JP4016525B2 - 半導体の製造方法 - Google Patents

半導体の製造方法 Download PDF

Info

Publication number
JP4016525B2
JP4016525B2 JP08477699A JP8477699A JP4016525B2 JP 4016525 B2 JP4016525 B2 JP 4016525B2 JP 08477699 A JP08477699 A JP 08477699A JP 8477699 A JP8477699 A JP 8477699A JP 4016525 B2 JP4016525 B2 JP 4016525B2
Authority
JP
Japan
Prior art keywords
chamber
semiconductor
window
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08477699A
Other languages
English (en)
Other versions
JP2000277452A (ja
Inventor
清一郎 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP08477699A priority Critical patent/JP4016525B2/ja
Publication of JP2000277452A publication Critical patent/JP2000277452A/ja
Application granted granted Critical
Publication of JP4016525B2 publication Critical patent/JP4016525B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は絶縁体上に形成される薄膜トランジスタ、液晶表示装置の表示画素または液晶駆動回路の構成素子として利用される薄膜トランジスタを製造する製造装置に関するものである。
【0002】
【従来の技術】
多結晶シリコン等の半導体膜は薄膜トランジスタ(以下本願明細書中ではTFTと称する)や太陽電池に広く利用されている。とりわけ多結晶シリコン( poly−Si)TFTは高移動度化が可能でありながらガラス基板のように透明で絶縁性の基板上に作成できるという特徴を生かして、液晶表示装置(LCD)や液晶プロジェクターなどの光変調素子あるいは液晶駆動用内蔵ドライバーの構成素子として広く用いられ、新しい市場の創出に成功している。
【0003】
電界効果型トランジスタであるTFTの性能は、当然のことながらゲート絶縁膜の膜質、その能動部を構成する半導体膜の膜質、そしてこれらゲート絶縁膜と半導体膜との界面の善し悪しによって決定されている。いうまでもなく高品質の半導体膜、ゲート絶縁膜、および清浄な界面が得られれば、それに応じた高性能のTFTが得られる。逆にこれらの要件の全てが同時に満たされていなければ高性能のTFTは決して実現できない。
【0004】
ガラス基板上に高性能なTFTを作成する方法としては高温プロセスと呼ばれる製造方法がすでに実用化されている。TFTの製造方法として工程最高温度が1000℃程度の高温を用いるプロセスを一般的に高温プロセスと呼んでいる。高温プロセスの特徴は、シリコンの固相成長により比較的良質のpoly−Siを作成する事ができることと、熱酸化により良質のゲート絶縁膜(一般的に二酸化珪素)および清浄なpoly−Siとゲート絶縁膜の界面を形成できることである。高温プロセスではこれらの特徴により、高移動度でしかも信頼性の高い高性能TFTを安定的に製造することができる。しかし、高温プロセスを用いるためにはTFTを作成する基板が1000℃以上の高温の熱工程に耐え得る必要がある。この条件を満たす透明な基板は現在のところ石英ガラスしかない。このため昨今のpoly−Si TFTは総て高価で小さい石英ガラス基板上に作成されており、コストの問題上大型化には向かないとされている。また、固相成長法では十数時間という長時間の熱処理が必要であり、生産性が極めて低いとの課題がある。また、この方法では基板全体が長時間加熱されている事に起因して基板の熱変形が大きな問題と化し実質的に安価な大型ガラス基板を使用し得ないとの課題が生じており、これもまた低コスト化の妨げとなっている。
【0005】
一方、高温プロセスが持つ上記欠点を解消し、尚且つ高移動度のpoly−Si TFTを実現しようとしているのが低温プロセスと呼ばれる技術である。比較的安価な耐熱性ガラス基板を使うために、工程最高温度としておおむね600℃以下のpoly−Si TFT製造プロセスを一般的に低温プロセスと呼ぶ。低温プロセスでは発振時間が極短時間のパルスレーザーを用いてシリコン膜の結晶化をおこなう技術が広く使われている。レーザー結晶化とは、ガラス基板上のアモルファスシリコン膜に高出力のパルスレーザー光を照射することによって瞬時に溶融させ、これが凝固する過程で結晶化する性質を利用する技術である。最近ではガラス基板上のアモルファスシリコン膜にエキシマレーザービームをくり返し照射しながらスキャンすることによって大面積のpoly−Si膜を作成する技術が広く使われるようになった。また、ゲート絶縁膜としてはプラズマCVDをもちいた成膜方法で比較的高品質の二酸化珪素(SiO2)膜が成膜可能となり実用化への見通しが得られるほどになった。これらの技術によって、現在では一辺が数十センチほどもある大型のガラス基板上にpoly−Si TFTが作成可能となっている。
【0006】
しかし、この低温プロセスで問題となるのはレーザー結晶化したpoly−Si膜は高い欠陥密度を有しており、TFTの移動度を大きく左右する要因となることである。レーザー結晶化で発生した欠陥の密度は特にレーザー結晶化の際のレーザー照射方法の制御に強く依存する。昨今の大型基板対応のレーザー結晶化装置では図2に示すようなライン状にレーザービームを整形し半導体薄膜にレーザー照射する方法が一般的となりつつある。これは液晶表示装置などの大面積基板上にpoly−Si膜を短いタクトタイムで形成するための実用性を最大限に重視したものである。特にこの場合には限られたパルスエネルギーしか発生できないレーザービームの長尺方向の長さ201を確保するために短軸方向のビーム幅202は数10μmから数100μmと大変小さいものがほとんどである。このラインビームを図2矢印(203)方向のように移動させながらパルス照射する方法がとられている。ただし、各パルスの照射領域に境目が発生してはいけないので、通常各パルス毎の照射領域を90%程度互いにオーバーラップさせながらスキャンしレーザー照射をおこなう。このため、レーザー結晶化装置では基板上の半導体薄膜とライン上に集光したレーザービームの位置をレーザー照射パルス毎に相対的に数ミクロンから数十ミクロンという高い精度でずらしながら基板全面の結晶化をおこなうのである。
【0007】
レーザー結晶化はシリコン薄膜をパルスレーザーでごく短時間に加熱し、同薄膜が融点以上で溶けた後、冷却過程で結晶化する性質を利用したものである。通常このレーザー結晶化は不純物の膜中への混入防止や表面状態制御を目的として真空中で行われるのであるが、前述のようにシリコン膜が融点に達するわけであるから膜の温度は1000℃以上に上昇するわけである。真空中でこのような処理をおこなうと熱エネルギーを有するシリコン原子やクラスターが膜表面から脱離する。溶融時間はせいぜい数100nsecの短時間であるから脱離するシリコンの量は微量であるが、前述のように高い重ね率で大面積シリコン薄膜の結晶化をおこなう量産装置ではレーザー光導入窓に前述の熱脱離したシリコンが付着しレーザー光の透過率を次第に変化させてしまうという問題がある。窓に付着したシリコンは微量でも紫外光に対する光学的影響は甚大で、たとえば400mmラ400mmの基板を10枚程度処理すると透過率が数%低下してしまう。この問題を回避するために従来の技術としては特開平11−26393号公報がある。これは図1に示すようにレーザー光導入窓にガスを吹き付けながら処理をおこなうことによって、シリコン粒子の付着を防止するものである。しかしながら前述のように熱速度で飛来してくる粒子は通常の装置構造における窓までの距離10cm程度をわずか数μsecで通過してしまい、ガスを圧力によって吹き付ける程度では減圧下では衝突確率が極めて低くほとんど効果が望めないのである。
【0008】
このため照射レーザー光の実効的エネルギーが経時的に変化し、結晶化膜の品質のバラツキを招き、歩留まり低下の原因となっている。また、装置のメンテナンスに要する時間が必要となり、稼働率低下ひいては製品のコストを引き上げることになってしまうのである。
【0009】
【発明が解決しようとする課題】
そこで本発明は上述の諸課題を鑑み、真空中で光を利用した熱処理をおこなう半導体製造装置で問題となる光導入窓の透過率変化を防止し、特にはレーザー結晶化poly−Si膜のばらつきを低減でき、高い稼働率を持った半導体製造装置を与えるものである。
【0010】
【課題を解決するための手段】
本発明の半導体の製造方法は、レーザー光を導入する窓が設けられ内部が減圧されるチャンバー内に、シリコンで構成された半導体膜を有する基板を収容し、前記チャンバー内に収容した前記基板を加熱しつつ前記窓を冷却した状態で、前記チャンバー内に水素プラズマを発生させながら、前記半導体膜に、前記窓を介して前記レーザー光を照射する工程を含むことを特徴とする。
【0011】
上記の半導体の製造方法において、前記半導体膜を前記窓側に向けた状態で、前記基板を前記チャンバー内に収容してもよい。
【0012】
上記の半導体の製造方法において、前記窓の冷却では、前記窓を室温に保ってもよい。
【0013】
上記の半導体の製造方法において、前記窓を冷却水で冷却してもよい。
【0014】
上記の半導体の製造方法において、前記基板の加熱では、前記基板を250℃に加熱してもよい。
【0015】
上記の半導体の製造方法において、前記基板が収容された前記チャンバー内を真空状態にしてから、前記チャンバー内に前記水素プラズマを発生させてもよい。
【0016】
上記の半導体の製造方法において、前記チャンバーには、前記チャンバーから立設され、前記窓を支持する管状の支持台と、前記支持台のまわりにコイル状に巻かれているとともに高周波電源に接続された放電電極と、水素ガスを前記チャンバー内に導入する導入口とが設けられており、前記チャンバー内に前記導入口から前記水素ガスを導入し、前記放電電極に前記高周波電源から交流電圧を印加して、前記水素プラズマを発生させてもよい。
【0017】
上記の半導体の製造方法において、前記チャンバーには、高周波電源に接続されているとともに、前記チャンバー内に設けられる平行平板型の放電電極と、水素ガスを前記チャンバー内に導入する導入口とが設けられており、前記チャンバー内に前記導入口から前記水素ガスを導入し、前記放電電極に前記高周波電源から交流電圧を印加して、前記水素プラズマを発生させてもよい。
【0018】
上記の半導体の製造方法において、前記チャンバー内に導入された前記水素ガスを1Torrの圧力に調整してから、前記放電電極に前記交流電圧を印加してもよい。
【0019】
上記の半導体の製造方法において、前記チャンバー内に導入する前記水素ガスの流量をガス流量制御装置で制御することで、前記水素ガスの前記圧力を調整してもよい。
【0024】
【発明の実施の形態】
以下、本発明による実施の形態の一例を図4に基づいて詳述する。
【0025】
はじめに半導体薄膜(403)について説明する。本発明が適用される半導体膜としてはシリコン(Si)やゲルマニウム(Ge)等の四族単体の半導体膜の他に、シリコン・ゲルマニウム(SiGe1−x :0<x<1)やシリコン・カーバイド(Si1−x :0<x<1)やゲルマニウム・カーバイド(Ge1−x :0<x<1)等の四族元素複合体の半導体膜、ガリウム・ヒ素(GaAs)やインジウム・アンチモン(InSb)等の三族元素と五族元素との複合体化合物半導体膜、またはカドミウム・セレン(CdSe)等の二族元素と六族元素との複合体化合物半導体膜等がある。或いはシリコン・ゲルマニウム・ガリウム・ヒ素(SiGeGaAs:x+y+z=1)と云った更なる複合化合物半導体膜やこれらの半導体膜にリン(P)、ヒ素(As)、アンチモン(Sb)などのドナー元素を添加したN型半導体膜、或いはホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)等のアクセプター元素を添加したP型半導体膜に対しても本発明は適応可能である。これら半導体膜はAPCVD法やLPCVD法、PECVD法等のCVD法、或いはスパッター法等や蒸着法等のPVD法で形成する。半導体膜としてシリコン膜を用いる場合、LPCVD法では基板温度を400℃程度から700℃程度としてジシラン(Si)などを原料として堆積し得る。PECVD法ではモノシラン(SiH)などを原料として基板温度が100℃程度から500℃程度で堆積可能である。スパッター法を用いる時には基板温度は室温から400℃程度である。この様に堆積された半導体膜の初期状態(as−deposited状態)は非晶質や混晶質、微結晶質、或いは多結晶質等様々な状態があるが、本願発明にあっては初期状態はいずれの状態であっても構わない。尚本願明細書中では非晶質の結晶化のみならず、多結晶質や微結晶質の再結晶化をも含めて総て結晶化と呼ぶ。半導体膜の膜厚はそれをTFTに用いる時には20nm程度から100nm程度が適している。
【0026】
下地絶縁膜402と半導体膜403を形成した後、この半導体膜をレーザー照射によって結晶化する。通常、 LPCVD法、PECVD法等のCVD法で堆積させたシリコン膜表面は自然酸化膜で覆われていることが多い。従って、レーザー光を照射する前にこの自然酸化膜を除去する必要がある。このためには弗酸溶液に浸してウエットエッチングする方法や、フッ素ガスを含んだプラズマ中でのドライエッチング等がある。
【0027】
次に半導体膜のついた基板をレーザー照射チャンバー(408)にセットする。レーザー照射チャンバーは一部分が石英の窓(406)によってできており、チャンバーを真空に排気した後この石英窓からレーザー光(407)を照射する。
【0028】
ここでレーザー光について説明する。レーザー光は半導体薄膜(403)表面で強く吸収され、その直下の絶縁膜(402)にはほとんど吸収されないことが望まれる。従ってこのレーザー光としては紫外域またはその近傍の波長を持つエキシマレーザー、アルゴンイオンレーザー、YAGレーザー高調波等が好ましい。また、半導体薄膜を高温に加熱すると同時に基板へのダメージを防ぐためには大出力でしかも極短時間のパルス発振であることが必要となる。従って、上記レーザー光の中でも特にキセノン・クロライド(XeCl)レーザー(波長308nm)やクリプトンフロライド(KrF)レーザー(波長248nm)等のエキシマ・レーザーが最も適している。 次にこれらのレーザー光の照射方法について図3にそって述べる。レーザーパルスの強度半値幅は10ns程度から500ns程度の極短時間である。レーザー照射は基板(300)を室温(25℃)程度から400℃程度の間とし、背景真空度が10−4Torr程度から10−9Torr程度の真空中にて行う。図3に示すように、照射領域形状を幅100μm程度(302)以上で長さが数10cm以上のライン状(301)とし、このライン状レーザー光を走査して結晶化を進めても良い。この場合各照射毎のビームの幅方向の重なり(303と304の重なり)はビーム幅(302)の5%程度から95%程度とする。ビーム幅が100μmでビーム毎の重なり量が90%で有れば、一回の照射毎にビームは10μm進むので同一点は10回のレーザー照射を受ける事となる。通常半導体膜を基板全体で均一に結晶化させるには少なくとも5回程度以上のレーザー照射が望まれるので、照射毎のビームの重なり量は80%程度以上が求められる。高い結晶性の多結晶膜を確実に得るには同一点が10回程度から30回程度の照射が行われる様に重なり量を90%程度から97%程度へと調整するのが好ましい。
【0029】
このように高い重ね率でレーザー照射を繰り返してもレーザー導入窓406の光透過率が低下しないように本発明の半導体製造装置では真空容器408の内部または外部に放電電極を有する。真空中に設置された基板401上のシリコン膜403にレーザー照射をおこない基板全面の結晶化を終えた後、レーザー導入用の窓406直下に放電電極420を移動させる。放電電極は平行平板型であれば、その電極間隔がレーザー光の光路を挟むような位置にて使用するのが効果的である。また、このときの電極間隔は1cm以下の場合がエッチングレートがはやく効果的である。ガス流量をマスフローコントローラ423によって制御しながら、放電電極に高周波電源422により交流電圧を印加し放電をおこなう。ここで放電は直流電圧によっておこなってもかまわない。ガス424としてはH、SF、CFなどを利用することができる。これらのガスを1Torr程度の圧力に調整し、放電をおこなうことによってレーザー導入窓の内側に付着したシリコンをエッチングする。また、放電用の電極は真空容器の外部に設置してもよい。特にこの場合は放電電極をリング状の形状にし先端を真空容器に接触させた誘導結合型の放電電極421が有効である。このような電極構造であればレーザー光路407を取り囲みながらレーザー光の光路は遮らない構造で電極を作製でき、しかも大気中に電極を設置できるので低コストで装置作製が可能である。なお且つ、誘導結合型の放電を用いれば低圧力で高密度のプラズマを発生できるので、レーザー結晶化時の圧力を低くしておこなうことができ不純物の混入を最低限にすることができる。更に、誘導結合型の電極421や平行平板電極420をレーザー導入窓を取り囲むように配置することによって、レーザー結晶化をおこなっている最中にも放電が可能となる。特に水素ガスを用いてレーザー結晶化をおこないながら放電を実行すると、レーザー結晶化膜中の欠陥が低減されると同時にレーザー導入窓付着のシリコンのエッチングも可能となる。この際にはシリコン膜基板を250℃程度に加熱し、一方レーザー導入窓を室温程度に冷却しておく。水素プラズマは室温程度ではシリコンのエッチング作用が強く、逆に250℃程度ではエッチングは少なく欠陥パシベーションの作用が強くなる性質を持っている。したがって上記のようにシリコン膜とレーザー導入窓の温度を変えることによってによってエッチングと欠陥終端の効果を同時に得ることができる。
【0030】
このようにして、レーザー結晶化を多数の大型基板に対しておこなってもレーザー導入窓の透過率を常に一定に保つことが可能となるのである。
【0031】
〔実施例1〕
本発明の実施例を図5にそって説明する。本発明で用いられる基板及び下地保護膜に関しては前述の説明に準ずるが、ここでは基板の一例として300mm×300mmの正方形状汎用無アルカリガラス501を用いる。まず基板501上に基板温度を150゜CとしてECR−PECVD法にて200nm程度の膜厚を有する酸化硅素膜502を堆積する。次に高真空型LPCVD装置を用いて、原料ガスで有るジシラン(Si)を200SCCM流し、425℃の堆積温度で非晶質シリコン膜503を50nm堆積する。次にこの基板にエキシマレーザー光506を照射し結晶化をおこなう。このレーザー結晶化装置は真空容器505の中にX−Yステージ507を有し、この上部に基板ホルダ506がある。この基板ホルダに前述の基板501を設置する。X−Yステージ507はボールネジ508の回転によって移動し、このボールネジはパルスモータ509によって駆動される。レーザー導入窓520はセラミック製の支持台524上に固定され、支持台のまわりに誘導結合型の放電電極523がコイル状に設置してあり、この電極はマッチングボックス522を介して交流電源521に接続されている。1×10−4Paの真空中でレーザー照射をしながら基板501を移動させ、基板全面のシリコン薄膜を結晶化させる。結晶化させた基板は真空ロボットにより別の真空容器へと移動させる。結晶化が完了したらガス導入口524からSFガスを80sccm流し、チャンバー内圧力を1.3Paに調整する。しかる後、放電電極に500Wのパワーで交流電圧を印加し放電させ、レーザー導入窓520の内側に付着したシリコン膜をエッチングする。誘導結合型の高密度プラズマによって、レーザー導入窓に付着したシリコンはわずか15秒でエッチングされ、次の基板をレーザー結晶化する際にはレーザー導入窓520の透過率は完全に元どおりになっている。これによってレーザー結晶化条件の経時変化を完全に解消でき、安定した特性の結晶シリコン膜を得ることができるようになった。
【0032】
〔実施例2〕
実施例1ではエッチングガスとしてSFガスを使用したが、Hガスを用いると更に効果的である。レーザー結晶化したシリコン薄膜中には多量の欠陥が発生しているため、これを水素プラズマ処理によって欠陥終端するのが大変効果的である。また、Hガスは同時にシリコンのエッチングガスともなりうる。基板を250℃に加熱してレーザー結晶化し、このときレーザー導入窓520のまわりは冷却水によって室温程度に冷やしておく。このとき同時に水素ガスを導入し放電電極523によってプラズマ放電をおこなう。250℃に加熱された基板ではエッチング効果は小さく、シリコン膜503では効率的に水素化処理が進行する一方で、レーザー導入窓520は室温程度なのでシリコンはエッチングされる。この効果により、レーザー導入窓の透過率はレーザー結晶化プロセス中一定に保たれると同時に、結晶中の欠陥も低減される。また実施例1の場合のようにエッチングだけに時間を使う必要が無いので、装置のスループットが高い。
【0033】
従来の技術では、レーザー導入窓の透過率変化により結晶膜の特性にバラツキが発生すると共に、装置稼働率の低下による低スループットが問題となっていた。しかし、以上述べて来た様に本発明の半導体製造装置を用いることによって、レーザー導入窓の透過率を一定に維持するができ結晶膜の特性の均一性を飛躍的に向上できると共に、装置の稼働率の向上によって高いスループットを持った製造装置を実現することが可能となる。
【図面の簡単な説明】
【図1】従来の半導体製造装置を示す図。
【図2】レーザー結晶化時のライン状レーザービームを示す図。
【図3】レーザー結晶化時のライン状レーザービーム照射方法を示す図。
【図4】本発明の半導体製造装置を示す図。
【図5】本発明の半導体製造装置を示す図。
【符号の説明】
101...基板
102...下地絶縁膜
103...半導体膜
104...絶縁膜
106...石英窓
107...レーザー光
110...結晶化半導体膜
111...酸素ガスまたは酸素ラジカル
109...排気管
113...ゲート絶縁膜
114...ゲート電極
115...ソース、ドレイン領域
116...層間絶縁膜
117...ソース、ドレイン電極

Claims (10)

  1. レーザー光を導入する窓が設けられ内部が減圧されるチャンバー内に、シリコンで構成された半導体膜を有する基板を収容し、前記チャンバー内に収容した前記基板を加熱しつつ前記窓を冷却した状態で、前記チャンバー内に水素プラズマを発生させながら、前記半導体膜に、前記窓を介して前記レーザー光を照射する工程を含むことを特徴とする半導体の製造方法。
  2. 前記半導体膜を前記窓側に向けた状態で、前記基板を前記チャンバー内に収容することを特徴とする請求項1に記載の半導体の製造方法。
  3. 前記窓の冷却では、前記窓を室温に保つことを特徴とする請求項1又は2に記載の半導体の製造方法。
  4. 前記窓を冷却水で冷却することを特徴とする請求項1乃至3のいずれか一項に記載の半導体の製造方法。
  5. 前記基板の加熱では、前記基板を250℃に加熱することを特徴とする請求項1乃至4のいずれか一項に記載の半導体の製造方法。
  6. 前記基板が収容された前記チャンバー内を真空状態にしてから、前記チャンバー内に前記水素プラズマを発生させることを特徴とする請求項1乃至5のいずれか一項に記載の半導体の製造方法。
  7. 前記チャンバーには、前記チャンバーから立設され、前記窓を支持する管状の支持台と、前記支持台のまわりにコイル状に巻かれているとともに高周波電源に接続された放電電極と、水素ガスを前記チャンバー内に導入する導入口とが設けられており、
    前記チャンバー内に前記導入口から前記水素ガスを導入し、前記放電電極に前記高周波電源から交流電圧を印加して、前記水素プラズマを発生させることを特徴とする請求項1乃至6のいずれか一項に記載の半導体の製造方法。
  8. 前記チャンバーには、高周波電源に接続されているとともに、前記チャンバー内に設けられる平行平板型の放電電極と、水素ガスを前記チャンバー内に導入する導入口とが設けられており、
    前記チャンバー内に前記導入口から前記水素ガスを導入し、前記放電電極に前記高周波電源から交流電圧を印加して、前記水素プラズマを発生させることを特徴とする請求項1乃至6のいずれか一項に記載の半導体の製造方法。
  9. 前記チャンバー内に導入された前記水素ガスを1Torrの圧力に調整してから、前記放電電極に前記交流電圧を印加することを特徴とする請求項7又は8に記載の半導体の製造方法。
  10. 前記チャンバー内に導入する前記水素ガスの流量をガス流量制御装置で制御することで、前記水素ガスの前記圧力を調整することを特徴とする請求項9に記載の半導体の製造方法。
JP08477699A 1999-03-26 1999-03-26 半導体の製造方法 Expired - Fee Related JP4016525B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08477699A JP4016525B2 (ja) 1999-03-26 1999-03-26 半導体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08477699A JP4016525B2 (ja) 1999-03-26 1999-03-26 半導体の製造方法

Publications (2)

Publication Number Publication Date
JP2000277452A JP2000277452A (ja) 2000-10-06
JP4016525B2 true JP4016525B2 (ja) 2007-12-05

Family

ID=13840094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08477699A Expired - Fee Related JP4016525B2 (ja) 1999-03-26 1999-03-26 半導体の製造方法

Country Status (1)

Country Link
JP (1) JP4016525B2 (ja)

Also Published As

Publication number Publication date
JP2000277452A (ja) 2000-10-06

Similar Documents

Publication Publication Date Title
JP4026182B2 (ja) 半導体装置の製造方法、および電子機器の製造方法
US6271066B1 (en) Semiconductor material and method for forming the same and thin film transistor
JP3306258B2 (ja) 半導体装置の製造方法
EP0714140A1 (en) Manufacture of thin film semiconductor device, thin film semiconductor device, liquid crystal display device, and electronic device
JP4472066B2 (ja) 結晶性半導体膜の製造方法、結晶化装置及びtftの製造方法
JP4032553B2 (ja) 半導体製造装置
JP3924828B2 (ja) 結晶性半導体膜の製造方法、および薄膜トランジスタの製造方法
JP4016525B2 (ja) 半導体の製造方法
JP4066564B2 (ja) 薄膜半導体製造装置および薄膜半導体の製造方法
JP3994593B2 (ja) 薄膜素子の転写方法
JPH09162121A (ja) 半導体装置の製造方法
JP4016539B2 (ja) 薄膜半導体の製造装置および薄膜半導体の製造方法
JP3680677B2 (ja) 半導体素子製造装置および半導体素子の製造方法
JP2004039660A (ja) 多結晶半導体膜の製造方法、薄膜トランジスタの製造方法、表示装置、およびパルスレーザアニール装置
JP3797229B2 (ja) 薄膜半導体の製造装置
JPH0955509A (ja) 半導体装置の製造方法
JP4200530B2 (ja) 薄膜トランジスタの製造方法
JP3881715B2 (ja) 結晶性半導体膜の形成方法、アクティブマトリクス装置の製造方法、及び電子装置の製造方法
WO2011161901A1 (ja) 多結晶シリコン薄膜の形成方法、多結晶シリコン薄膜基板、シリコン薄膜太陽電池及びシリコン薄膜トランジスタ装置
JP2000277453A (ja) 半導体製造装置
JPH09293872A (ja) 薄膜トランジスタの製造方法
JP3911947B2 (ja) 電界効果トランジスタの製造方法
JP2000232066A (ja) 半導体基板の製造方法
JP2003100638A (ja) 半導体薄膜及び薄膜トランジスタの製造方法、電気光学装置及び電子機器
JP3986781B2 (ja) 薄膜トランジスタの作製方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees