JP4002969B2 - Combustible gas sensor - Google Patents

Combustible gas sensor Download PDF

Info

Publication number
JP4002969B2
JP4002969B2 JP2002327722A JP2002327722A JP4002969B2 JP 4002969 B2 JP4002969 B2 JP 4002969B2 JP 2002327722 A JP2002327722 A JP 2002327722A JP 2002327722 A JP2002327722 A JP 2002327722A JP 4002969 B2 JP4002969 B2 JP 4002969B2
Authority
JP
Japan
Prior art keywords
gas
oxide
catalyst
gold
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002327722A
Other languages
Japanese (ja)
Other versions
JP2004163192A (en
Inventor
申  ウソク
村山  宣光
伊豆  典哉
一郎 松原
幸彦 山内
修三 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002327722A priority Critical patent/JP4002969B2/en
Publication of JP2004163192A publication Critical patent/JP2004163192A/en
Application granted granted Critical
Publication of JP4002969B2 publication Critical patent/JP4002969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一酸化炭素ガス検出及びその濃度センサに関するものであり、更に詳しくは、一酸化炭素と触媒材の触媒反応による発熱から発生する局部的な温度差の変化を電圧信号として検出するセンサを用いて、一酸化炭素を高い選択性をもって計測することを可能とするガス検知方法及びそのガス検知センサに関するものである。
【0002】
【従来の技術】
密閉された生活・作業空間でのガス爆発、ガス中毒の判定などを迅速、確実に行うために、特に、微量な濃度で存在する一酸化炭素の存在を検知することが必要である。また、燃焼を伴う機器等からの排ガスにおいても、一酸化炭素は、重要な計測対象とされている。従来、その計測方法として、赤外線吸収方式、定電位電解法、半導体ガスセンサ方式、及び接触燃焼方式がある。
【0003】
まず、赤外線吸収方式については、10−300ppm程度の微小な一酸化炭素濃度の変化を正確に測定できるセンサとしては、測定の対象となる一酸化炭素の赤外線吸収量を計測する赤外線吸収式のものがある。このセンサは、赤外線源、試料空気が入る測定室、窒素が封じられた比較室、及びコンデンサマイクロホンの可動電極となっている膜、からなる。赤外線吸収による温度上昇がガスを膨張させ、これをマイクロホンの膜の圧力として、一酸化炭素の濃度を計測する。この方法は、時間応答が速く、デッド時間は約1秒、90%時間は約3秒である(非特許文献1参照)。
【0004】
この種のセンサの問題点としては、例えば、微量の炭じん等が入ってもゼロ点が移動する、大型で重く、定置型としてしか使えない、また、高価であるため、必要な所に十分な数を設置し、ネットワークをつくって測定するのが難しい、という問題が挙げられる。近年、新しい赤外線源、赤外線受光素子の開発等により、部品選択の自由度が高くなり、より小型で、性能を大幅に改良したものが市販されるようになっているが、その測定原理上、上記の問題点の根本的な解決にはなってない。
【0005】
次に、定電位電解法については、小型で微小の一酸化炭素濃度の測定に利用できるものとして、定電位電解法のガスセンサ、或いは酸化物半導体ガスセンサを用いた一酸化炭素測定器の開発が進められている。定電位電解法を用いたセンサは、ガス透過性膜、作用電極、参照電極、対電極、電解質溶液からなる密閉構造の合成樹脂容器、からなる。その原理は、参照電極に対する作用電極の電位を規制して電解を行い、その時に流れる電解電流を測定してガス濃度を知る方式である。一酸化炭素の場合は、作用電極において、一酸化炭素が二酸化炭素となる酸化反応が、対電極では、プロトンが酸素と反応し、水になる還元反応が起こり、このとき、作用電極と対電極に流れる電流が一酸化炭素濃度に比例する。
【0006】
計測範囲は1ppm以下でも誤差なく使用でき、200ppm程度まで安定して使える。しかし、室温ガスを直接電解する方式であり、電極自身が触媒作用を表すため、温度依存性が大きく、温度補償回路を必要とする。また、長時間使用することで、電解溶液との界面での変化が起こり、エージングなどの問題があり、1ヶ月に1回のゼロ点調整を必要とする。ガスの選択性は1000ppmの水素に50ppm、50ppmのNOに17ppmの一酸化炭素の濃度を指示するので、特に、水素とNOの除去が実用上の問題である(非特許文献2参照)。
【0007】
次に、半導体ガスセンサ方式については、可燃性ガスにより抵抗変化を示す酸化物を用いた半導体ガスセンサが一酸化炭素計測に幅広く用いられている。最も有名なものとしては、例えば、フィガロ技研のTGS711、TGS712D等があり、低濃度の一酸化炭素に対して高い感度を表し、比較的ゼロ点移動が少なく、繰り返し使用が可能であり、抵抗変化を比較的簡単な回路で電気信号に変えられる等の利点がある。一方、この種のセンサの問題点としては、原理的に、多数のガスに応答し、選択性が悪い点が挙げられる。この種のセンサは、添加された貴金属や、センサ素子温度によって、ガス濃度及び種類に対してその表面での反応性を変える所謂“素子温度特性”を示す。これを利用して、素子の組成、又は動作温度を変え、より選択性の高いセンサが製作されている(非特許文献3参照)。
【0008】
また、低温で他のガスより一酸化炭素の表面での反応速度が速いことに着目して、センサの温度を周期的に変え、低温測定時のセンサ出力を信号とする方法もある。これで、炭化水素と一酸化炭素を同時に計測する製品もある。しかし、何れにしても、選択性の問題は完全には解消されず、特に、エタノール、水素等に干渉されやすく、1000ppmの水素に50ppmの一酸化炭素の濃度を指示する。
【0009】
次に、接触燃焼方式については、白金コイル上を検知部(ガスを検知する部分。貴金属触媒を含む酸化物で覆われている。)でコートし、検知部にCOが触れると空気中の酸素と反応して燃焼し、白金コイルの温度が上昇し、その温度上昇による抵抗値変化を信号の元とする方式である。測定範囲が比較的に広く、500―3000PPM程度であるが、ガス選択性の問題がある。
【0010】
【非特許文献1】
普及版センサ技術 ISBN 4−938555−64−4 フジ・テクノシステム、1998年、p1059−1061
【非特許文献2】
電気化学式センサについて、理研計器、技術資料、No.51123
【非特許文献3】
化学センサー−その基礎と応用、ISBN:4061394517、清山哲郎編集、講談社、1982年
【非特許文献4】
日本電機工業会規格,JEM1252,回転電気機械用白金測温抵抗体,p2,日本電機工業会,2000年
【非特許文献5】
M.Haruta他、Journal of Catalyst,115,p.301、1989年
【非特許文献6】
S.Tsubota他、ACS Symposium Series,552,p.420、1994年
【非特許文献7】
T. Kobayashi他、Sensors and Actuators,13,p.339、1988年
【0011】
【発明が解決しようとする課題】
一酸化炭素センサは、生活・作業空間でのガス爆発、ガス中毒の判定応用のほか、燃焼を伴う機器等の排ガスの成分計測等の広い範囲で使用可能とするには、特に、一酸化炭素に優れた選択性が必要であり、且つ、小型・安価である必要がある。上記した赤外線吸収方式、定電位電解法、半導体ガスセンサ方式、及び接触燃焼方式等は、大型で高価、耐久性の問題、選択性の問題等から、これらの仕様を満たすことが難しい。
本発明は、これらの従来技術の問題点を抜本的に解決するために開発されたものであって、特に、一酸化炭素を選択的に検出することが可能な新しいガス検知方法及びそのガス検知センサを提供することを目的とするものである。
【0012】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)基板上に形成した熱電膜、及び該熱電膜上に形成した金と酸化物の複合体又は金系の貴金属合金と酸化物の複合体からなる薄膜型触媒材を用いて、この触媒材が特定のガスを選択的に酸化する触媒反応による発熱から生じる温度変化を検出信号として検出することにより、上記特定のガスを検出するガス検知方法であって、
1)金属のターゲットの上に酸化物を載せて酸化物と金属を同時にスパッタする方法により形成した一酸化炭素のみを選択的に酸化させる触媒材を使用し、2)触媒材と可燃性ガスとの触媒反応による発熱を、熱電変換効果により電圧信号に変換し、それを検出信号として検出することにより、可燃性ガスの中の一酸化炭素ガスの濃度を選択的に測定し、3)単一の素子の上に形成した異なる少なくとも2種類の薄膜型触媒材からの信号の組み合わせからガス種の識別及び検知を行うことを特徴とするガス検知方法。
(2)触媒材として、白金系の触媒材料を用いて可燃性ガスの中の水素ガスだけの濃度を測定すると同時に、金属のターゲットの上に酸化物を載せて酸化物と金属を同時にスパッタする方法により形成した一酸化炭素のみを選択的に酸化させる触媒材料を用いて一酸化炭素ガスだけの濃度を測定する、前記(1)記載の方法。
(3)金属のターゲットとその表面に固定した酸化物との複合ターゲットを用いて、同時スパッタ法により形成した触媒膜を使用する、前記(1)記載の方法。
(4)金と酸化コバルトを結合させた触媒材を用いる、前記(1)記載の方法。
(5)前記(1)から(4)のいずれかに記載のガス検知方法で使用するガス検知センサであって、
基板上に形成した熱電膜、及び該熱電膜上に形成した金系の貴金属合金、金と酸化物の複合体又は金系の貴金属合金と酸化物の複合体からなる薄膜型触媒材を構成要素として含み、該触媒膜が、金属のターゲットの上に酸化物を載せて酸化物と金属を同時スパッタする方法により形成した一酸化炭素のみを選択的に酸化させる触媒材を使用したものであり、単一の素子の上に形成した異なる少なくとも2種類の薄膜型触媒材を組み合わせ、触媒材と可燃性ガスとの触媒反応による発熱から生じる温度差を電圧信号に変換し、それを検出信号として検出するようにしたことを特徴とするガス検知センサ。
(6)上記触媒膜が、金属のターゲットとその表面に固定した酸化物との複合ターゲットを用いて、同時スパッタ法により作製された触媒膜である、前記(5)記載のガス検知センサ。
【0013】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明は、選択的触媒発熱を利用する一酸化炭素検出方法及びそのガスセンサに係るものであり、その構成は、基本的には、一酸化炭素と触媒材の触媒反応による発熱から発生する局部的な温度差の変化を、1)抵抗体の抵抗値の温度変化として電気信号にする、又は、2)熱電変換材料を用いて電気信号にする、3)それを検出信号として検出する、ことから構成される。
【0014】
抵抗体の温度変化を信号源にする方法は、別のセンサに応用例があり、例えば、ガス流量センサ又は水素濃度センサで、この抵抗の変化が検出原理として利用されている。特に、白金の場合、その抵抗変化の温度係数が約0.004/℃程度と比較的に大きいため(非特許文献4参照)、微細な抵抗パターンとして作られ、この様な応用の抵抗体としてよく用いられる。しかし、一酸化炭素のみと反応する選択性を持つ触媒を用いて、その触媒燃焼による温度変化を検出信号として利用する例は、これまで報告されていない。
【0015】
本発明では、一酸化炭素と触媒材の触媒反応による発熱から発生する局部的な温度差の変化を熱電変換効果により電圧信号に変換し、それを検出信号として検出することを特徴とするガス検出方法である。本発明では、一酸化炭素ガスに対して、一酸化炭素を選択的に触媒酸化させる触媒材を使用することによって、高い選択性で、広い濃度範囲の一酸化炭素ガスを計測することを可能とするものである。本発明の一酸化炭素ガスセンサでは、一酸化炭素ガスのみを選択的に酸化させる触媒材を用いて、基本的に触媒反応による発熱から得られる局所的な温度上昇を信号源として利用する。
【0016】
本発明において、センサは、例えば、基板上に熱電部材を形成し、この部材の上に触媒材を形成することで作製される。一酸化炭素を酸化させる触媒材としては、金系の貴金属合金として、例えば、微粒子状の金に白金を合金化したもの、金と酸化物の複合体として、金と遷移金属酸化物の複合体、例えば、Co34、NiO等の半導性酸化物と金からなるもの、金系の貴金属合金と酸化物の複合体として、例えば、Co34 、NiO等の酸化物と金と白金からなるものが例示されるが、これらに制限されるものではない。
また、金としては、金のナノ粒子が挙げられる。ナノサイズの金を適切な酸化物に担持させることにより、一酸化炭素に優れた触媒活性を示すことが春田らによって報告された。この報告によると、金の粒子径を5nm以下にして、酸化チタンや酸化鉄等に担持させることで、COの酸化活性が現れ、マイナス数十℃でも反応が進行する(非特許文献5〜6参照)。本発明では、これらの複合体を使用することができる。
【0017】
また、従来、触媒材の調製には、共沈法や析出沈殿法が用いられ、金の水酸化物を経て担持酸化物と複合化することが、金の粒成長抑制に効果があるとされてきた。しかし、従来の金触媒を用いた利用法は、半導体式ガスセンサなどであり、共沈法、析出沈殿法などから生成した粉末を利用するものが多い。しかし、本発明では、例えば、上記の熱電式センサへの応用を考慮すると、金触媒を粉末ではなく、薄膜として利用することが重要である。
【0018】
上記に述べた粉末を利用する形態では、シリコンチップ上への集積化に向いていない。将来的な実用上の点を考慮に入れると、本発明では、金触媒を粉末ではなく、薄膜として利用することが望ましい。例えば、熱電変換原理を利用し、薄膜化した熱電変換材料と金触媒膜の組み合わせにより、1)高感度化、2)シリコンテクノロジーへの応用、2)高速応答、を目標とする新しいタイプのガス検出センサの開発が可能となる。
【0019】
また、本発明では、可燃性ガスと触媒材との触媒反応による発熱を、熱電変換効果により電圧信号に変換し、それを検出信号として検出すること、及び、単一の素子の上に異なる2種類以上の触媒を形成し、それらからの信号の組み合わせからガス種の識別及び検知を行うこと、によって、より高度なガス種の分析も可能となり、これにより、所謂、マルチファンクションセンサ素子が一つの素子上に実現できる。例えば、一つのセンサ素子の上に異なる2種類以上の触媒材を形成し、それらからの信号の組み合わせからガス種の識別及び検知を行うことで、例えば、検知するガスの中の水素濃度を計測しながら同時に一酸化炭素濃度を計測することが可能となる。
【0020】
前に述べたガスと触媒材の触媒反応による発熱から発生する局部的な温度差の変化を検出原理として用いる方法により、一つのセンサの触媒材料を改良し、1種類以上の触媒材料を組み合わせ、触媒材と可燃性ガスとの触媒反応による発熱から生じる温度差を電圧信号に変換し、それを検出信号として検出するようにすることで、2種類以上のガスを高い選択性をもって同時に計測することが可能となる。この場合、触媒材の温度も重要なパラメーターとなり、これを制御することによって、その選択性及び特定のガスに対しての検出特性を変えることができる。
【0021】
この場合、触媒材として、例えば、白金系の触媒材料を用いて、可燃性ガスの中の水素ガスだけの濃度を測定すると同時に、金系の触媒材料を用いて、一酸化炭素ガスだけの濃度を測定することができる。動作温度200℃で、上記二つの構造を持つ単一素子のガス検知特性は、白金触媒側は、水素に高い選択性を示し、金系触媒側は、COに高い選択性を示す。
【0022】
次に、触媒材の製造方法を説明すると、上記の触媒材を金属のターゲットで形成する場合、白金の方は、白金のみでも十分な触媒活性を示すが、一酸化炭素の場合は、金のみでは触媒活性が低い。本発明では、例えば、金と遷移金属酸化物を同時にスパッタ蒸着することで、その触媒活性が飛躍的に改善される。スパッタ蒸着の条件としては、例えば、蒸着圧力が2×10-1Pa、スパッタ出力・時間が200W・10分が採用されるが、これらに制限されない。従来、酸化物のターゲットの上に金のパレットを載せてスパッタ蒸着を行い、触媒膜を形成した報告例がある(非特許文献7参照) 。
【0023】
しかし、この種の方法では、酸化物のスパッタ速度が金属のものより遅いため、酸化物と金属の混合比等の組成制御が難しい。特に、薄膜のように、表面の凹凸が少ないものは、その有効表面積が少ないため、膜圧を厚くする必要も生じる。これらの薄膜プロセスの観点から、本発明では、金属のターゲットの上に酸化物のパレットを載せた方がスパッタ制御に有利である。本発明では、金属のターゲットとその表面に固定した酸化物との複合ターゲットを用いて、触媒材のスパッタ製膜を行うことが好ましい方法として例示される。
【0024】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例
本実施例では、可燃性ガスと触媒材の触媒反応による発熱から発生する局部的な温度差の変化を電圧信号として検出する熱電式センサとして、一酸化炭素を酸化させる薄膜型触媒を、図1に示す構造で作製した。触媒膜の作製において、金触媒を酸化コバルトと同時スパッタした場合の酸化コバルトの量による触媒特性への影響を試験し、金触媒のみの場合と比較した。また、金触媒と酸化コバルトの同時スパッタ法による触媒膜の作製において、種々の基板上での触媒特性への影響を試験した。
【0025】
(1)触媒膜を形成したガスセンサの作製
1)熱電膜の作製
熱電部材として、少量のリンをドープした電気伝導性の高いSiGeを約1μmの厚みで基板の上にスパッタ蒸着し、熱電変換膜を作製した。スパッタ条件は、蒸着圧力を約5×10-1Pa、スパッタ出力・時間を250W・30分とした。その後、熱電膜を不活性ガス雰囲気の中で、高温アニールした。
【0026】
2)触媒膜の作製
次に、触媒膜をスパッタ蒸着で形成した。一酸化炭素のための酸化物触媒としては、酸化コバルトを用いた。高純度の酸化コバルト粉末をパレット状に加圧成型し、900℃で12時間焼結した。これを金ターゲット上に載せて、上記熱電膜の上にスパッタ蒸着し、触媒膜を作製した。スパッタ条件は、蒸着圧力を約2×10-1Pa、スパッタ出力・時間を200W・10分とした。
【0027】
3)電極の形成及び特性評価
次に、金のリード線パタンをメタルマスクを用いたスパッタ蒸着で形成し、信号取り出し用の配線を形成した。触媒の性能は、基板上に形成した薄膜触媒の表面温度を、赤外線熱カメラを用いて観察し、評価した。試験用のガスは、試験用の反応室に約100cc/ 分の流量で流した。ガスセンサ素子の場合も、同様に、混合ガスを流しながらその表面の温度変化を赤外線熱カメラで計測し、同時に、素子からの出力信号を計測した。例えば、水素と一酸化炭素の両方を、選択性を持って、且つ、同時に検出できるガスセンサ素子の評価には、水素と一酸化炭素を空気に混ぜた混合ガスを室温25℃で約100cc/ 分の流量で流しながら、単一素子の水素センサ部側の端子、及び一酸化炭素センサ部側の端子からの2つの出力信号を、表面温度の変化と同時に計測した。
【0028】
4)各種触媒膜の作製
熱電膜の半分の面積に、金触媒を酸化コバルトとの同時スパッタ法により、数百nmの厚みで蒸着し、触媒膜を作製した。酸化コバルトは、市販の高純度粉末をパレット状に加圧成型し、これを900℃で12時間焼結して使用した。酸化コバルト以外にも、同じ遷移金属酸化物である酸化ニッケルを試験した。酸化ニッケルの場合も、同じ方法で成型し、1200℃で焼結して使用した。触媒活性は、純粋な金ターゲットのみ、金ターゲットに酸化コバルト、又は酸化ニッケルを乗せたものの、全ての場合を試験した。この場合、スパッタ条件は、蒸着圧力を約2×10-1Pa、スパッタ出力・時間を200W・10分とした。また、触媒膜は、図1の構造と同じにし、基板としては、シリコンのウェファー、アルミナ、MgOセラミックス(マグネシア)等を用いた。
【0029】
(2)結果
1)触媒特性の比較
触媒活性の程度は、金と酸化コバルト、金のみ、金と酸化ニッケル、の順であった。また、この薄膜型触媒の厚みに関しては、数nmの触媒膜では、触媒活性がほとんどなく、膜厚が大きいものほど触媒活性が高くなった。図2に、触媒膜として、金触媒に酸化コバルトの量を変えて担持させた場合と、金触媒のみの場合の発熱特性の比較を示した。基板は、全てマグネシアにした。上記したように、金のみのターゲットよりは、金と酸化コバルトを混合させた触媒が、より高い活性を示した。
【0030】
薄膜型の金触媒では、一酸化炭素に対して、触媒活性はあるものの、その発熱量は1℃程度と非常に小さかったが、酸化コバルトの量を増やすことで、金触媒は最大10℃程度の発熱量を示した。酸化コバルトの量は、ターゲット表面に乗せるパレットの数で調整を行った。例えば、図2で●で示した試料は、ターゲットの上には5つの酸化コバルト焼結体を乗せてスパッタを実施して作製したものである。
【0031】
図3に、金触媒膜を担持させる基板材料を変えた場合の触媒活性度の温度依存性を示す。マグネシアの場合、シリコンウェハーと比べ、表面の凹凸が激しいことから、その上に蒸着された触媒の有効表面積が多くなり、活性度が上がったものと考えられる。このことから、触媒の性能は、基板の表面状態に大きく依存し、面粗さが大きいものほど、高い触媒活性が現れていると考えられる。
【0032】
更に、熱電材料を形成してから、その上に触媒膜を形成したものも、図3に一緒に示す。これらは、マグネシアに直接形成した触媒薄膜より若干活性度が落ちて、温度上昇曲線が高温側にシフトしているが、基本的には、同様な触媒活性を示し、この触媒膜と熱電材料を組み合わせて、ガスセンサを作製することが可能であることが確認できた。
【0033】
2)応答特性
上記センサでは、素子温度が100℃付近からでも触媒反応が起こり、ガス検出が可能となるが、このような温度付近では素子性能が安定しない。特に、発熱により温度上昇(図2のΔTAで示される)が飽和した方が、濃度の変化による計測が安定にできることから、素子温度を上げてから、ガスセンサとしての素子性能を評価した。図4に、200℃の動作温度での金と酸化コバルトを触媒として用いた熱電式一酸化炭素ガスセンサの応答特性を示す。
【0034】
一酸化炭素ガスの濃度を変化させて、観測される電圧信号を測定した。ガスセンサ素子の温度が200℃のときの一酸化炭素ガスの濃度と熱電式一酸化炭素ガスセンサからの電圧信号出力との関係を図5に示す。この図から、一酸化炭素濃度と信号電圧は、ほぼ直線的な関係にあることがわかる。
【0035】
応答特性としては、すべての濃度領域において数秒の立ち上がり特性を示し、90%レベルまで到達するまでの時間をT90とすると、これも1分以内であり、このセンサは、漏れ検知素子としても十分に速く応答することがわかった。また、この素子の特徴としては、ゼロレベルまで回復するのに要する時間が非常に短く、ゼロレベルの値もドリフトがなく、ほとんど同レベルで安定しているので、高信頼度の素子として利用できることがわかった。応答特性の詳細な数値データを、表1にまとめて示す。
【0036】
【表1】

Figure 0004002969
【0037】
3)選択性
金系の触媒を用いる一番の理由としては、その触媒の一酸化炭素に対する高い選択性が上げられる。実際、この触媒を用いて作製した熱電式一酸化炭素ガスセンサの選択性を調べるために、一般に、一酸化炭素の干渉ガスとされる可燃性ガスに対するガスセンサ素子の応答特性を調べた。素子温度を変えながら評価した結果を図6に示す。200℃以上の動作温度で、一酸化炭素の触媒燃焼が飽和に達し、その出力信号が一定になることで、安定した素子動作が得られることが確認できる。
【0038】
更に、可燃性ガスの場合、触媒活性が比較的低いことから電圧信号が低い値となり、その結果、一酸化炭素に対して高い選択性が得られる。即ち、このガスセンサは、実質的に一酸化炭素のみに応答すると言える。COに対する選択性をその出力信号の比にして、表2に示す。例えば、200℃の動作温度でのセンサ素子では、表に記載の可燃性ガスの中では、エタノール(C25 OH)が一番の干渉ガスとなるが、それでも一酸化炭素の信号が6.4倍強く検出できることがわかった。
【0039】
【表2】
Figure 0004002969
【0040】
【発明の効果】
以上詳述した通り、本発明は、一酸化炭素ガスと薄膜型金触媒の触媒反応による発熱を利用し、検出信号を発信するようにしたガス検出センサに係るものであり、本発明により、以下のような効果が奏される。
(1)熱電膜・触媒膜共に薄膜型であり、シリコンチップへの集積化ができる。
(2)一酸化炭素ガスに対して、選択的に応答する熱電式センサ素子が実現できる。
(3)水素と一酸化炭素ガスに対して、選択的に応答し、同時に計測ができる熱電式センサ素子を実現できる。
(4)酸化物を効率的に混合させることで、金系の触媒の一酸化炭素に対する触媒活性を高めることができる。
【図面の簡単な説明】
【図1】センサの構造を示す。
【図2】酸化コバルトの量による金触媒の活性度を示す(CO濃度は3%)。
【図3】基板による金触媒の活性度を示す。
【図4】素子温度200℃での一酸化炭素ガスセンサの応答特性を示す。
【図5】一酸化炭素ガス濃度と電圧信号の関係を示す。
【図6】熱電変換式COガスセンサの選択性調査結果を示す(ガス濃度はすべて3%)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to carbon monoxide gas detection and a concentration sensor thereof, and more specifically, a sensor that detects, as a voltage signal, a change in a local temperature difference generated by heat generated by catalytic reaction between carbon monoxide and a catalyst material. The present invention relates to a gas detection method and a gas detection sensor that can measure carbon monoxide with high selectivity.
[0002]
[Prior art]
It is particularly necessary to detect the presence of carbon monoxide present in a very small concentration in order to quickly and reliably perform gas explosions and gas poisoning in a sealed living / working space. In addition, carbon monoxide is an important measurement target even in exhaust gas from equipment that involves combustion. Conventionally, as the measuring method, there are an infrared absorption method, a constant potential electrolysis method, a semiconductor gas sensor method, and a catalytic combustion method.
[0003]
First, as for the infrared absorption method, as a sensor capable of accurately measuring a minute change in carbon monoxide concentration of about 10 to 300 ppm, an infrared absorption type that measures the infrared absorption amount of carbon monoxide to be measured. There is. This sensor comprises an infrared source, a measurement chamber containing sample air, a comparison chamber sealed with nitrogen, and a film serving as a movable electrode of a condenser microphone. The rise in temperature due to infrared absorption expands the gas, and this is used as the pressure of the membrane of the microphone to measure the concentration of carbon monoxide. This method has a fast time response, a dead time of about 1 second, and a 90% time of about 3 seconds (see Non-Patent Document 1).
[0004]
The problem with this type of sensor is that, for example, the zero point moves even if a small amount of carbon dust enters, it is large and heavy, it can only be used as a stationary type, and it is expensive, so it is sufficient where necessary. The problem is that it is difficult to install and measure a large number of networks. In recent years, with the development of new infrared sources, infrared light receiving elements, etc., the degree of freedom in component selection has increased, and smaller and greatly improved performances have become commercially available. It is not a fundamental solution to the above problems.
[0005]
Next, with regard to the constant potential electrolysis method, the development of a carbon monoxide measuring instrument using a constant potential electrolysis gas sensor or an oxide semiconductor gas sensor is progressing as it is small and can be used for measuring minute carbon monoxide concentration. It has been. A sensor using a constant potential electrolysis method includes a gas-permeable membrane, a working electrode, a reference electrode, a counter electrode, and a synthetic resin container having a sealed structure made of an electrolyte solution. The principle is that the electrolysis is performed by regulating the potential of the working electrode with respect to the reference electrode, and the gas concentration is known by measuring the electrolytic current flowing at that time. In the case of carbon monoxide, an oxidation reaction in which carbon monoxide becomes carbon dioxide at the working electrode, and in the counter electrode, a reduction reaction in which protons react with oxygen and become water occurs. At this time, the working electrode and the counter electrode The current flowing through the is proportional to the carbon monoxide concentration.
[0006]
The measurement range can be used without error even at 1 ppm or less, and can be used stably up to about 200 ppm. However, this is a system in which room temperature gas is directly electrolyzed, and since the electrode itself exhibits a catalytic action, the temperature dependency is large and a temperature compensation circuit is required. Further, when used for a long time, a change occurs at the interface with the electrolytic solution, and there is a problem such as aging, and zero point adjustment is required once a month. Since gas selectivity indicates a concentration of 50 ppm for 1000 ppm hydrogen and a concentration of 17 ppm carbon monoxide for 50 ppm NO, hydrogen and NO removal are particularly practical problems (see Non-Patent Document 2).
[0007]
Next, as for the semiconductor gas sensor system, a semiconductor gas sensor using an oxide that exhibits resistance change by a combustible gas is widely used for carbon monoxide measurement. The most famous ones are, for example, Figaro Giken's TGS711, TGS712D, etc., which show high sensitivity to low concentrations of carbon monoxide, have relatively little zero point movement, can be used repeatedly, and change resistance Can be converted into an electric signal by a relatively simple circuit. On the other hand, a problem with this type of sensor is that, in principle, it responds to many gases and has poor selectivity. This type of sensor exhibits a so-called “element temperature characteristic” that changes the reactivity at the surface with respect to the gas concentration and type depending on the precious metal added and the sensor element temperature. By utilizing this, a sensor with higher selectivity is manufactured by changing the composition or operating temperature of the element (see Non-Patent Document 3).
[0008]
Also, paying attention to the fact that the reaction rate on the surface of carbon monoxide is faster than other gases at low temperatures, there is also a method of periodically changing the temperature of the sensor and using the sensor output at low temperature measurement as a signal. Some products now measure hydrocarbons and carbon monoxide at the same time. In any case, however, the selectivity problem is not completely eliminated, and is particularly susceptible to interference by ethanol, hydrogen, etc., indicating a concentration of 50 ppm carbon monoxide for 1000 ppm hydrogen.
[0009]
Next, for the catalytic combustion method, the platinum coil is coated with a detector (a portion that detects gas; covered with an oxide containing a precious metal catalyst), and when the detector touches CO, oxygen in the air The temperature of the platinum coil rises and reacts with, and the resistance value change due to the temperature rise is used as a signal source. The measurement range is relatively wide, about 500-3000 PPM, but there is a problem of gas selectivity.
[0010]
[Non-Patent Document 1]
Popular sensor technology ISBN 4-9385555-64-4 Fuji Techno System, 1998, p1059-1061
[Non-Patent Document 2]
For electrochemical sensors, see Riken Keiki, Technical Data, No. 51123
[Non-Patent Document 3]
Chemical Sensors-Basics and Applications, ISBN: 4061394517, edited by Tetsuro Kiyoyama, Kodansha, 1982 [Non-Patent Document 4]
Japan Electrical Manufacturers Association Standard, JEM1252, Platinum Resistance Temperature Sensor for Rotating Electric Machine, p2, Japan Electrical Manufacturers Association, 2000 [Non-Patent Document 5]
M.M. Haruta et al., Journal of Catalyst, 115, p. 301, 1989 [Non-Patent Document 6]
S. Tsubota et al., ACS Symposium Series, 552, p. 420, 1994 [Non-Patent Document 7]
T.A. Kobayashi et al., Sensors and Actuators, 13, p. 339, 1988 [0011]
[Problems to be solved by the invention]
Carbon monoxide sensors are particularly useful for wide-ranging applications such as gas explosion and gas poisoning applications in living and working spaces, as well as measurement of exhaust gas components in equipment that involves combustion. Therefore, it is necessary to have excellent selectivity and to be small and inexpensive. The above-described infrared absorption method, constant potential electrolysis method, semiconductor gas sensor method, catalytic combustion method, and the like are difficult to satisfy these specifications due to large size, high cost, durability problems, selectivity problems, and the like.
The present invention was developed to drastically solve these problems of the prior art, and in particular, a new gas detection method capable of selectively detecting carbon monoxide and its gas detection The object is to provide a sensor.
[0012]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) Using a thermoelectric film formed on a substrate, and a thin film type catalyst material made of a composite of gold and oxide or a composite of a gold-based noble metal alloy and oxide formed on the thermoelectric film, A gas detection method for detecting the specific gas by detecting, as a detection signal, a temperature change caused by heat generated by a catalytic reaction in which the catalyst material selectively oxidizes the specific gas,
1) A catalyst material that selectively oxidizes only carbon monoxide formed by a method in which an oxide is placed on a metal target and the oxide and the metal are simultaneously sputtered is used. 2) A catalyst material and a combustible gas are used. The heat generated by the catalytic reaction is converted into a voltage signal by the thermoelectric conversion effect and detected as a detection signal to selectively measure the concentration of carbon monoxide gas in the combustible gas. A gas detection method comprising identifying and detecting a gas type from a combination of signals from at least two different thin-film catalyst materials formed on the element.
(2) Using a platinum-based catalyst material as a catalyst material, the concentration of only the hydrogen gas in the combustible gas is measured, and at the same time, an oxide is placed on the metal target and the oxide and the metal are sputtered simultaneously. The method according to (1) above, wherein the concentration of carbon monoxide gas alone is measured using a catalyst material that selectively oxidizes only carbon monoxide formed by the method.
(3) The method according to (1) above, wherein a catalyst film formed by a co-sputtering method using a composite target of a metal target and an oxide fixed on the surface thereof is used.
(4) The method according to (1) above, wherein a catalyst material obtained by bonding gold and cobalt oxide is used.
(5) A gas detection sensor used in the gas detection method according to any one of (1) to (4),
Components comprising a thermoelectric film formed on a substrate and a gold-based noble metal alloy, a gold-oxide composite or a gold-based noble metal alloy-oxide composite formed on the thermoelectric film includes as a, that the catalyst layer was used a catalyst material for selectively oxidizing only the formed carbon monoxide by way of sputtering the oxide and the metal simultaneously put the oxide on the metal target This is a combination of at least two different thin-film catalyst materials formed on a single element, and converts the temperature difference resulting from the heat generated by the catalytic reaction between the catalyst material and the combustible gas into a voltage signal and detects it. A gas detection sensor characterized by being detected as a signal.
(6) The gas detection sensor according to (5), wherein the catalyst film is a catalyst film produced by a simultaneous sputtering method using a composite target of a metal target and an oxide fixed on the surface thereof.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
The present invention relates to a carbon monoxide detection method using selective catalytic heat generation and a gas sensor thereof, and the structure thereof is basically a local one generated from the heat generated by the catalytic reaction between carbon monoxide and a catalyst material. 1) An electrical signal as a temperature change of the resistance value of the resistor, or 2) An electrical signal using a thermoelectric conversion material 3) It is detected as a detection signal Composed.
[0014]
The method of using the temperature change of the resistor as a signal source has an application example in another sensor. For example, this change in resistance is used as a detection principle in a gas flow rate sensor or a hydrogen concentration sensor. In particular, platinum has a relatively large temperature coefficient of resistance change of about 0.004 / ° C. (see Non-Patent Document 4), so that it is formed as a fine resistance pattern, and as a resistor for such applications. Often used. However, no example has been reported so far in which a catalyst having selectivity that reacts only with carbon monoxide and the temperature change due to catalytic combustion is used as a detection signal.
[0015]
In the present invention, a gas detection is characterized in that a local temperature difference change generated by heat generation due to a catalytic reaction between carbon monoxide and a catalyst material is converted into a voltage signal by a thermoelectric conversion effect and detected as a detection signal. Is the method. In the present invention, it is possible to measure carbon monoxide gas in a wide concentration range with high selectivity by using a catalyst material that selectively oxidizes carbon monoxide with respect to carbon monoxide gas. To do. The carbon monoxide gas sensor of the present invention uses a catalyst material that selectively oxidizes only carbon monoxide gas, and basically uses a local temperature rise obtained from heat generated by a catalytic reaction as a signal source.
[0016]
In the present invention, the sensor is produced, for example, by forming a thermoelectric member on a substrate and forming a catalyst material on the member. As a catalyst material for oxidizing carbon monoxide, as a gold-based noble metal alloy, for example, an alloy of platinum and fine gold particles, a composite of gold and an oxide, a composite of gold and a transition metal oxide For example, a composite of a semiconducting oxide such as Co 3 O 4 or NiO and gold, or a composite of a gold-based noble metal alloy and oxide, such as an oxide such as Co 3 O 4 or NiO and gold Although what consists of platinum is illustrated, it is not restrict | limited to these.
Examples of gold include gold nanoparticles. It has been reported by Haruta et al. That excellent catalytic activity of carbon monoxide is exhibited by supporting nano-sized gold on an appropriate oxide. According to this report, by making the gold particle diameter 5 nm or less and supporting it on titanium oxide, iron oxide or the like, the oxidation activity of CO appears and the reaction proceeds even at minus tens of degrees Celsius (Non-Patent Documents 5-6). reference). In the present invention, these complexes can be used.
[0017]
Conventionally, a coprecipitation method or a precipitation method is used for the preparation of the catalyst material, and it is said that the composite with the supported oxide via the gold hydroxide is effective in suppressing the grain growth of gold. I came. However, a conventional method using a gold catalyst is a semiconductor type gas sensor or the like, and many use powders generated from a coprecipitation method, a precipitation method, or the like. However, in the present invention, for example, considering application to the thermoelectric sensor, it is important to use the gold catalyst not as a powder but as a thin film.
[0018]
The form using the powder described above is not suitable for integration on a silicon chip. In consideration of future practical points, in the present invention, it is desirable to use the gold catalyst not as a powder but as a thin film. For example, a new type of gas that aims to 1) increase sensitivity, 2) application to silicon technology, and 2) high-speed response by combining a thin thermoelectric conversion material and a gold catalyst film using the thermoelectric conversion principle. Development of detection sensors becomes possible.
[0019]
Further, in the present invention, heat generated by the catalytic reaction between the combustible gas and the catalyst material is converted into a voltage signal by the thermoelectric conversion effect, which is detected as a detection signal, and two different on a single element. By forming more than one type of catalyst and identifying and detecting the gas type from the combination of signals from them, it becomes possible to analyze more advanced gas types. It can be realized on the element. For example, two or more different catalyst materials are formed on one sensor element, and the gas type is identified and detected from a combination of signals from them, for example, the hydrogen concentration in the gas to be detected is measured. At the same time, the carbon monoxide concentration can be measured.
[0020]
By using the method of using the local change in temperature difference generated from the heat generated by the catalytic reaction between the gas and the catalyst as described above as a detection principle, the catalyst material of one sensor is improved and one or more types of catalyst materials are combined. By measuring the temperature difference resulting from the heat generated by the catalytic reaction between the catalyst material and the combustible gas into a voltage signal and detecting it as a detection signal, simultaneously measure two or more gases with high selectivity. Is possible. In this case, the temperature of the catalyst material is also an important parameter, and by controlling this, the selectivity and detection characteristics for a specific gas can be changed.
[0021]
In this case, as a catalyst material, for example, using a platinum-based catalyst material, the concentration of only hydrogen gas in the combustible gas is measured, and at the same time, using a gold-based catalyst material, the concentration of only carbon monoxide gas. Can be measured. Regarding the gas detection characteristics of the single element having the above two structures at an operating temperature of 200 ° C., the platinum catalyst side shows high selectivity for hydrogen, and the gold-based catalyst side shows high selectivity for CO.
[0022]
Next, a method for producing a catalyst material will be described. When the above catalyst material is formed with a metal target, platinum exhibits sufficient catalytic activity even with platinum alone, but in the case of carbon monoxide, only gold is produced. Then, the catalytic activity is low. In the present invention, for example, the catalytic activity is dramatically improved by simultaneously performing sputter deposition of gold and a transition metal oxide. As the conditions for the sputter deposition, for example, a deposition pressure of 2 × 10 −1 Pa and a sputter output / time of 200 W · 10 minutes are employed, but are not limited thereto. Conventionally, there is a report example in which a gold pallet is placed on an oxide target and sputter deposition is performed to form a catalyst film (see Non-Patent Document 7).
[0023]
However, in this type of method, since the sputtering rate of the oxide is slower than that of the metal, it is difficult to control the composition such as the mixing ratio of the oxide and the metal. In particular, a thin film with less surface irregularities has a small effective surface area, so that it is necessary to increase the film pressure. From the viewpoint of these thin film processes, in the present invention, it is advantageous for sputtering control to place an oxide pallet on a metal target. In the present invention, it is exemplified as a preferable method to perform sputtering film formation of a catalyst material using a composite target of a metal target and an oxide fixed on the surface thereof.
[0024]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
Example In this example, a thin film catalyst that oxidizes carbon monoxide as a thermoelectric sensor that detects as a voltage signal a change in local temperature difference generated from heat generated by a catalytic reaction between a combustible gas and a catalyst material, The structure shown in FIG. In the production of the catalyst film, the influence of the amount of cobalt oxide on the catalyst characteristics when the gold catalyst was co-sputtered with cobalt oxide was tested and compared with the case of using only the gold catalyst. In addition, in the production of a catalyst film by the simultaneous sputtering method of a gold catalyst and cobalt oxide, the influence on the catalyst characteristics on various substrates was tested.
[0025]
(1) Manufacture of gas sensor with catalyst film 1) Manufacture of thermoelectric film As thermoelectric member, SiGe with high electrical conductivity doped with a small amount of phosphorus is sputter-deposited on a substrate with a thickness of about 1 μm, and thermoelectric conversion film Was made. The sputtering conditions were a deposition pressure of about 5 × 10 −1 Pa and a sputtering output / time of 250 W · 30 minutes. Thereafter, the thermoelectric film was annealed at a high temperature in an inert gas atmosphere.
[0026]
2) Production of catalyst film Next, a catalyst film was formed by sputter deposition. Cobalt oxide was used as the oxide catalyst for carbon monoxide. High purity cobalt oxide powder was pressed into a pallet shape and sintered at 900 ° C. for 12 hours. This was placed on a gold target and sputter-deposited on the thermoelectric film to produce a catalyst film. The sputtering conditions were a deposition pressure of about 2 × 10 −1 Pa and a sputtering output / time of 200 W · 10 minutes.
[0027]
3) Formation of electrode and evaluation of characteristics Next, a gold lead wire pattern was formed by sputter deposition using a metal mask to form a wiring for signal extraction. The performance of the catalyst was evaluated by observing the surface temperature of the thin film catalyst formed on the substrate using an infrared thermal camera. The test gas was flowed into the test reaction chamber at a flow rate of about 100 cc / min. Similarly, in the case of the gas sensor element, the temperature change of the surface was measured with an infrared thermal camera while flowing the mixed gas, and simultaneously the output signal from the element was measured. For example, to evaluate a gas sensor element that can selectively detect both hydrogen and carbon monoxide at the same time, a mixed gas in which hydrogen and carbon monoxide are mixed with air is about 100 cc / min at a room temperature of 25 ° C. The two output signals from the terminal on the hydrogen sensor unit side of the single element and the terminal on the carbon monoxide sensor unit side were measured simultaneously with the change in surface temperature.
[0028]
4) Preparation of various catalyst films A gold catalyst was deposited in a thickness of several hundreds of nanometers on a half area of the thermoelectric film by a co-sputtering method with cobalt oxide to prepare a catalyst film. Cobalt oxide was used by pressing a commercially available high-purity powder into a pallet shape and sintering it at 900 ° C. for 12 hours. In addition to cobalt oxide, nickel oxide, which is the same transition metal oxide, was tested. In the case of nickel oxide, it was molded by the same method and sintered at 1200 ° C. for use. The catalytic activity was tested in all cases, with only a pure gold target, or a gold target with cobalt oxide or nickel oxide. In this case, the sputtering conditions were an evaporation pressure of about 2 × 10 −1 Pa and a sputtering output / time of 200 W · 10 minutes. The catalyst film has the same structure as that shown in FIG. 1, and a silicon wafer, alumina, MgO ceramics (magnesia) or the like was used as the substrate.
[0029]
(2) Results 1) Comparison of catalytic properties The degree of catalytic activity was in the order of gold and cobalt oxide, gold only, gold and nickel oxide. As for the thickness of the thin-film catalyst, the catalyst film of several nm has almost no catalytic activity, and the larger the film thickness, the higher the catalytic activity. FIG. 2 shows a comparison of heat generation characteristics when the gold catalyst is supported on the gold catalyst while changing the amount of cobalt oxide and only the gold catalyst as the catalyst film. All substrates were magnesia. As described above, the catalyst in which gold and cobalt oxide were mixed showed higher activity than the gold-only target.
[0030]
Although the thin-film gold catalyst has catalytic activity for carbon monoxide, its calorific value was very small at around 1 ° C. However, by increasing the amount of cobalt oxide, the gold catalyst can reach a maximum of around 10 ° C. The calorific value of was shown. The amount of cobalt oxide was adjusted by the number of pallets placed on the target surface. For example, the sample indicated by ● in FIG. 2 is manufactured by placing five cobalt oxide sintered bodies on the target and performing sputtering.
[0031]
FIG. 3 shows the temperature dependence of the catalyst activity when the substrate material for supporting the gold catalyst film is changed. In the case of magnesia, since the surface irregularities are severe compared to a silicon wafer, the effective surface area of the catalyst deposited thereon is increased, and the activity is considered to be increased. From this, the catalyst performance largely depends on the surface condition of the substrate, and it is considered that the higher the surface roughness, the higher the catalytic activity.
[0032]
Further, a thermoelectric material formed and then a catalyst film formed thereon is also shown in FIG. These are slightly less active than the catalyst thin film directly formed on magnesia, and the temperature rise curve is shifted to the high temperature side, but basically shows similar catalytic activity. It was confirmed that it was possible to produce a gas sensor in combination.
[0033]
2) Response characteristics In the above sensor, a catalytic reaction occurs even when the element temperature is around 100 ° C., and gas detection is possible. However, the element performance is not stable near such a temperature. In particular, when the temperature rise due to heat generation (indicated by ΔTA in FIG. 2) is saturated, the measurement due to the change in concentration can be stabilized, so the element performance as a gas sensor was evaluated after increasing the element temperature. FIG. 4 shows the response characteristics of a thermoelectric carbon monoxide gas sensor using gold and cobalt oxide as catalysts at an operating temperature of 200.degree.
[0034]
The observed voltage signal was measured by changing the concentration of carbon monoxide gas. FIG. 5 shows the relationship between the concentration of carbon monoxide gas when the temperature of the gas sensor element is 200 ° C. and the voltage signal output from the thermoelectric carbon monoxide gas sensor. From this figure, it can be seen that the carbon monoxide concentration and the signal voltage have a substantially linear relationship.
[0035]
As the response characteristics, a rising characteristic of several seconds is shown in all concentration regions, and when the time to reach the 90% level is T90, this is also within one minute. This sensor is also sufficient as a leak detection element. It turns out that it responds quickly. In addition, the characteristics of this element are that the time required to recover to the zero level is very short, the zero level value is not drifted, and is stable at almost the same level, so it can be used as a highly reliable element. I understood. Detailed numerical data of response characteristics are summarized in Table 1.
[0036]
[Table 1]
Figure 0004002969
[0037]
3) The primary reason for using a selective gold-based catalyst is its high selectivity to carbon monoxide. In fact, in order to investigate the selectivity of a thermoelectric carbon monoxide gas sensor manufactured using this catalyst, the response characteristics of the gas sensor element to a combustible gas, which is generally regarded as a carbon monoxide interference gas, were examined. The results of evaluation while changing the element temperature are shown in FIG. It can be confirmed that, at an operating temperature of 200 ° C. or higher, the catalytic combustion of carbon monoxide reaches saturation and the output signal becomes constant, so that stable element operation can be obtained.
[0038]
Furthermore, in the case of flammable gases, the catalytic activity is relatively low, resulting in a low voltage signal, resulting in high selectivity for carbon monoxide. That is, it can be said that this gas sensor responds substantially only to carbon monoxide. Table 2 shows the selectivity to CO as the ratio of the output signal. For example, in a sensor element at an operating temperature of 200 ° C., ethanol (C 2 H 5 OH) is the largest interference gas among the flammable gases listed in the table, but the signal of carbon monoxide is still 6 It was found that it could be detected 4 times stronger.
[0039]
[Table 2]
Figure 0004002969
[0040]
【The invention's effect】
As described above in detail, the present invention relates to a gas detection sensor configured to transmit a detection signal using heat generated by a catalytic reaction between carbon monoxide gas and a thin-film gold catalyst. The following effects are produced.
(1) Both the thermoelectric film and the catalyst film are of a thin film type and can be integrated on a silicon chip.
(2) A thermoelectric sensor element that selectively responds to carbon monoxide gas can be realized.
(3) A thermoelectric sensor element capable of selectively responding to hydrogen and carbon monoxide gas and simultaneously measuring can be realized.
(4) By efficiently mixing oxides, the catalytic activity for carbon monoxide of a gold-based catalyst can be enhanced.
[Brief description of the drawings]
FIG. 1 shows the structure of a sensor.
FIG. 2 shows the activity of a gold catalyst according to the amount of cobalt oxide (CO concentration is 3%).
FIG. 3 shows the activity of the gold catalyst by the substrate.
FIG. 4 shows response characteristics of a carbon monoxide gas sensor at an element temperature of 200 ° C.
FIG. 5 shows a relationship between a carbon monoxide gas concentration and a voltage signal.
FIG. 6 shows the results of a selectivity investigation of a thermoelectric conversion CO gas sensor (all gas concentrations are 3%).

Claims (6)

基板上に形成した熱電膜、及び該熱電膜上に形成した金と酸化物の複合体又は金系の貴金属合金と酸化物の複合体からなる薄膜型触媒材を用いて、この触媒材が特定のガスを選択的に酸化する触媒反応による発熱から生じる温度変化を検出信号として検出することにより、上記特定のガスを検出するガス検知方法であって、
(1)金属のターゲットの上に酸化物を載せて酸化物と金属を同時にスパッタする方法により形成した一酸化炭素のみを選択的に酸化させる触媒材を使用し、(2)触媒材と可燃性ガスとの触媒反応による発熱を、熱電変換効果により電圧信号に変換し、それを検出信号として検出することにより、可燃性ガスの中の一酸化炭素ガスの濃度を選択的に測定し、(3)単一の素子の上に形成した異なる少なくとも2種類の薄膜型触媒材からの信号の組み合わせからガス種の識別及び検知を行うことを特徴とするガス検知方法。
Using a thermoelectric film formed on a substrate, and a thin film type catalyst material made of a composite of gold and oxide or a gold-based noble metal alloy and oxide formed on the thermoelectric film, A gas detection method for detecting the specific gas by detecting a temperature change resulting from heat generation by a catalytic reaction that selectively oxidizes the specific gas as a detection signal,
(1) Using a catalyst material that selectively oxidizes only carbon monoxide formed by a method in which an oxide is placed on a metal target and the oxide and the metal are simultaneously sputtered. (2) Catalyst material and combustibility The heat generated by the catalytic reaction with the gas is converted into a voltage signal by the thermoelectric conversion effect, and by detecting it as a detection signal, the concentration of the carbon monoxide gas in the combustible gas is selectively measured. ) A gas detection method characterized by identifying and detecting a gas type from a combination of signals from at least two different types of thin-film catalyst materials formed on a single element.
触媒材として、白金系の触媒材料を用いて可燃性ガスの中の水素ガスだけの濃度を測定すると同時に、金属のターゲットの上に酸化物を載せて酸化物と金属を同時にスパッタする方法により形成した一酸化炭素のみを選択的に酸化させる触媒材料を用いて一酸化炭素ガスだけの濃度を測定する、請求項1記載の方法。As a catalyst material, a platinum-based catalyst material is used to measure the concentration of only hydrogen gas in the combustible gas, and at the same time, an oxide is placed on a metal target and the oxide and metal are sputtered simultaneously. The method according to claim 1, wherein the concentration of only carbon monoxide gas is measured using a catalyst material that selectively oxidizes only the carbon monoxide. 金属のターゲットとその表面に固定した酸化物との複合ターゲットを用いて、同時スパッタ法により形成した触媒膜を使用する、請求項1記載の方法。  The method according to claim 1, wherein a catalyst film formed by a co-sputtering method using a composite target of a metal target and an oxide fixed on the surface thereof is used. 金と酸化コバルトを結合させた触媒材を用いる、請求項1記載の方法。  The method according to claim 1, wherein a catalyst material in which gold and cobalt oxide are combined is used. 上記請求項1から4のいずれかに記載のガス検知方法で使用するガス検知センサであって、
基板上に形成した熱電膜、及び該熱電膜上に形成した金系の貴金属合金、金と酸化物の複合体又は金系の貴金属合金と酸化物の複合体からなる薄膜型触媒材を構成要素として含み、該触媒膜が、金属のターゲットの上に酸化物を載せて酸化物と金属を同時スパッタする方法により形成した一酸化炭素のみを選択的に酸化させる触媒材を使用したものであり、単一の素子の上に形成した異なる少なくとも2種類の薄膜型触媒材を組み合わせ、触媒材と可燃性ガスとの触媒反応による発熱から生じる温度差を電圧信号に変換し、それを検出信号として検出するようにしたことを特徴とするガス検知センサ。
A gas detection sensor used in the gas detection method according to any one of claims 1 to 4,
Components comprising a thermoelectric film formed on a substrate and a gold-based noble metal alloy, a gold-oxide composite or a gold-based noble metal alloy-oxide composite formed on the thermoelectric film includes as a, that the catalyst layer was used a catalyst material for selectively oxidizing only the formed carbon monoxide by way of sputtering the oxide and the metal simultaneously put the oxide on the metal target This is a combination of at least two different thin-film catalyst materials formed on a single element, and converts the temperature difference resulting from the heat generated by the catalytic reaction between the catalyst material and the combustible gas into a voltage signal and detects it. A gas detection sensor characterized by being detected as a signal.
上記触媒膜が、金属のターゲットとその表面に固定した酸化物との複合ターゲットを用いて、同時スパッタ法により作製された触媒膜である、請求項5記載のガス検知センサ。  The gas detection sensor according to claim 5, wherein the catalyst film is a catalyst film produced by a simultaneous sputtering method using a composite target of a metal target and an oxide fixed on the surface thereof.
JP2002327722A 2002-11-12 2002-11-12 Combustible gas sensor Expired - Lifetime JP4002969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327722A JP4002969B2 (en) 2002-11-12 2002-11-12 Combustible gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327722A JP4002969B2 (en) 2002-11-12 2002-11-12 Combustible gas sensor

Publications (2)

Publication Number Publication Date
JP2004163192A JP2004163192A (en) 2004-06-10
JP4002969B2 true JP4002969B2 (en) 2007-11-07

Family

ID=32806226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327722A Expired - Lifetime JP4002969B2 (en) 2002-11-12 2002-11-12 Combustible gas sensor

Country Status (1)

Country Link
JP (1) JP4002969B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646310B2 (en) 2010-10-13 2014-02-11 Panasonic Corporation Method for detecting a gas contained in a fluid with use of a gas sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581113B2 (en) * 2004-07-07 2010-11-17 独立行政法人産業技術総合研究所 Fine pattern forming method
JP2007255960A (en) * 2006-03-22 2007-10-04 National Institute Of Advanced Industrial & Technology Gas detection method which eliminates interference of combustible gas and gas detection sensor
JP2008256680A (en) * 2007-03-13 2008-10-23 National Institute Of Advanced Industrial & Technology Method for measuring concentration of biogas in breathing and simplified measuring device for measuring biogas concentration in breathing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156847A (en) * 1979-05-24 1980-12-06 Matsushita Electric Ind Co Ltd Gas detecting element
JPS59153159A (en) * 1983-02-21 1984-09-01 Hitachi Ltd Gas detecting apparatus
JPH0738945B2 (en) * 1991-08-30 1995-05-01 工業技術院長 Gold-oxide composite, flammable gas oxidation catalyst, flammable gas sensor and pigment
JP2832905B2 (en) * 1992-01-10 1998-12-09 東京瓦斯株式会社 City gas combustion rate measurement device
JPH07128268A (en) * 1993-10-28 1995-05-19 Fuji Electric Co Ltd Hydrogen gas sensor
JPH09127036A (en) * 1995-10-27 1997-05-16 Agency Of Ind Science & Technol Contact burning-type gas sensor
JPH09269307A (en) * 1996-04-01 1997-10-14 Matsushita Electric Ind Co Ltd Gas sensor
JP3363759B2 (en) * 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646310B2 (en) 2010-10-13 2014-02-11 Panasonic Corporation Method for detecting a gas contained in a fluid with use of a gas sensor

Also Published As

Publication number Publication date
JP2004163192A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
KR101440648B1 (en) Hydrogen sensitive composite material, tubular sensor for detecting hydrogen and other gases
Brosha et al. Mixed potential sensors using lanthanum manganate and terbium yttrium zirconium oxide electrodes
Aroutiounian Hydrogen detectors
Sun et al. NO2 gas sensitivity of sol-gel-derived α-Fe2O3 thin films
Macam et al. Effect of La2CuO4 electrode area on potentiometric NOx sensor response and its implications on sensing mechanism
Xiong et al. Novel high-selectivity NO2 sensor incorporating mixed-oxide electrode
JP2005315700A (en) Hydrogen sensor and detection method of hydrogen
Zhao et al. Optimized low frequency temperature modulation for improving the selectivity and linearity of SnO 2 gas sensor
JP4238309B2 (en) Combustible gas sensor
JP3845741B2 (en) Nitrogen oxide detection method and sensor element for nitrogen oxide detection
JP4002969B2 (en) Combustible gas sensor
Park et al. Titania‐Based Miniature Potentiometric Carbon Monoxide Gas Sensors with High Sensitivity
Chen et al. Comparison of Y-doped Bazro3 thin films for high temperature humidity sensors by RF sputtering and pulsed laser deposition
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP2009236693A (en) Ammonia concentration measuring sensor element, ammonia concentration measuring instrument, and ammonia concentration measuring method
Luthra et al. Ethanol sensing characteristics of Zn0. 99M0. 01O (M= Al/Ni) nanopowders
JP2000028573A (en) Hydrocarbon gas sensor
JPH02662B2 (en)
JP2004028749A (en) Method and device for measuring concentration of flammable gas
JP2000283941A (en) Metal oxide material for semiconductor sensor, and carbon monoxide sensor using the material
JP2011075421A (en) Gas sensing element and gas sensor
RU2403563C1 (en) Differential sensor for gas analyser
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP3669807B2 (en) Carbon monoxide detection sensor
RU2804013C1 (en) Humidity sensor and gas analytical multisensor chip based on the maxene structure of two-dimensional titanium-vanadium carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Ref document number: 4002969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term