JPS6033343A - Wear resistance sintered alloy - Google Patents

Wear resistance sintered alloy

Info

Publication number
JPS6033343A
JPS6033343A JP14096383A JP14096383A JPS6033343A JP S6033343 A JPS6033343 A JP S6033343A JP 14096383 A JP14096383 A JP 14096383A JP 14096383 A JP14096383 A JP 14096383A JP S6033343 A JPS6033343 A JP S6033343A
Authority
JP
Japan
Prior art keywords
sintered alloy
wear resistance
steadite
wear
processability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14096383A
Other languages
Japanese (ja)
Other versions
JPH0379428B2 (en
Inventor
Shigeru Urano
浦野 茂
Osamu Hirakawa
修 平河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP14096383A priority Critical patent/JPS6033343A/en
Priority to GB08506986A priority patent/GB2155037B/en
Priority to PCT/JP1984/000122 priority patent/WO1985000835A1/en
Priority to DE19843490361 priority patent/DE3490361T1/en
Priority to DE3490361A priority patent/DE3490361C2/en
Publication of JPS6033343A publication Critical patent/JPS6033343A/en
Publication of JPH0379428B2 publication Critical patent/JPH0379428B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • C22C33/0271Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5% with only C, Mn, Si, P, S, As as alloying elements, e.g. carbon steel

Abstract

PURPOSE:To develop a sintered alloy material as a slide member for an internal combustion engine excellent in wear resistance property and processability, by powdering an Fe-material containing a proper amount of Fe-C-P eutectic steadite, and using the obtained powder as the stock material for the sintered alloy material. CONSTITUTION:A powder of an Fe-material containing 1.5-2.5% C, 0.5-3.0% Si and 0.2-0.6% P is used as the material of the cam shaft or the rocker arm of an internal-combustion engine and, after molding, liquid phase sintering is performed to make it possible to prepare a sintered alloy member having excellent wear resistance property and processability. According to circumstances, either one of Mn<1% or 1-4% Cu is further contained or 2% or less of at least one of Mo, Ni and Cr is contained. By this method, a sintered alloy material containing a proper amount of steadite having an Fe-C-P eutectic structure and excellent in wear-resistance property and processability as a slide member is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関用摺動部材として使用yれる耐摩耗性
焼結合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a wear-resistant sintered alloy used as a sliding member for an internal combustion engine.

〈従来技術〉 近時、内燃機関用の諸部材は高負荷運転に酎えることが
要求され、特にカムシャフト、ロッカアーム等の摺動部
材は高面圧に対する耐久性が要求されるようになった。
<Prior art> In recent years, various parts for internal combustion engines have been required to withstand high-load operation, and in particular, sliding members such as camshafts and rocker arms are required to have durability against high surface pressure. .

この要求を満たすと共に、加工費と材料費の節減と軽量
化を図るため、摺動部材に合金粉末の焼結材料を使用す
ることが試みられてきた。
In order to meet this demand, reduce processing costs and material costs, and reduce weight, attempts have been made to use sintered alloy powder materials for sliding members.

〈発明の目的〉 本発明は上記要求に応え得る内燃機関用摺動部材の材料
として、高い耐摩耗性と優れた加工性を有する焼結合金
を提供することを目的とするものである。
<Object of the Invention> An object of the present invention is to provide a sintered alloy having high wear resistance and excellent workability as a material for a sliding member for an internal combustion engine that can meet the above requirements.

〈発明の構成〉 前記目的を達成するため本発明の耐摩耗性焼結合金は、
重量比でC1,5〜2.5%、Si0.5〜3゜0%、
Po、2〜0.Ei%、残部Feを含み、液相において
焼結されるものであるが、上記の元素以外に、重量比で
1.0%以下のMnと1.0〜Ii、o%のCuのいず
れかを含むものでもよく、あるいはMo、N、i、Cr
のうち一種類以上を重量比で2.0%含むものでもよい
<Configuration of the Invention> In order to achieve the above object, the wear-resistant sintered alloy of the present invention has the following features:
Weight ratio: C1.5~2.5%, Si0.5~3゜0%,
Po, 2-0. Ei%, balance Fe, and is sintered in the liquid phase, but in addition to the above elements, either Mn of 1.0% or less and Cu of 1.0 to Ii, o% by weight ratio or Mo, N, i, Cr
It may contain 2.0% by weight of one or more of these.

ここで、Cを 1.5〜2.5%とした理由は、Cが2
.5%を越えると、遊離黒鉛が多量に生じて割れが発生
しやすくなり、又、硬度が非常に高いセメンタイトとF
e−C−Pの共晶であるステダイトが過多に生じて被削
性が悪くなるからである。逆に、Cが1.5%未満では
、セメンタイト、ステダイトの析出量が少なくなり、1
w摩耗性を高めることができない。ステダイトは凝固点
が950 ’0前後と低く液相焼結を促進させるが、そ
のステダイトが少ないと液相が生じ難くなる。したがっ
て、Cの組成範囲を1.5〜2.5%に限定すれば、セ
メンタイトとステダイトの析出による高い耐摩耗性が得
られると共に、ステダイトによる液相焼結も促進される
Here, the reason for setting C to 1.5 to 2.5% is that C is 2
.. If it exceeds 5%, a large amount of free graphite will be generated and cracks will easily occur, and cementite and F, which have extremely high hardness, will
This is because too much steadite, which is the eutectic of e-C-P, is produced, resulting in poor machinability. Conversely, when C is less than 1.5%, the amount of cementite and steadite precipitated decreases, and 1.
w It is not possible to increase wear resistance. Steadite has a low freezing point of around 950'0 and promotes liquid phase sintering, but if there is less steadite, it becomes difficult to form a liquid phase. Therefore, if the composition range of C is limited to 1.5 to 2.5%, high wear resistance due to the precipitation of cementite and steadite can be obtained, and liquid phase sintering due to steadite is also promoted.

本発明の合金は液相焼結を特徴とする。本発明の合金が
カムシャフト、ロッカアーム等の摺動部として母材に部
分的に組付けられて使用されるとき、その特徴は効果を
奏する。すなわち、粉末焼結合金の液相焼結時の収縮を
利用すれば、合金と母材の強固な固着が得られる。例え
ば、シャフトを鋼管とし、そのシャフトに焼結合金製の
カムロブで組付ける構造のカムシャフトの場合、カムロ
ブは高密度になると共にカムシャフトと強固に結合する
The alloy of the invention is characterized by liquid phase sintering. When the alloy of the present invention is used as a sliding part of a camshaft, rocker arm, etc. by being partially assembled to a base material, its characteristics are effective. That is, by utilizing the contraction of the powder sintered alloy during liquid phase sintering, strong adhesion between the alloy and the base material can be obtained. For example, in the case of a camshaft having a structure in which the shaft is made of a steel tube and a cam lobe made of a sintered alloy is attached to the shaft, the cam lobe has a high density and is firmly connected to the camshaft.

Slを 0.5〜3.0%とする理由は、Siが3.0
%を越えると、基地が脆化する外、粉末の圧粉成形性が
低下し、焼結時の変形が大きくなることと、SlはC,
Pの量を低い範囲に限定した上で!夜相の発生を促進さ
せる成分となるが、 0.5%未満ではこの効果は得ら
れないことによる。
The reason for setting Sl to 0.5 to 3.0% is that Si is 3.0%.
%, the matrix becomes brittle, the compactability of the powder decreases, deformation during sintering becomes large, and Sl is C,
After limiting the amount of P to a low range! It is a component that promotes the occurrence of the night phase, but this effect cannot be obtained if it is less than 0.5%.

Pを0.2〜o、e%とする理由は、Pが0.6%を越
えると、析出するステダイト量が過多となり、被削性が
悪くなり、又、脆化も進むが、逆に、 0.2′A未満
では、ステダイト量が過小となって液相が生じ難く、母
材との結合性も低下することによる。
The reason for setting P to 0.2 to o, e% is that if P exceeds 0.6%, the amount of precipitated steadite will be excessive, machinability will deteriorate, and embrittlement will also progress; If it is less than 0.2'A, the amount of steadite becomes too small, making it difficult to form a liquid phase, and the bondability with the base material also decreases.

Mnを1.0%以下とする理由は、Mnが強さを増大さ
せる成分であることによるが、 1.0%を越えると、
焼結の進行が抑制されて粗大な空孔が残り、又、圧粉成
形性も低下させるから、 1.0%以下に限定する。
The reason for setting Mn to 1.0% or less is that Mn is a component that increases strength, but if it exceeds 1.0%,
The content is limited to 1.0% or less because it inhibits the progress of sintering, leaving coarse pores and also reduces compaction properties.

Cuを含める理由は、Cuが基地強度と引っ張り強さを
増大させることによるが、Cuが4.0%を越えると焼
結時に1膨張が起きて収縮が進まない傾向が生じる。し
かし、 1.0%未満では基地強度と引っ張り強さを増
す効果は得られないので、添加する組成範囲は1.0〜
4.0%に限定する。
The reason for including Cu is that Cu increases base strength and tensile strength, but if Cu exceeds 4.0%, one expansion occurs during sintering and shrinkage tends not to proceed. However, if it is less than 1.0%, the effect of increasing base strength and tensile strength cannot be obtained, so the composition range of addition is from 1.0 to
Limited to 4.0%.

Mo 、Ni 、Crを添加する理由は、これらが基地
強化元素であることによるが、2.0%を越えると、炭
化物の析出、基地のマルテンサイト化、ベイナイト化が
進み、被削性が低下するので、添加は2.0%以下に限
定する。
The reason for adding Mo, Ni, and Cr is that these are elements that strengthen the matrix, but if the content exceeds 2.0%, precipitation of carbides, martensite formation, and bainitic formation of the base progress, resulting in decreased machinability. Therefore, the addition is limited to 2.0% or less.

〈実施例〉 ベース鉄粉にC,Cu等の元素を添加し、ステアリン酸
亜鉛を加えて混合した。粉末混合目標の成分(重量%で
)は次の通りである。
<Example> Elements such as C and Cu were added to base iron powder, and zinc stearate was added and mixed. The powder mix target ingredients (in weight percent) are as follows:

C1,8% Si 1.2 % P O,40% Mn 0.30% Cu 2 、O% Fe 残り ついで、4〜6 t / c m’のプレス面圧でプレ
ス成形後、アンモニア分解カスふんい気の炉に入れ、1
050〜1200℃(平均1120℃)の温度で焼結し
て耐摩耗性焼結合金を得た。
C1.8% Si 1.2% P O, 40% Mn 0.30% Cu 2 , O% Fe After press forming with a press surface pressure of 4 to 6 t/cm', remove the ammonia decomposition residue. Put it in the furnace of air, 1
A wear-resistant sintered alloy was obtained by sintering at a temperature of 050 to 1200°C (average 1120°C).

得られた合金は、第1図顕微鏡写真に示すように、黒く
見えるパーライトの基地組織Aに白く見える炭化物B(
セメンタイI・とステダイト)が網状に分布する組織を
有し、その硬度はHRBIO4,3で密度は6.79g
/crn’であるから、高硬度で高密度の耐摩耗性に優
れた合金である。
As shown in the micrograph in Figure 1, the obtained alloy has a black pearlite base structure A and a white carbide B (
It has a structure in which cementite I and steadite are distributed in a network, its hardness is HRBIO4.3 and the density is 6.79g.
/crn', it is an alloy with high hardness, high density, and excellent wear resistance.

〈発明の効果〉 −に記の通り、本発明の鉄系焼結合金は液相焼結により
セメンタイトとステダイトが基地中で網状に分4jする
組織となるから、高い耐摩耗性を有し、圧粉成型されて
液相焼結により母材に強固に結合するから加工性にも優
れている。
<Effects of the Invention> As described in -, the iron-based sintered alloy of the present invention has a structure in which cementite and steadite are divided into a network in the matrix by liquid phase sintering, so it has high wear resistance. It has excellent workability because it is compacted and firmly bonded to the base material by liquid phase sintering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の合金の顕微鏡写真(倍率2
00倍、ナイタル液腐食)であり、Aが基地、Bは炭化
物を示す。 出願人 日本ピストンリング株式会社 第1図
Figure 1 is a microscopic photograph (magnification: 2) of an alloy according to an embodiment of the present invention.
00 times, nital liquid corrosion), where A represents the base and B represents the carbide. Applicant Nippon Piston Ring Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 1)重量比−cC1,5〜2.5%、S i 0.5〜
3.0%、P、0.2〜0.8%、残部Feを含み液相
において焼結されることを特徴とする耐摩耗性焼結合金
。 2)重量比で 1.0%以下のMnを含むことを特徴と
する特許請求の範囲第1項記載の耐摩耗性焼結合金。 3)重量比でCu1.0〜4.0%を含むことを特徴と
する特許請求の範囲第1項又は第2項記載の耐摩耗性焼
結合金。 4)Mo 、Ni 、Crのうちの少なくとも−っを重
量比で2.0%以下含むことを特徴とする特許請求の範
囲第1項記載の耐摩耗性焼結合金。
[Claims] 1) Weight ratio -cC1.5 to 2.5%, S i 0.5 to
A wear-resistant sintered alloy containing 3.0% P, 0.2 to 0.8% Fe, and the balance being sintered in a liquid phase. 2) The wear-resistant sintered alloy according to claim 1, which contains Mn in a weight ratio of 1.0% or less. 3) The wear-resistant sintered alloy according to claim 1 or 2, which contains Cu in a weight ratio of 1.0 to 4.0%. 4) The wear-resistant sintered alloy according to claim 1, which contains at least 2.0% by weight of at least - of Mo, Ni, and Cr.
JP14096383A 1983-08-03 1983-08-03 Wear resistance sintered alloy Granted JPS6033343A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14096383A JPS6033343A (en) 1983-08-03 1983-08-03 Wear resistance sintered alloy
GB08506986A GB2155037B (en) 1983-08-03 1984-03-23 Iron-base abrasion-resistant sintered alloy
PCT/JP1984/000122 WO1985000835A1 (en) 1983-08-03 1984-03-23 Iron-base abrasion-resistant sintered alloy
DE19843490361 DE3490361T1 (en) 1983-08-03 1984-03-23 Wear-resistant sintered iron-based alloy
DE3490361A DE3490361C2 (en) 1983-08-03 1984-03-23 Use of a wear-resistant sintered alloy based on iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14096383A JPS6033343A (en) 1983-08-03 1983-08-03 Wear resistance sintered alloy

Publications (2)

Publication Number Publication Date
JPS6033343A true JPS6033343A (en) 1985-02-20
JPH0379428B2 JPH0379428B2 (en) 1991-12-18

Family

ID=15280887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14096383A Granted JPS6033343A (en) 1983-08-03 1983-08-03 Wear resistance sintered alloy

Country Status (4)

Country Link
JP (1) JPS6033343A (en)
DE (2) DE3490361T1 (en)
GB (1) GB2155037B (en)
WO (1) WO1985000835A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291950A (en) * 1985-06-17 1986-12-22 Nippon Piston Ring Co Ltd Wear resistance sintered alloy
JPS62120465A (en) * 1985-11-20 1987-06-01 Hitachi Metals Ltd Wear resistant iron-base sintered sliding material
JPS62271914A (en) * 1986-04-11 1987-11-26 Nippon Piston Ring Co Ltd Sintered cam shaft
JPH01100575U (en) * 1987-12-23 1989-07-06
TWI426186B (en) * 2011-12-20 2014-02-11 Metal Ind Res & Dev Ct Low thermal expansion screw

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271913A (en) * 1986-04-11 1987-11-26 Nippon Piston Ring Co Ltd Builtup cam shaft
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638672B2 (en) * 1973-06-11 1981-09-08
GB1576143A (en) * 1977-07-20 1980-10-01 Brico Eng Sintered metal articles
JPS6023188B2 (en) * 1978-09-07 1985-06-06 住友電気工業株式会社 Sintered steel and its manufacturing method
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine
JPS5983704A (en) * 1982-11-01 1984-05-15 Mazda Motor Corp Alloy powder sheet and use thereof
DE3346089A1 (en) * 1983-12-21 1985-07-18 Dr. Weusthoff GmbH, 4000 Düsseldorf METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291950A (en) * 1985-06-17 1986-12-22 Nippon Piston Ring Co Ltd Wear resistance sintered alloy
JPS62120465A (en) * 1985-11-20 1987-06-01 Hitachi Metals Ltd Wear resistant iron-base sintered sliding material
JPS62271914A (en) * 1986-04-11 1987-11-26 Nippon Piston Ring Co Ltd Sintered cam shaft
JPH01100575U (en) * 1987-12-23 1989-07-06
TWI426186B (en) * 2011-12-20 2014-02-11 Metal Ind Res & Dev Ct Low thermal expansion screw

Also Published As

Publication number Publication date
WO1985000835A1 (en) 1985-02-28
GB2155037A (en) 1985-09-18
GB2155037B (en) 1987-02-18
DE3490361T1 (en) 1985-08-22
JPH0379428B2 (en) 1991-12-18
GB8506986D0 (en) 1985-04-24
DE3490361C2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US4243414A (en) Slidable members for prime movers
US4388114A (en) Anti-wear sintered alloy
JPS60247036A (en) Cv-cast iron cylinder liner
JP2506333B2 (en) Abrasion resistant iron-based sintered alloy
JP3469435B2 (en) Valve seat for internal combustion engine
US4268309A (en) Wear-resisting sintered alloy
JPH0360901B2 (en)
US4504312A (en) Wear-resistant sintered ferrous alloy and method of producing same
JPS6033343A (en) Wear resistance sintered alloy
JPS61291950A (en) Wear resistance sintered alloy
KR20030055751A (en) Cast iron with improved oxidation resistance at high temperature
JPH07113141B2 (en) Abrasion resistant iron-based sintered alloy
JPS5985847A (en) Fe-base sintered material for sliding member of internal-combustion engine
JP3988971B2 (en) Sintered member
JP3470595B2 (en) Al-Si alloy piston that can be installed above the top ring groove
JPH0116296B2 (en)
JP2594505B2 (en) Rocker arm
JP2000337511A (en) Piston-ring abrasion-resistant ring made of free-graphite precipitated iron system sintered material excellent in abrasion resistance and heat conductivity
JPH0140101B2 (en)
JP3440008B2 (en) Sintered member
JPH0561346B2 (en)
JPS5982508A (en) Sintered material of fe-tic system for sliding member in internal-combustion engine
JP2000282192A (en) Wear resistant ring for piston ring made of free graphite precipitated ferrous sintering material excellent in wear resistance
JP2000282166A (en) Wear resistant ring for piston ring, made of free graphite precipitated ferrous sintered material, excellent in wear resistance and thermal conductivity
JPH0953423A (en) Lead infiltrative fe radical sintered alloy valve guide member with excellent wear resistance and low-counter attackability