JP3988971B2 - Sintered member - Google Patents

Sintered member Download PDF

Info

Publication number
JP3988971B2
JP3988971B2 JP2000048879A JP2000048879A JP3988971B2 JP 3988971 B2 JP3988971 B2 JP 3988971B2 JP 2000048879 A JP2000048879 A JP 2000048879A JP 2000048879 A JP2000048879 A JP 2000048879A JP 3988971 B2 JP3988971 B2 JP 3988971B2
Authority
JP
Japan
Prior art keywords
mass
sintered member
sintered
scuffing
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000048879A
Other languages
Japanese (ja)
Other versions
JP2001234305A (en
Inventor
永司 小川
岳 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2000048879A priority Critical patent/JP3988971B2/en
Publication of JP2001234305A publication Critical patent/JP2001234305A/en
Application granted granted Critical
Publication of JP3988971B2 publication Critical patent/JP3988971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関用摺動部材として使用される焼結部材に関し、更に詳しくは、例えば焼結カムシャフト用カムロブとして使用される耐スカッフィング性および耐ピッチング性に優れた焼結部材に関する。
【0002】
【従来の技術】
内燃機関に使用される種々の部材は、高回転高負荷運転に耐えることが要求される。特に、スリッパフォロワを相手部材とするカムシャフトに設けられるカムロブのように、相手部材に摺動接触する部材(以下「摺動部材」という。)は、高面圧下で、滑り(摺動接触)態様と転がり(転動接触)態様が同時に起こるので、高い耐スカッフィング性と耐ピッチング性が重要な要求特性となる。
【0003】
摺動接触タイプのカムロブとしては、従来からチル鋳鉄製のカムロブが一般に使用されている。さらに、相手部材とカムロブとの間の初期スカッフを抑制し、初期なじみ性を向上させることを目的として、相手部材と摺動接触するカムロブの接触部分に水蒸気処理膜を形成したカムロブが使用されている。
【0004】
一方、特公平3−60901号公報には、摺動部材を、高硬度、高密度で耐摩耗性に優れた焼結合金によって製造することが開示されている。こうした焼結合金によって製造された摺動部材、例えば摺動接触型のカムロブは、軽量化、コスト低減、耐摩耗性等の向上が図れるので、高回転高負荷運転が要求される内燃機関のカムシャフト用カムロブとして好ましい性質を兼ね備えている。さらに、焼結合金製のカムロブには、焼結冷却時の焼入性の向上と、基地硬さの向上を図って、多量のニッケルを含有させたものもある。
【0005】
【発明が解決しようとする課題】
しかしながら、上述の鋳鉄製のカムロブは、水蒸気処理膜を形成する際に、カムロブが装着された長いカムシャフトを水蒸気処理炉に投入して水蒸気処理されるので、一回の処理に投入できるカムシャフトの本数が少なく、コストアップの原因になるという問題がある。しかも、投入されるカムシャフトは、既に所定の寸法に研削されたものであるため、水蒸気処理後に曲がり(歪み)が発生しやすく、その曲がりを修正する後工程が必要になるといった問題もある。
【0006】
また、上述の焼結合金製のカムロブは、多量のNiを含有させることによって焼入性と基地硬さの向上を図っているが、こうした多量のNiの添加は、焼結後の焼結部材の組織中に、熱伝導性が悪くて耐スカッフィング性を著しく悪化させる残留オーステナイトを多量に残存させる。その結果、特に摺動接触タイプのカムロブ等に使用される場合には、スカッフが発生しやすく、異常摩耗が生じるおそれがある。なお、焼結部材に、上述のような水蒸気処理を行って初期スカッフの抑制と初期なじみ性の向上を図ることもできるが、上述の場合と同様な曲がり(歪み)の発生という問題がある。
【0007】
本発明は、上記問題を解決すべくなされたものであって、内燃機関用摺動部材に主に使用される焼結部材において、初期スカッフの抑制と初期なじみ性の向上を図ると共に、耐スカッフィング性および耐ピッチング性に優れた焼結部材を提供する。
【0008】
【課題を解決するための手段】
本発明は、C:1.5〜4.2質量%、Cr:2.0〜24.0質量%、Mo:0.5〜3.0質量%、Ni:0超〜1.0質量%以下、Si:0.2〜1.0質量%、P:0.2〜1.0質量%、必要に応じてB、V、Ti、Nb、W、Caの中の一種類以上、残部Feおよび不可避不純物からなる焼結部材であって、パーライト基地に炭化物を有することに特徴を有する。
【0009】
この発明によれば、焼結部材の基地がパーライト基地であるので、滑り性がよく耐スカッフィング性が向上する。さらに、Cr炭化物や複合炭化物等の炭化物を有するので、高硬度で優れた耐摩耗性を発揮することができる。また、焼結部材中のNi含有量が1.0質量%以下であるので、スカッフの発生要因となる熱伝導性の悪い残留オーステナイト量を少なくすることができる。
【0010】
さらに、本発明は、前記基地が10%以下の量の残留オーステナイトを有することに特徴を有する。
【0011】
この発明によれば、残留オーステナイト量が10%以下であるので、スカッフの発生が起こりにくい。そのため、本発明の焼結部材は、相手部材に摺動接触する部材として好適に用いられる。
【0012】
【発明の実施の形態】
本発明の焼結部材は、C:1.5〜4.2質量%、Cr:2.0〜24.0質量%、Mo:0.5〜3.0質量%、Ni:0超〜1.0質量%以下、Si:0.2〜1.0質量%、P:0.2〜1.0質量%、必要に応じてB、V、Ti、Nb、W、Caの中の一種類以上、残部Feおよび不可避不純物からなる成分組成を有するものである。図1は、製造された焼結部材の組織の一例を示す顕微鏡写真(200倍)である。この焼結部材の組織は、滑り性のよいパーライト基地1に、Cr炭化物2やCr−Fe−Mo−P複合炭化物3等の炭化物が析出した態様であり、さらに、その基地1の有する残留オーステナイト組織の割合(残留オーステナイト量)は10%以下である。こうした焼結部材は、相手部材と摺動接触する際に、初期スカッフの抑制と優れた初期なじみ性を発揮すると共に、高硬度で優れた耐摩耗性を発揮することができる。また、その基地組織には、熱伝導性の悪い残留オーステナイトがあまり残存しないので、残留オーステナイトを要因とした耐スカッフィング性の低下が抑制される。
【0013】
炭化物とは、Cr炭化物2やCr−Fe−Mo−P複合炭化物3等をいい、通常、Cr炭化物2とCr−Fe−Mo−P複合炭化物3の一方または両方がパーライト基地中に析出している。
【0014】
本発明においては、焼結部材中に、0超〜1.0質量%以下のNiを含有させることによって、基地中の残留オーステナイト量を抑制している。図2は、焼結部材中のNi含有量(質量%)と基地中の残留オーステナイト量(%)との関係を示すグラフである。図2に示すように、Ni含有量が1.0質量%を超えると、基地中の残留オーステナイト量が急激に増加する。こうした残留オーステナイトは、耐摩耗性を向上させるには好ましい場合もあるが、耐スカッフィング性に対しては好ましくなく、残留オーステナイト量が10%を超えた焼結部材は、相手部材が鋼材である場合に、特にスカッフの発生が起こり易くなる。そのため、本発明においては、Ni含有量を0超〜1.0質量%以下に限定している。
【0015】
次に、焼結部材が含有するNi以外の各成分元素を上記範囲に限定した理由を以下に説明する。
【0016】
C含有量が4.2質量%を超えると、粗大な炭化物(特にCr炭化物)が焼結部材中で形成され、その粗大な炭化物が液相焼結中に粗大な空孔を生じさせて基地を脆化させる。C含有量が1.5質量%未満では、高硬度の微細炭化物が十分に形成されず、十分な耐摩耗性および耐スカッフィング性を有さない。このため、C含有量を1.5〜4.2質量%に限定する。また、焼結部材を、高負荷・高面圧の内燃機関の摺動部材として用いる場合には、C含有量を3.0〜4.2質量%と高めに設定すると同時に、Cr含有量を12.0〜24.0質量%と高めに設定することが好ましい。
【0017】
Cr含有量が24.0質量%を超えると、Cr炭化物を微細化させる度合いが小さくなり、硬さも過大になる。Cr含有量が2.0質量%未満では、Cr炭化物がやや粗大になってくるので、高硬度の微細炭化物を十分に形成することができず、十分な耐摩耗性および耐スカッフィング性を有さない。このため、Cr含有量を2.0〜24.0質量%に限定する。また、高負荷・高面圧の内燃機関の摺動部材として用いる場合には、C含有量との関係において、上述の範囲とすることが好ましい。
【0018】
Moは基地に固溶して硬度を高め、耐摩耗性を向上させる。しかし、この効果は、Mo含有量が3.0質量%を超えてもほとんど変化しない。また、Mo含有量が0.5質量%未満では、こうした効果を十分に発揮できない。このため、Mo含有量を0.5〜3.0質量%に限定する。なお、この範囲内のMoは、残留オーステナイト量に影響を及ぼさない。
【0019】
Si含有量が1.0質量%を超えると、基地が脆化するほか、粉末の圧粉成形性が低下し、焼結後の焼結部材の変形が大きくなる。また、Siは、CおよびP含有量を低くした際に液相の生成を促進させる成分であるが、Si含有量が0.2質量%未満では液相促進の効果が得られない。また、Siは、粉末製造時の脱酸素剤として添加するため、多少残存する。このため、管理可能範囲として0.2質量%を下限値とし、0.2〜1.0質量%の範囲に限定する。
【0020】
PはFe−C−P共晶のステダイトを生じさせる。ステダイトは硬度が非常に高く、凝固点が950℃前後と低いため液相焼結を促進させる。しかし、P含有量が1.0質量%を超えると、ステダイトが過多に生じ、被削性が悪くなる。また、0.2質量%未満では、ステダイトの析出量が少なくなって、高い耐摩耗性が得られず、また、液相も生じにくくなる。このため、P含有量を0.2〜1.0質量%に限定する。
【0022】
次に、焼結部材の製造方法について説明する。
【0023】
本発明の焼結部材は、主要成分となる鉄粉または所定の元素を含んだ鉄系合金粉末中に、最終的な成分組成が上記範囲内となるように所定量の各種金属粉末を添加して焼結部材用粉末を調整し、次いで通常の焼結方法により、先ず、焼結部材用粉末をプレス成形して圧粉体を形成し、その後、その圧粉体を液相焼結法によって焼結処理することにより製造される。
【0024】
焼結部材用の粉末には、金型成型時の圧粉性と型抜け性を良くするために、ステアリン酸亜鉛等の潤滑剤を添加することが好ましい。
【0025】
液相焼結処理の好ましい処理温度は1100〜1200℃であり、更に好ましくは1110〜1160℃である。また、この時の焼結時間は60〜90分間程度が好ましい。また、必要に応じて焼き戻し処理等を行い、得られる焼結部材の特性を調整することができる。
【0026】
本発明の焼結部材は、摺動接触タイプのカムロブとして好ましく用いることができ、特に鋼製のカムフォロワーを相手部材として摺動接触する場合に、より優れた効果を発揮する。さらに、加工性とコストパフォーマンスにおいても優れている。
【0027】
カムロブを本発明の焼結部材で製造する場合、カムロブの圧粉体を液相焼結する際の収縮によって、カムロブとカム軸とを強固に接合させることができる。具体的には、焼結合金製または鋼管製のカム軸と、焼結部材からなるカムロブとを組み付けるタイプのカムシャフトの場合、液相焼結により、カムロブの高密度焼結処理と、カムロブをカム軸に拡散接合させる接合処理とを同時に行って、接合強度に優れたカムシャフトを製造することができる。
【0028】
【実施例】
本発明の焼結部材を更に具体的に説明する。
【0029】
参考例1)
焼結後の成分組成が、C:2.4質量%、Cr:12.0質量%、Mo:1.0質量%、Si:0.8質量%、P:0.5質量%、Fe:残り、となるように各元素を鉄粉中に添加して焼結部材用粉末を調整した。さらに、潤滑剤としてステアリン酸亜鉛を加えて混合した。次いで、5〜7t/cmの面圧でプレス成形して圧粉体を形成した後、真空炉中で1100〜1200℃(平均1160℃)の温度で焼結し、参考例1の焼結部材を得た。物性等の試験結果を表1に示した。金属組織の顕微鏡写真(200倍、ナイタル腐食)を図1に示した。
【0030】
(実施例
焼結後の成分組成が、C:2.0質量%、Cr:4.0質量%、Mo:1.0質量%、Ni:1.0質量%、Si:0.8質量%、P:0.5質量%、Fe:残り、となるように各元素を鉄粉中に添加して焼結部材用粉末を調整した。その他は、参考例1と同様として実施例の焼結部材を得た。物性等の試験結果を表1に示した。金属組織の顕微鏡写真(200倍、ナイタル腐食)を図3に示した。
【0031】
(比較例1)
焼結後の成分組成が、C:2.6質量%、Cr:8.0質量%、Mo:2.0質量%、Ni:1.9質量%、Si:0.8質量%、P:0.5質量%、Fe:残り、となるように各元素を鉄粉中に添加して焼結部材用粉末を調整した。その他は、参考例1と同様として比較例1の焼結部材を得た。物性等の試験結果を表1に示した。
【0032】
(比較例2)
比較例1の焼結部材に、823°K、90分間の条件で水蒸気処理を施し、比較例2の焼結部材を得た。物性等の試験結果を表1に示した。
【0033】
(比較例3)
成分組成が、C:3.4質量%、Cr:0.8質量%、Mo:2.0質量%、Ni+Cu:2.0質量%、Si:2.0質量%、B:0.4質量%、Mn:0.7質量%、Fe:残り、となるように各元素を溶解し、冷やし金を設けた鋳型に流し込んで比較例3のチル鋳鉄製部材を得た。物性等の試験結果を表1に示した。
【0034】
(試験方法)
耐スカッフィング性の評価には、ばねの圧縮量を変更することにより試験部材にかかる負荷(面圧)を自由に調節できるモータリング試験装置を使用し、試験後のカムシャフトカムローブ部を観察し、スカッフィングが発生する限界面圧によって評価した。耐ピッチング性は、実機エンジンにて、タペットのジャンピングが発生する高回転域を多用し、カムノーズ部付近のカム/タペット間の接触面圧を過酷にした条件でのファイアリング試験を実施し、試験後のカムシャフトカムローブ部を観察することによって評価した。図4は、参考例1、実施例1と各比較例で得られた試験部材の耐スカッフィング性を、比較例1のスカッフ限界面圧との比較において評価した結果を示すグラフである。
【0035】
試験部材のロックウェル硬さ(HRC)は従来通りの方法で測定し、炭化物の大きさは拡大写真から測定し、残留オーステナイト量の測定はX線(定量)測定により行った。
【0036】
(試験結果)
【表1】

Figure 0003988971
【0037】
参考例1の焼結部材は、図1に示すように、パーライト基地となり、その中には、微細なCr炭化物およびCr−Fe−Mo−Pからなる複合炭化物が析出しているのが観察された。残留オーステナイト量は約5%であり、スカッフとピッチングは発生しなかった。
【0038】
実施例の焼結部材は、図3に示すように、パーライト基地となり、その中には、参考例1に比べてやや大きいCr炭化物およびCr−Fe−Mo−Pからなる複合炭化物が析出しているのが観察された。また、細く尖った針状ステダイトが析出しているのが観察された。残留オーステナイト量は約5%であり、スカッフとピッチングは発生しなかった。なお、やや大きい炭化物の析出と針状ステダイトの析出は、参考例1と比較すると若干耐ピッチング性が低下するが、なお優れた耐ピッチング性を発揮した。
【0039】
比較例1の焼結部材は、基地組織がマルテンサイト、ベイナイトおよび残留オーステナイトの混在組織であった。さらに、その残留オーステナイト量は約50%であり、スカッフが発生した。比較例2の焼結部材は、水蒸気処理膜の効果および、水蒸気処理を施す際の熱によって残留オーステナイトが低減する効果によって、優れた耐スカッフィング性を示した(図4を参照。)が、コスト低減を図れなかった。比較例3のチル鋳鉄製部材は、耐スカッフィング性には優れているが耐ピッチング性に劣っていた。
【0040】
【発明の効果】
以上述べたように、本発明の焼結部材によれば、優れた耐スカッフィング性と、優れた耐摩耗性を発揮することができるので、摺動接触する部材、例えば焼結カムシャフト用カムロブとして好適に使用できると共に、初期スカッフの抑制と初期なじみ性においても優れている。さらに、残留オーステナイト量が10%以下であるので、残留オーステナイトを要因とした耐スカッフィング性の低下が抑制される。その結果、本発明の焼結部材は、耐スカッフィング性の向上を目的とする水蒸気処理が不要になるため、コスト的に優れると共に、水蒸気処理後の曲がり(歪み)が起こらないという従来にない効果を発揮する。
【図面の簡単な説明】
【図1】製造された焼結部材の組織の一例を示す顕微鏡写真である。
【図2】焼結部材中のNi含有量(質量%)と基地中の残留オーステナイト量(%)の関係を示すグラフである。
【図3】製造された焼結部材の組織の他の一例を示す顕微鏡写真である。
【図4】各実施例と各比較例で得られた試験部材の耐スカッフィング性を、比較例1のスカッフ限界面圧との比較において評価した結果を示すグラフである。
【符号の説明】
1 基地
2 Cr炭化物
3 複合炭化物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered member used as a sliding member for an internal combustion engine, and more particularly to a sintered member excellent in scuffing resistance and pitting resistance used as, for example, a cam lobe for a sintered camshaft.
[0002]
[Prior art]
Various members used in an internal combustion engine are required to withstand high rotation and high load operation. In particular, a member (hereinafter referred to as a “sliding member”) that is in sliding contact with a mating member, such as a cam lobe provided on a camshaft whose mating member is a slipper follower, slides (sliding contact) under high surface pressure. Since the mode and the rolling (rolling contact) mode occur simultaneously, high scuffing resistance and pitting resistance are important required characteristics.
[0003]
Conventionally, as a sliding contact type cam lobe, a chill cast iron cam lobe has been generally used. Furthermore, for the purpose of suppressing the initial scuff between the mating member and the cam lobe and improving the initial conformability, a cam lobe in which a steam treatment film is formed on the contact portion of the cam lobe that is in sliding contact with the mating member is used. Yes.
[0004]
On the other hand, Japanese Examined Patent Publication No. 3-60901 discloses that the sliding member is made of a sintered alloy having high hardness, high density, and excellent wear resistance. A sliding member made of such a sintered alloy, such as a sliding contact type cam lobe, can be reduced in weight, reduced in cost, and improved in wear resistance, etc., so an internal combustion engine cam that requires high rotation and high load operation It has desirable properties as a cam lobe for a shaft. Furthermore, some cam lobes made of sintered alloy contain a large amount of nickel in order to improve the hardenability during cooling of the sintering and improve the base hardness.
[0005]
[Problems to be solved by the invention]
However, when the above-mentioned cast iron cam lobe is formed with a steam treatment film, a long cam shaft equipped with the cam lobe is put into a steam treatment furnace for steam treatment, so that the cam shaft can be put into a single treatment. There is a problem that the number of slabs is small, which causes an increase in cost. In addition, since the camshaft to be introduced is already ground to a predetermined dimension, there is a problem that bending (distortion) is likely to occur after the steam treatment, and a post-process for correcting the bending is required.
[0006]
The above-mentioned cam lob made of a sintered alloy is intended to improve hardenability and base hardness by containing a large amount of Ni. The addition of such a large amount of Ni is a sintered member after sintering. In this structure, a large amount of residual austenite that has poor thermal conductivity and significantly deteriorates scuffing resistance is left. As a result, particularly when used in a sliding contact type cam lobe or the like, scuffing is likely to occur, and abnormal wear may occur. The sintered member can be subjected to steam treatment as described above to suppress initial scuffing and improve initial conformability, but there is a problem of occurrence of bending (strain) similar to the above case.
[0007]
The present invention has been made to solve the above-mentioned problems, and in a sintered member mainly used for a sliding member for an internal combustion engine, it is intended to suppress initial scuffing and improve initial conformability and to prevent scuffing. And a sintered member excellent in pitting resistance.
[0008]
[Means for Solving the Problems]
In the present invention, C: 1.5 to 4.2 mass%, Cr: 2.0 to 24.0 mass%, Mo: 0.5 to 3.0 mass%, Ni: more than 0 to 1.0 mass% Hereinafter, Si: 0.2 to 1.0% by mass, P: 0.2 to 1.0% by mass , one or more of B, V, Ti, Nb, W, and Ca as required, the balance Fe And a sintered member made of inevitable impurities, characterized by having carbide in the pearlite matrix .
[0009]
According to this invention, since the base of the sintered member is a pearlite base , the sliding property is good and the scuffing resistance is improved. Furthermore, since it has carbides such as Cr carbide and composite carbide, it can exhibit excellent wear resistance with high hardness. In addition, since the Ni content in the sintered member is 1.0% by mass or less, the amount of retained austenite having poor thermal conductivity that causes scuffing can be reduced.
[0010]
Furthermore, the present invention is characterized in that the base has an amount of retained austenite of 10% or less.
[0011]
According to the present invention, since the amount of retained austenite is 10% or less, scuffing hardly occurs. Therefore, the sintered member of the present invention is suitably used as a member that comes into sliding contact with the mating member.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The sintered member of the present invention has C: 1.5 to 4.2% by mass, Cr: 2.0 to 24.0% by mass, Mo: 0.5 to 3.0% by mass, Ni: more than 0 to 1 0.0 mass% or less, Si: 0.2-1.0 mass%, P: 0.2-1.0 mass%, one type of B, V, Ti, Nb, W, Ca as required As mentioned above, it has the component composition which consists of remainder Fe and inevitable impurities. FIG. 1 is a photomicrograph (200 ×) showing an example of the structure of the manufactured sintered member. Organization of the sintered member, the pearlite base 1 good slip properties, an aspect carbides are precipitated, such as Cr carbides 2 and Cr-Fe-Mo-P complex carbide 3, further residual possessed by the base 1 The ratio of the austenite structure (residual austenite amount) is 10% or less. When such a sintered member is in sliding contact with the mating member, it exhibits initial scuffing suppression and excellent initial conformability, as well as high hardness and excellent wear resistance. Further, since the retained austenite having poor thermal conductivity does not remain in the base structure, a decrease in scuffing resistance due to the retained austenite is suppressed.
[0013]
The carbide refers to Cr carbide 2, Cr—Fe—Mo—P composite carbide 3 or the like, and usually one or both of Cr carbide 2 and Cr—Fe—Mo—P composite carbide 3 precipitate in the pearlite matrix. Yes.
[0014]
In the present invention, the amount of retained austenite in the matrix is suppressed by containing more than 0 to 1.0% by mass of Ni in the sintered member. FIG. 2 is a graph showing the relationship between the Ni content (% by mass) in the sintered member and the residual austenite amount (%) in the matrix. As shown in FIG. 2, when the Ni content exceeds 1.0% by mass, the amount of retained austenite in the base increases rapidly. Although such retained austenite may be preferable for improving wear resistance, it is not preferable for scuffing resistance, and a sintered member having a retained austenite amount exceeding 10% is a case where the counterpart member is a steel material. In particular, scuffing is likely to occur. Therefore, in the present invention, it is limited to Ni content below from greater than 0 to 1.0 wt%.
[0015]
Next, the reason why each component element other than Ni contained in the sintered member is limited to the above range will be described.
[0016]
When the C content exceeds 4.2% by mass, coarse carbides (particularly Cr carbides) are formed in the sintered member, and the coarse carbides generate coarse pores during liquid phase sintering. Embrittles. When the C content is less than 1.5% by mass, fine carbides with high hardness are not sufficiently formed, and sufficient wear resistance and scuffing resistance are not obtained. For this reason, C content is limited to 1.5-4.2 mass%. When the sintered member is used as a sliding member for an internal combustion engine with a high load and a high surface pressure, the C content is set to a high value of 3.0 to 4.2% by mass, and at the same time, the Cr content is set. It is preferable to set it as high as 12.0 to 24.0 mass%.
[0017]
If the Cr content exceeds 24.0% by mass, the degree of miniaturization of Cr carbide decreases and the hardness becomes excessive. When the Cr content is less than 2.0% by mass, the Cr carbide becomes slightly coarse, so that it is not possible to sufficiently form a high-hardness fine carbide and has sufficient wear resistance and scuffing resistance. Absent. For this reason, Cr content is limited to 2.0-24.0 mass%. Further, when used as a sliding member of an internal combustion engine having a high load and a high surface pressure, the above range is preferable in relation to the C content.
[0018]
Mo dissolves in the base to increase hardness and improve wear resistance. However, this effect hardly changes even if the Mo content exceeds 3.0% by mass. Further, when the Mo content is less than 0.5% by mass, such effects cannot be sufficiently exhibited. For this reason, Mo content is limited to 0.5-3.0 mass%. Mo in this range does not affect the amount of retained austenite.
[0019]
When the Si content exceeds 1.0% by mass, the matrix becomes brittle, the compactability of the powder is reduced, and deformation of the sintered member after sintering increases. Si is a component that promotes the formation of a liquid phase when the C and P contents are lowered. However, if the Si content is less than 0.2% by mass, the effect of promoting the liquid phase cannot be obtained. Further, since Si is added as an oxygen scavenger during powder production, it remains somewhat. For this reason, 0.2 mass% is made into a manageable range, and it sets it as a lower limit, and is limited to the range of 0.2-1.0 mass%.
[0020]
P produces a Fe-C-P eutectic steady. Steadite has a very high hardness and promotes liquid phase sintering because its freezing point is as low as around 950 ° C. However, if the P content exceeds 1.0% by mass, excessive steadite is generated and machinability is deteriorated. On the other hand, when the amount is less than 0.2% by mass, the precipitation amount of steadite is reduced, high wear resistance cannot be obtained, and a liquid phase is hardly generated. For this reason, P content is limited to 0.2-1.0 mass%.
[0022]
Next, the manufacturing method of a sintered member is demonstrated.
[0023]
In the sintered member of the present invention, a predetermined amount of various metal powders are added to iron powder as a main component or an iron-based alloy powder containing a predetermined element so that the final component composition falls within the above range. The powder for the sintered member is prepared, and then the powder for the sintered member is formed by pressing the powder for the sintered member by a normal sintering method. Then, the green compact is formed by the liquid phase sintering method. Manufactured by sintering.
[0024]
It is preferable to add a lubricant such as zinc stearate to the powder for the sintered member in order to improve the compactability and mold release properties during mold molding.
[0025]
A preferred treatment temperature for the liquid phase sintering treatment is 1100 to 1200 ° C, more preferably 1110 to 1160 ° C. The sintering time at this time is preferably about 60 to 90 minutes. Moreover, a tempering process etc. can be performed as needed and the characteristic of the sintered member obtained can be adjusted.
[0026]
The sintered member of the present invention can be preferably used as a sliding contact type cam lobe, and exhibits a more excellent effect particularly when sliding contact is made with a steel cam follower as a counterpart member. Furthermore, it is excellent in workability and cost performance.
[0027]
When the cam lobe is manufactured with the sintered member of the present invention, the cam lobe and the cam shaft can be firmly joined by contraction when the green compact of the cam lobe is subjected to liquid phase sintering. Specifically, in the case of a camshaft of a type in which a cam shaft made of a sintered alloy or steel pipe and a cam lobe made of a sintered member are assembled, a high-density sintering process of the cam lobe and a cam lobe are performed by liquid phase sintering. A camshaft having excellent bonding strength can be manufactured by performing a bonding process for diffusion bonding to the camshaft at the same time.
[0028]
【Example】
The sintered member of the present invention will be described more specifically.
[0029]
( Reference Example 1)
The component composition after sintering is C: 2.4 mass%, Cr: 12.0 mass%, Mo: 1.0 mass%, Si: 0.8 mass%, P: 0.5 mass%, Fe: Each element was added to the iron powder so as to obtain the remaining powder. Further, zinc stearate as a lubricant was added and mixed. Then, after forming a green compact by press-forming at a surface pressure of 5~7t / cm 2, and sintered at a temperature of 1100 to 1200 ° C. in a vacuum oven (average 1160 ° C.), the sintering of Reference Example 1 A member was obtained. Table 1 shows the test results of physical properties and the like. A micrograph of the metal structure (200 times, night corrosion) is shown in FIG.
[0030]
(Example 1 )
The component composition after sintering was C: 2.0 mass%, Cr: 4.0 mass%, Mo: 1.0 mass%, Ni: 1.0 mass%, Si: 0.8 mass%, P: Each element was added to the iron powder so as to be 0.5% by mass, Fe: the rest, and the sintered member powder was prepared. Otherwise, the sintered member of Example 1 was obtained in the same manner as Reference Example 1. Table 1 shows the test results of physical properties and the like. A photomicrograph of the metal structure (200 times, nital corrosion) is shown in FIG.
[0031]
(Comparative Example 1)
The component composition after sintering was C: 2.6 mass%, Cr: 8.0 mass%, Mo: 2.0 mass%, Ni: 1.9 mass%, Si: 0.8 mass%, P: Each element was added to the iron powder so as to be 0.5% by mass, Fe: the rest, and the sintered member powder was prepared. Otherwise, the sintered member of Comparative Example 1 was obtained in the same manner as Reference Example 1. Table 1 shows the test results of physical properties and the like.
[0032]
(Comparative Example 2)
The sintered member of Comparative Example 1 was subjected to steam treatment under the conditions of 823 ° K. and 90 minutes to obtain the sintered member of Comparative Example 2. Table 1 shows the test results of physical properties and the like.
[0033]
(Comparative Example 3)
The component composition is C: 3.4% by mass, Cr: 0.8% by mass, Mo: 2.0% by mass, Ni + Cu: 2.0% by mass, Si: 2.0% by mass, B: 0.4% by mass %, Mn: 0.7% by mass, Fe: remaining, each element was dissolved and poured into a mold provided with a chilled metal to obtain a chill cast iron member of Comparative Example 3. Table 1 shows the test results of physical properties and the like.
[0034]
(Test method)
For evaluation of scuffing resistance, a motoring test device that can freely adjust the load (surface pressure) applied to the test member by changing the amount of compression of the spring is used, and the camshaft cam lobe after the test is observed. The critical surface pressure at which scuffing occurs was evaluated. Pitching resistance is tested by conducting a firing test under the condition that the contact surface pressure between the cam and tappet near the cam nose is severe, using a high engine speed range where tappet jumping occurs in the actual engine. Evaluation was made by observing the later camshaft cam lobe. FIG. 4 is a graph showing the results of evaluating the scuffing resistance of the test members obtained in Reference Example 1, Example 1 and each comparative example in comparison with the scuffing limit surface pressure of Comparative Example 1.
[0035]
The Rockwell hardness (HRC) of the test member was measured by a conventional method, the size of the carbide was measured from an enlarged photograph, and the amount of retained austenite was measured by X-ray (quantitative) measurement.
[0036]
(Test results)
[Table 1]
Figure 0003988971
[0037]
Sintered member of Example 1, as shown in FIG. 1, pearlite base, and the therein, observed that composite carbide consisting of fine Cr carbide and Cr-Fe-Mo-P is precipitated It was done. The amount of retained austenite was about 5%, and no scuffing or pitting occurred.
[0038]
Sintered member of Example 1, as shown in FIG. 3, pearlite base, and the inside thereof, the composite carbide precipitation as compared with Reference Example 1 consisting of slightly larger Cr carbide and Cr-Fe-Mo-P Was observed. It was also observed that fine and sharp needle-like steadites were deposited. The amount of retained austenite was about 5%, and no scuffing or pitting occurred. In addition, although slightly larger carbide precipitation and acicular steadite precipitation were slightly reduced in pitting resistance as compared with Reference Example 1, they still exhibited excellent pitting resistance.
[0039]
In the sintered member of Comparative Example 1, the base structure was a mixed structure of martensite, bainite, and retained austenite. Furthermore, the amount of retained austenite was about 50%, and scuffing occurred. The sintered member of Comparative Example 2 showed excellent scuffing resistance due to the effect of the steam-treated film and the effect of reducing the retained austenite by the heat during the steam treatment (see FIG. 4), but the cost. Reduction could not be achieved. The chill cast iron member of Comparative Example 3 was excellent in scuffing resistance but inferior in pitting resistance.
[0040]
【The invention's effect】
As described above, according to the sintered member of the present invention, excellent scuffing resistance and excellent wear resistance can be exhibited. Therefore, as a sliding contact member, for example, a cam lobe for a sintered camshaft It can be used suitably, and is excellent in suppression of initial scuff and initial conformability. Furthermore, since the amount of retained austenite is 10% or less, a decrease in scuffing resistance due to retained austenite is suppressed. As a result, since the sintered member of the present invention does not require steam treatment for the purpose of improving scuffing resistance, it is excellent in cost and has an unprecedented effect that bending (strain) after steam treatment does not occur. Demonstrate.
[Brief description of the drawings]
FIG. 1 is a photomicrograph showing an example of the structure of a manufactured sintered member.
FIG. 2 is a graph showing the relationship between the Ni content (% by mass) in the sintered member and the residual austenite amount (%) in the matrix.
FIG. 3 is a photomicrograph showing another example of the structure of the manufactured sintered member.
4 is a graph showing the results of evaluating the scuffing resistance of the test members obtained in each Example and each Comparative Example in comparison with the scuffing limit surface pressure of Comparative Example 1. FIG.
[Explanation of symbols]
1 base 2 Cr carbide 3 composite carbide

Claims (2)

C:1.5〜4.2質量%、Cr:2.0〜24.0質量%、Mo:0.5〜3.0質量%、Ni:0超〜1.0質量%以下、Si:0.2〜1.0質量%、P:0.2〜1.0質量%、残部Feおよび不可避不純物からなる焼結部材であって、パーライト基地に炭化物を有することを特徴とする焼結部材。C: 1.5 to 4.2 mass%, Cr: 2.0 to 24.0 mass%, Mo: 0.5 to 3.0 mass%, Ni: more than 0 to 1.0 mass%, Si: A sintered member comprising 0.2 to 1.0% by mass, P: 0.2 to 1.0% by mass , balance Fe and inevitable impurities , and having a pearlite matrix with carbides . 前記基地は、10%以下の量の残留オーステナイトを有することを特徴とする請求項1に記載の焼結部材。  The sintered member according to claim 1, wherein the base has an amount of retained austenite of 10% or less.
JP2000048879A 2000-02-21 2000-02-21 Sintered member Expired - Fee Related JP3988971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048879A JP3988971B2 (en) 2000-02-21 2000-02-21 Sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048879A JP3988971B2 (en) 2000-02-21 2000-02-21 Sintered member

Publications (2)

Publication Number Publication Date
JP2001234305A JP2001234305A (en) 2001-08-31
JP3988971B2 true JP3988971B2 (en) 2007-10-10

Family

ID=18570903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048879A Expired - Fee Related JP3988971B2 (en) 2000-02-21 2000-02-21 Sintered member

Country Status (1)

Country Link
JP (1) JP3988971B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705848B2 (en) 2002-01-24 2004-03-16 Copeland Corporation Powder metal scrolls
US7963752B2 (en) 2007-01-26 2011-06-21 Emerson Climate Technologies, Inc. Powder metal scroll hub joint
CN201972923U (en) 2007-10-24 2011-09-14 艾默生环境优化技术有限公司 Scroll machine
US8955220B2 (en) 2009-03-11 2015-02-17 Emerson Climate Technologies, Inc. Powder metal scrolls and sinter-brazing methods for making the same
JP5532872B2 (en) * 2009-12-01 2014-06-25 株式会社ジェイテクト Camshaft device
KR101350944B1 (en) 2011-10-21 2014-01-16 포항공과대학교 산학협력단 Ferrous-alloys for powder injection molding

Also Published As

Publication number Publication date
JP2001234305A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP2765811B2 (en) Hard phase dispersed iron-based sintered alloy and method for producing the same
JP2506333B2 (en) Abrasion resistant iron-based sintered alloy
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JPH0350824B2 (en)
JP4299042B2 (en) Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy, and method for producing iron-based sintered alloy
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JPH0350823B2 (en)
JPH0360901B2 (en)
JP3988971B2 (en) Sintered member
JPS599152A (en) Wear-resistant sintered alloy
JPH0610321B2 (en) Abrasion resistant sintered alloy
JPS6365056A (en) Wear resistant sintered iron alloy
JP3809944B2 (en) Hard particle dispersed sintered alloy and method for producing the same
JP3988972B2 (en) Camshaft
JPS6033343A (en) Wear resistance sintered alloy
JP3440008B2 (en) Sintered member
JP2003113445A (en) Cam member and cam shaft
JPS5941451A (en) Anti-wear fe base sintered alloy having self-lubricity
JPH0115583B2 (en)
JP3777079B2 (en) Camshaft
JPS5828342B2 (en) Valve seat for internal combustion engines with excellent heat and wear resistance and machinability
JP2002220645A (en) Iron-based sintered alloy of hard-particle dispersion type
JPH0372052A (en) Manufacture of wear-resistant sintered alloy
JP3187975B2 (en) Sintered alloy for sliding members with excellent scuffing and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3988971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees