックミラー1040aで反射される。一方、赤色光はダイクロイックミラー1040aを透過し、反射ミラー1050cで反射されて、赤色光用液晶ライトバルブ1070Rに入射する。
【0136】
第1のダイクロイックミラー1040aにて反射された色光のうち緑色光が第2のダイクロイックミラー1040bで反射され、緑色光用液晶ライトバルブ1070Gに入射する。
【0137】
一方、第2のダイクロイックミラー1040bも透過した青色光は、反射ミラー1050a、1050bで反射されて、青色光用液晶ライトバルブ1070Bに入射する。このとき、青色光に対しては、長い光路による光損失を防ぐため、入射レンズ1060a、リレーレンズ1060b、出射レンズ1060cを含むリレーレンズ系からなる導光手段1065が設けられている。
【0138】
各ライトバルブにより変調された3つの色光はクロスダイクロイックプリズム1080に入射する。このプリズムは、4つの直角プリズムが貼り合わされ、その内面に赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが十字状に形成されている。これらの誘電体多層膜によって3つの色光が合成されて、カラー画像を表す光が形成される。合成された光は、投射光学系である投射レンズ1090によってスクリーン1095上に投射され、画像が拡大されて表示される。
【0139】
このように照度の均一化を図るためにインテグレータレンズ系を用いているような投射装置の場合、電気光学装置に入射する光は平行ではなく、発散成分を多く含んだ光束となりやすい。このとき電気光学装置にはさまざまな角度から光が入射するので、コントラストを上げるためには、表示特性の角度依存性を小さくすることが重要である。そのため先に説明した表示特性の角度依存性を小さくできる電気光学装置を用いることは非常に有効な手段となる。
【0140】
(投射型表示装置の別の構成例)
図18は本発明にかかる反射型電気光学装置をライトバルブとして備えた液晶プロジェクタの要部を平面的に見た概略構成図である。
【0141】
本実施例で説明した反射型の電気光学装置を使った場合のプロジェクタは、偏光照明装置1100と、偏光ビームスプリッタ1140と、ダイクロイックミラー1160と、本発明の電気光学装置からなる反射型液晶ライトバルブ1170と、投射レンズからなる投射光学系1180とで概略構成されている。
【0142】
光源部1110から出射されたランダムな偏光光束は、インテグレータレンズ1120により複数の中間光束に分割された後、第2のインテグレータレンズを光入射側に有する偏光変換素子1130により偏光方向がほぼ揃った一種類の偏光光束(S偏光光束)に変換されてから偏光ビームスプリッタ1140に至るようになっている。偏光変換素子1130から出射されたS偏光光束は、偏光ビームスプリッタ1140のS偏光光束反射面1150によって反射され、反射された光束のうち、青色光(B)の光束がダイクロイックミラー1160aの青色光反射層にて反射され、反射型液晶ライトバルブ1170Bによって変調される。また、ダイクロイックミラー1160aの青色光反射層を透過した光束のうち、赤色光(R)の光束はダイクロイックミラー1160bの赤色光反射層にて反射され、反射型液晶ライトバルブ1170Rによって変調される。
【0143】
一方、ダイクロイックミラー1160bの赤色光反射層を透過した緑色光(G)の光束は反射型液晶ライトバルブ1170Gによって変調される。このようにして、それぞれの反射型液晶ライトバルブ1170R、1170G、1170Bによって変調された光束はダイクロイックミラー1160a、1160bによって合成され、ライトバルブで変調を受け偏光方向が変化した光束成分のみが偏光ビームスプリッタ1140を投射レンズ方向に透過し、スクリーン1190に投射される。
【0144】
(別の電子機器への使用例)
図19は本発明にかかる透過型電気光学装置と凹面鏡を備えた頭部搭載型ディスプレイ(HMD:Head Mount Display)の要部を平面的に見た概略構成図である。
【0145】
本実施例のHMD2000の光学系は、光源2040と、本発明にかかる電気光学装置2010と、ハーフミラー2020と、凹面鏡2030とで概略構成される。
【0146】
光源から出射された光は、透過型の電気光学装置2010により透過または吸収の制御を受けた後、ハーフミラー2020により反射され、凹面鏡2030に到達する。観察者はこの凹面鏡2030に映し出された映像をハーフミラー2020を介して直視することができる構造となっている。
【0147】
HMDのような小型の電子機器に関しては、搭載される電気光学装置も当然小型のものに限られ画素ピッチも必然的に小さくなるため、補助電極を用いて画素周辺の電界を積極的に利用する本発明を適用すると効果的である。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る電気光学装置の基本的な構成を模式的に示す等価回路図である。
【図2】(a)は、図1に示す電気光学装置の一例をそのアクティブマトリクス基板上に形成された各構成要素と共に対向基板の側から見た平面図であり、(b)は、図2(a)のH−H′断面図である。
【図3】(a)は、図1に示す電気光学装置の単位画素における各駆動用電極の位置関係などを示す平面図、(b)は、図3(a)のA−A′断面を模式的に示す説明図である。
【図4】図3(a)のB−B′における断面図である。
【図5】図1に示す電気光学装置において、反射電極を形成したアクティブマトリクス基板の断面構成を示す図であり、図4に対応する部分の断面図である。
【図6】図1に示す電気光学装置における単位画素の電極構造を示す平面図である。
【図7】図1に示す電気光学装置における第1の制御状態(第1の配向状態)および第2の制御状態(第2の配向状態)を示す断面図である。
【図8】図1に示す電気光学装置における単位画素の他の電極構造を示す平面図である。
【図9】図1に示す電気光学装置における単位画素のさらに別の電極構造(立体的な補助電極)における制御状態を表す断面図である。
【図10】図1に示す電気光学装置における第3の駆動用電極の厚さとコントラストの関係を示すグラフである。
【図11】図1に示す電気光学装置における単位画素のさらに別の電極構造を示す平面図である。
【図12】本発明の実施の形態2に係る電気光学装置の基本的な構成を模式的に示す等価回路図である。
【図13】(a)は、図12に示す電気光学装置の一例をそのアクティブマトリクス基板上に形成された各構成要素と共に対向基板の側から見た平面図であり、(b)は、図13(a)のH−H′断面図である。
【図14】(a)は、図12に示す電気光学装置の単位画素における各駆動用電極の位置関係などを示す平面図、(b)は、図14(a)のC−C′断面を模式的に示す説明図である。
【図15】図14のD−D′における断面図である。
【図16】図12に示す電気光学装置において、反射電極を形成したアクティブマトリクス基板の断面構成を示す図であり、図15に対応する部分の断面図である。
【図17】本発明に係る透過型電気光学装置をライトバルブとして備えた液晶プロジェクタの概略構成図である。
【図18】本発明に係る反射型電気光学装置をライトバルブとして備えた液晶プロジェクタの概略構成図である。
【図19】本発明に係る電気光学装置を備えた凹面鏡型のHMDの概略構成図である。
【図20】TNモードの表示原理を示す断面図である。
【符号の説明】
1a アクティブマトリクス基板(第2の基板)
1b 対向基板(第1の基板)
2a、2b 偏光板
3 第2の駆動用電極
4 第3の駆動用電極
5 第1の駆動用電極
6 シール材
7 位相差フィルム
8 カラーフィルタ
10 液晶
20 走査線
21、21a、21b データ線
30、30a、30b 画素スイッチング素子
100 電気光学装置

Claims (12)

  1. 第1の基板と第2の基板との間に液晶が挟持されてなり、前記第1の基板及び前記第2の基板には前記液晶を第1の配向状態と該第1の配向状態とは異なる第2の配向状態とに制御するための電極群が形成されてなる電気光学装置において、
    前記電極群は、単位画素あたり、少なくとも
    前記第1の基板において前記第2の基板と対向する側の表面に形成された第1の駆動用電極と、
    前記第2の基板において前記第1の基板と対向する側の表面に前記第1の駆動用電極と対向して形成された第2の駆動用電極と、
    前記第2の基板において前記第1の基板と対向する側の表面に前記第2の駆動用電極と絶縁されて形成された第3の駆動用電極と、を含み、
    前記液晶は、正又は負の誘電率異方性を持つネマティック液晶であり、
    前記第1の基板と前記液晶が接する表面及び前記第2の基板と前記液晶が接する表面は、いずれも前記液晶に電界が印加されていない状態で前記液晶に配向規制力を発生しない表面状態である
    ことを特徴とする電気光学装置。
  2. 請求項1に記載の電気光学装置において、前記の各電極に印加される信号に基づいて前記液晶が前記第1の配向状態と前記第2の配向状態とに制御されることを特徴とする電気光学装置。
  3. 請求項1又は2に記載の電気光学装置において、前記第2の駆動用電極及び前記第3の駆動用電極に印加される電圧をそれぞれVd、Vsとしたとき、Vd、Vsが下式
    Vd≠Vs
    を満たす関係にあるときには前記液晶は第1の配向状態に制御され、
    Vd、Vsが下式
    Vd=Vs
    を満たす関係にあるときには前記液晶は前記第2の配向状態に制御されることを特徴とする電気光学装置。
  4. 請求項1又は2に記載の電気光学装置において、前記第1の駆動用電極、前記第2の駆動用電極及び前記第3の駆動用電極に印加される電圧をそれぞれVc、Vd、Vsとしたとき、Vc、Vd、Vsが下式
    Vd=Vc≠Vs
    を満たす関係にあるときには、前記液晶の分子が前記基板面と略平行な第1の配向状態に制御され、
    Vc、Vd、Vsが下式
    Vd=Vs≠Vc
    を満たす関係にあるときには、前記液晶の分子が基板面に対してほぼ垂直方向となる前記第2の配向状態に制御されることを特徴とする電気光学装置。
  5. 請求項1乃至4のいずれか一項に記載の電気光学装置において、前記第3の駆動用電極は、前記単位画素内で前記第2の駆動用電極の周囲を囲むように形成されていることを特徴とする電気光学装置。
  6. 請求項1乃至5のいずれか一項に記載の電気光学装置において、前記第2の駆動用電極と前記第3の駆動用電極は、前記単位画素内で交互に並列配置されていることを特徴とする電気光学装置。
  7. 請求項1乃至5のいずれか一項に記載の電気光学装置において、前記第2の駆動用電極及び前記第3の駆動用電極は、前記単位画素内で複数に分割されていることを特徴とする電気光学装置。
  8. 請求項1乃至7のいずれか一項に記載の電気光学装置において、前記第3の駆動用電極、又は該第3の駆動用電極の一部は、前記液晶の層の厚さの3分の1以上の厚さを有することを特徴とする電気光学装置。
  9. 請求項1乃至8のいずれか一項に記載の電気光学装置において、前記第2の駆動用電極は、前記単位画素の各々に形成されたスイッチング素子を介して信号が供給されることを特徴とすることを特徴とする電気光学装置。
  10. 請求項1乃至8のいずれか一項に記載の電気光学装置において、前記第2の駆動用電極は、前記単位画素の各々に形成された第1のスイッチング素子を介して信号が供給され、前記第3の駆動用電極は、前記単位画素の各々に形成された第2のスイッチング素子を介して信号が供給されることを特徴とすることを特徴とする電気光学装置。
  11. 請求項9又は10に記載の電気光学装置において、前記第3の駆動用電極は、前記スイッチング素子に接続する配線を、絶縁膜を介して覆うように形成されていることを特徴とする電気光学装置。
  12. 請求項1乃至11のいずれか一項に記載の電気光学装置を備えてなることを特徴とする電子機器。
JP2000048047A 1999-02-24 2000-02-24 電気光学装置および電子機器 Expired - Fee Related JP4019593B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048047A JP4019593B2 (ja) 1999-02-24 2000-02-24 電気光学装置および電子機器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-46572 1999-02-24
JP4657299 1999-02-24
JP2000048047A JP4019593B2 (ja) 1999-02-24 2000-02-24 電気光学装置および電子機器

Publications (2)

Publication Number Publication Date
JP2000310787A JP2000310787A (ja) 2000-11-07
JP4019593B2 true JP4019593B2 (ja) 2007-12-12

Family

ID=26386670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048047A Expired - Fee Related JP4019593B2 (ja) 1999-02-24 2000-02-24 電気光学装置および電子機器

Country Status (1)

Country Link
JP (1) JP4019593B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833498B1 (ko) 2010-10-29 2018-03-02 삼성디스플레이 주식회사 액정 표시 장치
JP5286438B2 (ja) * 2012-10-18 2013-09-11 三菱電機株式会社 液晶表示装置
CN115337091B (zh) * 2022-10-19 2023-02-21 成都美创医疗科技股份有限公司 一种低温等离子体电极组件、手术内切刀及手术***

Also Published As

Publication number Publication date
JP2000310787A (ja) 2000-11-07

Similar Documents

Publication Publication Date Title
US10310337B2 (en) Liquid crystal display apparatus
KR101171414B1 (ko) 액정 디스플레이 디바이스
US7623202B2 (en) Liquid crystal display device
US7277140B2 (en) Image shifting device, image display, liquid crystal display, and projection image display
JP2004354407A (ja) 液晶表示装置
US8698988B2 (en) Liquid crystal device having viewing angle control pixels
US7800570B2 (en) LCD device capable of controlling a viewing angle and method for driving the same
JPH11148078A (ja) アクティブマトリクス型液晶表示装置
JPH11149096A (ja) 反射型液晶表示装置
TW200405225A (en) Electro-optical apparatus, drive circuit of electro-optical apparatus, and electronic machine
JP2001222027A (ja) 電気光学装置および投射型表示装置
JP5906138B2 (ja) 液晶表示装置
JPH11258624A (ja) 液晶表示装置
US7609340B2 (en) Liquid crystal display cell
US20080013016A1 (en) Liquid Crystal Display Device, Driving Method Thereof And Mobile Station Having The Same
JP4019593B2 (ja) 電気光学装置および電子機器
JP2885206B2 (ja) 液晶表示装置
KR100746283B1 (ko) 액정표시장치
KR20010011946A (ko) 멀티 도메인 액정표시소자
CN1312513C (zh) 液晶装置及其制造方法以及电子设备
KR20030042641A (ko) 도전성 기둥을 갖는 액정표시장치
JP3835089B2 (ja) 投射型カラー表示装置
KR101023718B1 (ko) 액정표시장치 및 그의 제조방법
JP2008046337A (ja) 液晶表示装置及びプロジェクターシステム
KR20090052222A (ko) 액정표시장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees