JP3987208B2 - Scanning transmission electron microscope - Google Patents

Scanning transmission electron microscope Download PDF

Info

Publication number
JP3987208B2
JP3987208B2 JP20285898A JP20285898A JP3987208B2 JP 3987208 B2 JP3987208 B2 JP 3987208B2 JP 20285898 A JP20285898 A JP 20285898A JP 20285898 A JP20285898 A JP 20285898A JP 3987208 B2 JP3987208 B2 JP 3987208B2
Authority
JP
Japan
Prior art keywords
field image
detection means
signal
electron microscope
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20285898A
Other languages
Japanese (ja)
Other versions
JP2000021346A (en
Inventor
隆仁 橋本
幹雄 市橋
成人 砂子沢
雄司 佐藤
邦康 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20285898A priority Critical patent/JP3987208B2/en
Publication of JP2000021346A publication Critical patent/JP2000021346A/en
Application granted granted Critical
Publication of JP3987208B2 publication Critical patent/JP3987208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、走査透過型電子顕微鏡に関し、より詳細にはその画像信号検出系、画像信号処理系に関する。
【0002】
【従来の技術】
走査型電子顕微鏡や走査透過型電子顕微鏡はスポットの大きさによって性能が決まる。輝度が高い電子銃を用いると、より小さいスポットを作った場合でも同等かそれ以上のビーム電流が得られるので性能向上に有効である。冷陰極電界放出型電子銃は、輝度が高い長所がある反面、電子ビームの明るさが時間的に変動する短所がある。このような明るさの変動はチップノイズと呼ばれ、画面上に帯状ないし横線状の明暗となって現れる。
【0003】
図10及び図13に、チップノイズが出現している電子顕微鏡像の例を示す。図10は、チップノイズに対する対策を講じていない暗視野走査透過電子顕微鏡像の一例である。図13は、同じくチップノイズに対する対策を講じていない明視野走査透過電子顕微鏡像の一例である。いずれの像にも線状あるいは帯状のチップノイズが顕著に出現している。
【0004】
ところで、試料の特定領域に電子線が照射された場合、入射電子の強度と透過電子の強度は比例する。また、入射電子の強度と散乱電子の強度は比例する。入射電子の強度(明るさ)が変動している場合、透過電子及び散乱電子の強度も入射電子の強度に比例して変動する。そこで従来は、対物絞りなどで電子源から放出された電子の一部を検出し、透過電子や散乱電子の検出器の出力信号をビーム電流で規格化(除算)する装置(以後、ビームモニターという)を用いて電子源の輝度変動に対処していた。
【0005】
【発明が解決しようとする課題】
図11は、走査透過型電子顕微鏡に従来のビームモニターを適用して得た図10に相当する電子顕微鏡像の一例、すなわち暗視野走査透過電子顕微鏡信号をビーム電流の信号で除算して得た像の一例である。図10と図11を比較すると明らかなように、ビームモニターの使用によってチップノイズは減少するものの、チップノイズが完全に消滅するまでには至っていない。
本発明は、このような従来技術の問題点に鑑みてなされたもので、電子源に輝度変動があったとしても、その影響を低減して像を形成することのできる走査透過電子顕微鏡を提供することを目的とする。
【0006】
【課題を解決するための手段】
ビームモニターが検出している電流は、電子顕微鏡の像形成に寄与する電子の周辺の電子である。ビームモニターが検出している電流が電子ビームの変動と同様の変動をしている限りは、ビームモニターを用いることで電子源の明るさの変動の画像への影響を有効に低減することができる。ところが多くのプローブ電流を得ようとするような照射レンズ系の設定では、電流の変動と電子ビームの変動が異なり効果が低下する。
【0007】
この理由は、次のように推測される。電界放出現象には、印加された電圧、陰極先端の曲率半径、その部位の仕事関数などさまざまな因子が関与する。したがって、陰極先端の電界放出現象を起している領域でも、中心付近と周辺部では放出条件が異なると考えられる。多くのプローブ電流を得ようとするようなレンズ設定では、電界放出現象を起している領域の中心付近で放出された電子はほとんど対物絞りの穴を通過して電子ビームとして使われてしまい、ビームモニターでは検出されず、周辺部からの電子がビームモニターによって検出される。このような状態では、電子ビームの時間変動とビームモニター検出電流の時間変動が異なるため、透過電子や散乱電子の検出器の出力信号をビームモニター検出電流で規格化したとしても電子ビームの明るさ変動を低減できなくなる。
【0008】
一方、対物絞りで止められた電子ビームの電流を検出する代わりに試料に入射する電子そのものを検出できれば、電子源の明るさの変動を正確に把握することができる。走査透過型電子顕微鏡の試料は十分薄く、入射した電子の大部分は試料を透過する。また散乱される電子も、ほとんどが前方散乱される。したがって、一次近似としては、試料を透過した透過電子の明るさ変動を検出すれば、試料に入射する電子の明るさの変動を捕えることができる。また、近似の精度を向上させるためには、前方散乱電子も検出して透過電子の強度に加えればよい。
【0009】
本発明は、このような検討に基づいてなされたもので、電子線を照射された試料から前方散乱された電子のうち、照射電子線の照射領域から、照射電子線の収束角以下の散乱角の範囲内に前方散乱された電子を検出し、検出した電子数に対応した強度の信号を出力する明視野像検出手段の出力信号と、照射電子線の収束角より大きい散乱角で前方散乱された電子を検出し、検出した電子数に対応した強度の信号を出力する暗視野像検出手段の出力信号を、画像形成信号の規格化のために単独であるいは組み合わせて用いることで、前記目的を達成する。
【0010】
すなわち、本発明による走査透過型電子顕微鏡は、明視野像検出手段と、暗視野像検出手段とを含む走査透過型電子顕微鏡において、明視野像検出手段の出力信号と暗視野像検出手段の出力信号のいずれか一方を他方で除算した信号を用いて画像を形成することを特徴とする。
【0011】
暗視野像検出手段あるいは明視野像検出手段は、入射電子線強度を信号として出力することのできる1種類あるいは複数種類の電子検出器を備える。電子線検出器には、入射電子線強度を信号として取り出すことができるものであればどの様なものでも使用することができる。例えば、金属板と電流計を組み合わせたもの、シンチレータと電流計を組み合わせたもの、シンチレータと光電子増倍管等の光検出器を組み合わせたもの、シンチレータと2次元CCDアレイ等のエリア検出器を組み合わせたもの等を電子線検出器として用いることができる。
【0012】
本発明による走査透過型電子顕微鏡は、また、暗視野像検出手段と、明視野像検出手段とを含む走査透過型電子顕微鏡において、暗視野像検出手段の出力信号あるいは明視野像検出手段の出力信号を、暗視野像検出手段と明視野像検出手段との出力信号の和に対応する信号で除算した信号を用いて画像を形成することを特徴とする。この場合、暗視野像検出手段の増幅率と明視野像検出手段の増幅率を同じにするのが好ましい。除算した信号は増幅された後、画像形成に用いられる。
【0013】
本発明による走査透過型電子顕微鏡は、また、暗視野像検出手段と、明視野像検出手段とを含む走査透過型電子顕微鏡において、暗視野像検出手段は、入射した電子数に対応した強度の信号を出力する第1検出手段と、入射した電子線を電流として検出する第2検出手段とを備え、明視野像検出手段は、入射した電子数に対応した強度の信号を出力する第1検出手段と、入射した電子線を電流として検出する第2検出手段とを備え、暗視野像検出手段の第1検出手段の出力信号あるいは明視野像検出手段の第1検出手段の出力信号を、暗視野像検出手段の第2検出手段で検出された電流値と明視野検出手段の第2検出手段で検出された電流値の和に比例した量で除算した信号を用いて画像を形成することを特徴とする。入射した電子線を電流として検出する第2検出手段は、例えばシンチレータとシンチレータに接続された電流計で構成することができ、入射した電子数に対応した強度の信号を出力する第1検出手段は、例えばシンチレータとシンチレータの発光を検出する光電子増倍管等の光検出器によって構成することができる。
【0014】
本発明による走査透過型電子顕微鏡は、また、暗視野像検出手段と、明視野像検出手段とを含む走査透過型電子顕微鏡において、明視野像検出手段は、該明視野像検出手段の中心領域付近に入射した電子数に対応した強度の信号を出力する第1検出手段と、第1検出手段の検出領域を含むより広い領域に入射した電子数に対応する強度の信号を出力する第2検出手段とを含み、暗視野像検出手段の出力信号を明視野像検出手段の第2検出手段の出力信号で除算した信号、あるいは明視野像検出手段の第1検出器の出力信号を第2検出器の出力信号で除算した信号を用いて画像を形成することを特徴とする。第2検出手段は例えば明視野像検出手段に備えられるシンチレータとすることができ、第1検出手段は例えばそのシンチレータの一部の領域の発光を検出するように配置された光検出器とすることができる。
【0015】
本発明による走査透過型電子顕微鏡は、また、暗視野像検出手段と、暗視野像検出手段の検出範囲より小さい角度で散乱された電子による回折図形観察手段とを含む走査透過型電子顕微鏡において、回折図形観察手段は入射した電子線を電流として検出する手段を有し、暗視野像検出手段の出力信号を回折図形観察手段で検出された電流値に比例した量で除算した信号を用いて画像を形成することを特徴とする。
【0016】
ここで、暗視野像検出手段は入射した電子線を電流として検出する手段を有し、暗視野像検出手段の出力信号を回折図形観察手段で検出された電流値と暗視野像検出手段で検出された電流値の和に比例した量で除算した信号を用いて画像を形成することもできる。
本発明の走査透過型電子顕微鏡は、また、入射した電子線の強度に対応した信号を出力する単位検出手段が2次元的に配列された電子線強度分布検出手段を備え、透過電子及び散乱電子を同時に検出する走査透過型電子顕微鏡において、電子線強度分布検出手段の所定の領域内にある単位検出手段で検出された電子線強度に比例した量を、すべての単位検出手段によって検出された電子線強度に比例した量で除算した信号を用いて画像を形成することを特徴とする。電子線強度分布検出手段の所定の領域は、透過電子検出領域、散乱電子検出領域、特定の次数の1つの回折波検出領域などとすることができる。
【0017】
本発明の走査透過型電子顕微鏡は、また、入射した電子線の強度に対応した信号を出力する単位検出手段が2次元的に配列された電子線強度分布検出手段を備え、透過電子及び散乱電子を同時に検出する走査透過型電子顕微鏡において、電子線強度分布検出手段は入射した電子線を電流として検出する手段を有し、電子線強度分布検出手段の所定の領域内にある単位検出手段で検出された電子線強度に比例した量を、電子線強度分布検出手段で検出した電流値に比例した量で除算した信号を用いて画像を形成することを特徴とする。
【0018】
本発明による走査透過型電子顕微鏡は、また、暗視野像検出手段と、明視野像検出手段とを含む走査透過型電子顕微鏡において、明視野像検出手段は、透過電子の取り込み角度を制限する絞り板と、絞り板を通過した電子を検出する通過電子検出手段とを備え、暗視野像検出手段の出力信号を絞り板で検出された電流値に比例した量で除算した信号、あるいは明視野像検出手段の通過電子検出手段の出力信号を絞り板で検出された電流値に比例した量で除算した信号を用いて画像を形成することを特徴とする。
【0019】
本発明による走査透過型電子顕微鏡は、また、明視野像検出手段を含む走査透過型電子顕微鏡において、明視野像検出手段はシンチレータを備え、透過電子及び透過電子のもつ角度分布の範囲内に散乱された電子の強度信号を光として取り出すとともに、シンチレータに入射した電子を電流として検出することを特徴とする。
【0020】
本発明による走査透過型電子顕微鏡は、また、暗視野像検出手段を含む走査透過型電子顕微鏡において、暗視野像検出手段はシンチレータを備え、入射した散乱電子の強度信号を光として取り出すとともに、シンチレータに入射した電子を電流として検出することを特徴とする。
本発明による走査透過型電子顕微鏡は、また、回折図形観察手段を含む走査透過型電子顕微鏡において、回折図形観察手段はシンチレータを備え、回折図形の画像情報を光の強度分布に変換して取り出すとともに、シンチレータに入射した電子を電流として検出することを特徴とする。
【0021】
本発明による走査透過型電子顕微鏡は、また、入射した電子線の強度に対応した信号を出力する単位検出手段が2次元的に配列された電子線強度分布検出手段を備え、透過電子及び散乱電子を同時に検出する走査透過型電子顕微鏡において、電子線強度分布検出手段はシンチレータを備え、電子線強度分布の画像情報を光の強度分布に変換して取り出すとともに、シンチレータに入射した電子を電流として検出することを特徴とする。
【0022】
本発明による走査透過型電子顕微鏡は、また、暗視野像検出手段と、明視野像検出手段とを含む走査透過型電子顕微鏡において、同時に取り込んだ暗視野像と明視野像をともに保存する手段を有し、保存した暗視野像の画素の強度を明視野像の対応する画素の強度あるいは該暗視野像の画素の強度と明視野像の対応する画素の強度の和で除算して、又は保存した明視野像の画素の強度を暗視野像の対応する画素の強度あるいは該明視野像の画素の強度と暗視野像の対応する画素の強度の和で除算して画像を形成することを特徴とする。
本発明によると、電子源の明るさの変動をキャンセルして走査透過電子顕微鏡像の画質を向上させることができる。
【0023】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。以下に示す各図において、同じ機能部分には同じ符号を付し、重複する説明を省略する。
図1は、本発明による走査透過型電子顕微鏡の一例を示す模式図である。電子銃から放射され、収束レンズ(系)及び試料前方磁界によって収束された入射電子線1は、試料2上の一点を照射する。走査コイル5には鋸歯状波形の走査電流6が供給され、試料2上に収束された電子線1が試料面上の定められた範囲を2次元的に走査する。CRT7のCRT走査コイル8にもCRT走査電流9が供給され、各々の走査電流6,9は同期がとられている。ただし、CRT走査電流9の振幅は一定であるのに対し、走査コイル5に流す電流6の振幅は、試料面上を走査する範囲がCRT7の大きさを倍率で割った大きさとなるように設定されている。したがって、試料面上を走査する領域とCRT上の表示は相似形であり、試料面上の一点がCRT上の一点に一対一で対応する。
【0024】
試料2の特定領域に電子線が照射された場合、入射電子1の強度と試料2を透過した透過電子3の強度は比例する。また、入射電子1の強度と試料2によって散乱された散乱電子4の強度は比例する。入射電子1の強度(明るさ)が変動している場合、透過電子3及び散乱電子4の強度も入射電子1の強度に比例して変動する。走査透過型電子顕微鏡の試料2は十分薄く、試料2に入射した電子1の大部分は透過電子3となる。散乱電子4もほとんどが前方散乱される。したがって、一次近似としては、透過電子3の明るさの変動と試料2に入射する電子1の明るさの変動は等しい。
【0025】
透過電子3及び散乱電子4は、それぞれ明視野検出器10及び暗視野検出器11によって検出され、電気信号に変換される。暗視野像を得る場合、除算器14は、暗視野検出器用増幅器13によって増幅された強度信号を明視野検出器用増幅器12によって増幅された強度信号で割り算する。明視野像を得る場合には、除算器14は、明視野検出器用増幅器12によって増幅された強度信号を暗視野検出器用増幅器13によって増幅された強度信号で割り算する。除算された結果はCRT7上に輝度の変化として表示される。このようにして、電子源の明るさ変動の影響を低減した暗視野透過走査電子顕微鏡像が得られる。
【0026】
図2は、本発明による走査透過型電子顕微鏡の他の例を示す模式図である。明視野検出器10は、シンチレータ15bと光電子増倍管16bとを備える。シンチレータ15は他の部品と電気的に絶縁されており、シンチレータ15bに入射した透過電子3は検出抵抗17bを経てグラウンドに流れる。検出抵抗17bの両端電圧は、増幅器18で増幅されて除算器14の割り算の分母として供給される。また、シンチレータ15bに入射した透過電子3は光に変換され、そのうちの一部の領域、好ましくは中心領域付近の光が光電子増倍管16bによって電気信号に変換され、明視野検出器用増幅器12によって増幅される。
【0027】
切り替えスイッチ19は、除算器14の割り算の分子に入力する信号に、明視野検出器用増幅器12または暗視野検出器用増幅器13のいずれか一方からの信号を選択する。割り算された結果は、CRT7上に輝度の変化として表示される。切り替えスイッチ19によって明視野検出器用増幅器12からの信号を選択するとCRT7上に明視野像が表示され、暗視野検出器用増幅器13からの信号を選択すると暗視野像が表示される。このようにして、電子源の明るさ変動の影響を低減した透過走査電子顕微鏡像が得られる。
【0028】
図3は、本発明による走査透過型電子顕微鏡の他の例を示す模式図である。図3に示した走査透過型電子顕微鏡は、図2から更に暗視野検出器のシンチレータ15dでも散乱電子4の電流を読めるようにしたものである。
暗視野検出器11は、シンチレータ15d、光電子増倍管16d及びライトガイド20を備える。暗視野検出器11に入射した散乱電子4は、シンチレータ15dによって光に変換され、ライトガイド20に導かれて、光電子増倍管16dによって走査透過電子顕微鏡像の画像信号に変換される。光電子増倍管16dの出力は暗視野検出器用増幅器13で増幅される。暗視野検出器11のシンチレータ15dもまた他の部品と電気的に絶縁されており、シンチレータ15dに入射した散乱電子4は検出抵抗17dを経てグラウンドに流れる。
【0029】
明視野検出器10のシンチレータ15bの検出抵抗17bと、暗視野検出器11のシンチレータ15dの検出抵抗17dの両端電圧は加算器21で加算され、増幅器18で増幅されて、除算器14の割り算の分母として供給される。切り替えスイッチ19は、除算器14の割り算の分子に入力する信号に、明視野検出器用増幅器12または暗視野検出器用増幅器13のいずれか一方からの信号を選択する。切り替えスイッチ19によって明視野検出器用増幅器12からの信号を選択するとCRT7上に明視野像が表示され、暗視野検出器用増幅器13からの信号を選択すると暗視野像が表示される。このようにして、電子源の明るさ変動の影響を低減した透過走査電子顕微鏡像が形成される。
【0030】
図4は、本発明による走査透過型電子顕微鏡の他の例を示す模式図である。図2に示した走査透過型電子顕微鏡は、明視野検出器のシンチレータ15で透過電子3の電流を検出するものであったが、図4に示した走査透過型電子顕微鏡は、シンチレータの代わりに明視野検出器10の入り口に他の部品から電気的に絶縁された検出角制限絞り26を設け、この検出角制限絞り26で透過電子3の電流を検出するものである。
【0031】
検出角制限絞り26に入射した透過電子3の一部は、検出抵抗17を経てグラウンドに流れる。検出抵抗17の両端電圧は、増幅器18で増幅されて除算器14の割り算の分母として供給される。検出角制限絞り26を通った透過電子3を検出する明視野検出器10の出力は明視野検出器用増幅器12で増幅され、暗視野検出器11の出力は暗視野検出器用増幅器13で増幅される。切り替えスイッチ19は、除算器14の割り算の分子に入力する信号に、明視野検出器用増幅器12または暗視野検出器用増幅器13のいずれか一方からの信号を選択する。切り替えスイッチ19によって明視野検出器用増幅器12からの信号を選択するとCRT7上に明視野像が表示され、暗視野検出器用増幅器13からの信号を選択すると暗視野像が表示される。明視野走査透過電子顕微鏡像は、検出角を1ミリラジアン程度に制限した方が位相コントラストが向上する利点がある。このようにして、電子源の明るさ変動の影響を低減した透過走査電子顕微鏡像が形成される。
【0032】
図5は、本発明による走査透過型電子顕微鏡の他の例を示す模式図であり、回折図形観察手段を具備する例を示す。回折図形観察手段29は、シンチレータ15、レンズ27、及びデジタルカメラ28を備える。シンチレータ15上に形成された電子線回折図形は電子線の強度分布から光の強度分布に変換され、レンズ27によってデジタルカメラ28の受光面に結像されて、デジタルカメラ制御装置30によって画像表示装置31上に表示される。ここではレンズ27を用いているが、光ファイバープレートでシンチレータ15とデジタルカメラ28を光学的に結合してもよい。
【0033】
シンチレータ15は他の部品と電気的に絶縁されており、シンチレータ15に入射した透過電子3は検出抵抗17を経てグラウンドに流れる。検出抵抗17の両端電圧は増幅器18で増幅されて、除算器14の割り算の分母として供給される。暗視野検出器11に入射した電子線強度信号は、暗視野検出器用増幅器13によって増幅され、除算器14の割り算の分子として供給される。除算器14で割り算された結果は、CRT7上に輝度の変化として表示される。このようにして、電子源の明るさ変動の影響を低減した(暗視野)走査透過電子顕微鏡像が形成される。
【0034】
図6は、図5から更に暗視野検出器のシンチレータに入射した散乱電子4の電流も読めるようにした走査透過型電子顕微鏡の例を示す模式図である。暗視野検出器11は、シンチレータ15d、光電子増倍管16d及びライトガイド20を備える。暗視野検出器11に入射した散乱電子4はシンチレータ15dによって光に変換され、ライトガイド20に導かれて光電子増倍管16dによって走査透過電子顕微鏡像の画像信号に変換される。暗視野検出器11のシンチレータ15dもまた他の部品と電気的に絶縁されており、入射した散乱電子4は検出抵抗17dを経てグラウンドに流れる。
【0035】
回折図形観察手段29の検出抵抗17と暗視野検出器11の検出抵抗17dの両端電圧は加算器21で加算され、増幅器18で増幅されて、除算器14の割り算の分母として供給される。暗視野検出器11の光電子増倍管16dの出力信号は暗視野検出器用増幅器13によって増幅され、除算器14の割り算の分子として供給される。割り算された結果は、CRT7上に輝度の変化として表示される。このようにして、電子源の明るさ変動の影響を低減した(暗視野)走査透過電子顕微鏡像が形成される。
【0036】
図7は、本発明による走査透過型電子顕微鏡の他の例を示す模式図である。試料2を通過した透過電子3及び散乱電子4は、電子線強度分布検出手段で同時に検出される。ここで電子線強度分布検出手段は、シンチレータ15と、CCD22のように受光素子23が二次元的に配列された検出手段と、CCD制御装置24とを備える。電子線3,4はシンチレータ15で光に変換され、シンチレータ上の二次元的な光の強度分布が、CCD22の個々の受光素子23で検出される。
【0037】
入射電子1の照射角は数ミリラジアンから数十ミリラジアンになるので、鏡体の設定条件を調整すると、CCD22上には図8に示されるような収束電子線回折図形が形成される。走査透過型電子顕微鏡の試料2は十分薄く、大部分の入射電子1は試料2を透過するので、収束電子線回折図形のうちで透過電子3のディスクがもっとも明るく、散乱電子4のディスクも低次のもの(透過電子に近いもの)ほど明るい。したがって、透過電子3のディスクがCCD22の略中心にあり数次の回折波まで検出されるように置かれた系の場合、CCD22上のすべての受光素子23の信号の総和は入射電子1の強度にほぼ等しい。
【0038】
そこで、例えばCCD制御装置24によってCCD22上に透過電子検出領域25を設定して、その範囲に含まれる受光素子の出力信号の総和を明視野の信号、透過電子検出領域25の外側に位置する受光素子の信号の総和を暗視野の信号と定め、いずれか一方を除算器14の分子に入力し、CCD22上のすべての受光素子の信号の総和を除算器14の分母に入力して、割り算すれば入射電子線1の明るさの変動を低減した明視野走査透過電子顕微鏡像及び暗視野走査透過電子顕微鏡像が得られる。あるいは、CCD制御装置24によってCCD22上に特定の回折次数の散乱電子4のディスクによって覆われる領域を設定し、除算器14の分子に入力する信号として、その領域に含まれる受光素子23の信号の和を用いると特定の結晶面のみの情報から形成された暗視野走査透過電子顕微鏡像が得られる。
【0039】
図9は、本発明による走査透過型電子顕微鏡の他の例を示す模式図である。試料2を通過した透過電子3及び散乱電子4は、電子線強度分布検出手段で同時に検出される。ここで電子線強度分布検出手段は、シンチレータ15と、CCD22のように受光素子23が二次元的に配列された検出手段と、CCD制御装置24とを備える。試料2の透過電子及び散乱電子4はシンチレータ15で光に変換され、シンチレータ15上の二次元的な光の強度分布がCCD22で検出される。シンチレータ15は他の部品と電気的に絶縁されており、入射電子3,4は検出抵抗17を経てグラウンドに流れる。シンチレータ15が高次の(おおむね5次以上程度)散乱電子も検出できるほど大きい場合には、シンチレータ15に入射する電子の強度は、入射電子1の強度にほぼ等しい。検出抵抗17の両端電圧は、増幅器18で増幅され、除算器14の割り算の分母として供給される。
【0040】
入射電子1の照射角は数ミリラジアンから数十ミリラジアンになるので、鏡体の設定条件を調整すると、CCD22上には図8に示されるような収束電子線回折図形が形成される。例えば、CCD制御装置24によって透過電子検出領域25を設定して、その範囲に含まれる受光素子23の出力信号の総和を明視野の信号、透過電子検出領域25の外側に位置する受光素子23の信号の総和を暗視野の信号と定め、いずれか一方を除算器14の分子に入力して割り算すれば、入射電子の明るさの変動を低減した明視野走査透過電子顕微鏡像及び暗視野走査透過電子顕微鏡像が得られる。あるいは、CCD制御装置24によってCCD22上に特定の回折次数の散乱電子4のディスクによって覆われる領域を設定し、除算器14の分子に入力する信号として、その領域に含まれる受光素子の信号の和を用いると特定の結晶面のみが選別された暗視野走査透過電子顕微鏡像が得られる。
【0041】
なお、上述のように、走査中、すなわち個々の画素の取り込み時には電子源の明るさ変動を補償するための規格化(割り算)を行わず、例えば明視野走査透過電子顕微鏡像と暗視野走査透過電子顕微鏡像とをデジタル画像として同時に取り込み、記憶装置に両者を保存した後、例えば暗視野走査透過電子顕微鏡像の画素強度を対応する明視野走査透過電子顕微鏡像の画素強度で割り算するようにしても、電子源の明るさの変動を補償した明視野走査透過電子顕微鏡像及び暗視野走査透過電子顕微鏡像を得ることができる。
【0042】
図12は、図1に示した装置構成で、暗視野走査透過電子顕微鏡信号を明視野走査透過電子顕微鏡信号で割り算して得た暗視野走査透過電子顕微鏡像の一例である。チップノイズが除去されており、従来のビームモニタを用いてチップノイズの低減を図った図11と比較して鮮明な像が得られていることが分かる。また、図14は図1に示した装置構成で、明視野走査透過電子顕微鏡信号を暗視野走査透過電子顕微鏡信号で割り算して得た像の一例である。チップノイズが除去されていることが分かる。
【0043】
【発明の効果】
本発明によると、走査透過型電子顕微鏡において電子源の明るさの変化を補正してより良質な画像を得ることができる。
【図面の簡単な説明】
【図1】本発明による走査透過型電子顕微鏡の一例を示す模式図。
【図2】本発明による走査透過型電子顕微鏡の他の例を示す模式図。
【図3】本発明による走査透過型電子顕微鏡の他の例を示す模式図。
【図4】本発明による走査透過型電子顕微鏡の他の例を示す模式図。
【図5】本発明による走査透過型電子顕微鏡の他の例を示す模式図。
【図6】本発明による走査透過型電子顕微鏡の他の例を示す模式図。
【図7】本発明による走査透過型電子顕微鏡の他の例を示す模式図。
【図8】収束電子線回折図形の説明図。
【図9】本発明による走査透過型電子顕微鏡の他の例を示す模式図。
【図10】チップノイズに対する対策を講じていない暗視野走査透過電子顕微鏡像の一例を示す電子顕微鏡写真。
【図11】暗視野走査透過電子顕微鏡信号をビーム電流の信号で除算して得た像の一例を示す電子顕微鏡写真。
【図12】暗視野走査透過電子顕微鏡信号を明視野走査透過電子顕微鏡信号で割り算して得た暗視野走査透過電子顕微鏡像の一例を示す電子顕微鏡写真。
【図13】チップノイズに対する対策を講じていない明視野走査透過電子顕微鏡像の一例を示す電子顕微鏡写真。
【図14】明視野走査透過電子顕微鏡信号を暗視野走査透過電子顕微鏡信号で割り算して得た像の一例を示す電子顕微鏡写真。
【符号の説明】
1…入射電子線、2…試料、3…透過電子、4…散乱電子、5…走査コイル、6…走査電流、7…CRT、8…CRT走査コイル、9…CRT走査電流、10…明視野検出器、11…暗視野検出器、12…明視野検出器用増幅器、13…暗視野検出器用増幅器、14…除算器、15,15b,15d…シンチレータ、16b,16d…光電子増倍管、17,17b,17d…検出抵抗、18…増幅器、19…切り替えスイッチ、20…ライトガイド、21…加算器、22…CCD、23…受光素子、24…CCD制御装置、25…透過電子検出領域、26…検出角制限絞り、27…レンズ、28…デジタルカメラ、29…回折図形観察手段、30…デジタルカメラ制御装置、31…画像表示装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning transmission electron microscope, and more particularly to an image signal detection system and an image signal processing system thereof.
[0002]
[Prior art]
The performance of a scanning electron microscope or a scanning transmission electron microscope is determined by the size of the spot. Using an electron gun with high brightness is effective in improving performance because a beam current equal to or higher than that can be obtained even when a smaller spot is formed. The cold cathode field emission electron gun has an advantage of high brightness, but has a disadvantage that the brightness of the electron beam fluctuates with time. Such fluctuations in brightness are called chip noise, and appear as strips or horizontal lines of light and dark on the screen.
[0003]
10 and 13 show examples of electron microscope images in which chip noise appears. FIG. 10 is an example of a dark field scanning transmission electron microscope image in which no countermeasure against chip noise is taken. FIG. 13 is an example of a bright-field scanning transmission electron microscope image in which measures against chip noise are not taken. Linear or strip-like chip noise appears remarkably in any image.
[0004]
By the way, when an electron beam is irradiated to a specific region of the sample, the intensity of incident electrons is proportional to the intensity of transmitted electrons. Further, the intensity of incident electrons is proportional to the intensity of scattered electrons. When the intensity (brightness) of incident electrons varies, the intensity of transmitted electrons and scattered electrons also varies in proportion to the intensity of incident electrons. Therefore, conventionally, a device (hereinafter referred to as a beam monitor) that detects part of electrons emitted from an electron source with an objective diaphragm or the like and normalizes (divides) the output signal of a transmitted electron or scattered electron detector by a beam current. ) To deal with the brightness fluctuation of the electron source.
[0005]
[Problems to be solved by the invention]
FIG. 11 is an example of an electron microscope image corresponding to FIG. 10 obtained by applying a conventional beam monitor to a scanning transmission electron microscope, that is, obtained by dividing a dark-field scanning transmission electron microscope signal by a beam current signal. It is an example of an image. As apparent from a comparison between FIG. 10 and FIG. 11, the chip noise is reduced by the use of the beam monitor, but the chip noise has not completely disappeared.
The present invention has been made in view of the above-described problems of the prior art, and provides a scanning transmission electron microscope capable of forming an image with reduced influence even if there is a luminance fluctuation in the electron source. The purpose is to do.
[0006]
[Means for Solving the Problems]
The current detected by the beam monitor is electrons around the electrons that contribute to the image formation of the electron microscope. As long as the current detected by the beam monitor fluctuates in the same way as the fluctuation of the electron beam, the beam monitor can effectively reduce the influence of the fluctuation of the brightness of the electron source on the image. . However, in the setting of the irradiation lens system that attempts to obtain a large amount of probe current, the current fluctuation and the electron beam fluctuation are different and the effect is reduced.
[0007]
The reason is estimated as follows. Various factors are involved in the field emission phenomenon, such as the applied voltage, the radius of curvature of the cathode tip, and the work function of that portion. Therefore, even in the region where the field emission phenomenon occurs at the cathode tip, it is considered that the emission conditions are different between the vicinity of the center and the peripheral portion. In a lens setting that attempts to obtain a large amount of probe current, most of the electrons emitted near the center of the field emission phenomenon pass through the hole of the objective aperture and are used as an electron beam. It is not detected by the beam monitor, but electrons from the periphery are detected by the beam monitor. Under such conditions, the time fluctuation of the electron beam and the time fluctuation of the beam monitor detection current are different. Therefore, even if the output signal of the transmitted electron or scattered electron detector is normalized by the beam monitor detection current, the brightness of the electron beam The fluctuation cannot be reduced.
[0008]
On the other hand, if the electrons themselves incident on the sample can be detected instead of detecting the current of the electron beam stopped by the objective aperture, the brightness variation of the electron source can be accurately grasped. The sample of the scanning transmission electron microscope is sufficiently thin, and most of the incident electrons are transmitted through the sample. Most of the scattered electrons are also scattered forward. Therefore, as a first approximation, if the variation in the brightness of the transmitted electrons that have passed through the sample is detected, the variation in the brightness of the electrons incident on the sample can be captured. In order to improve the accuracy of approximation, forward scattered electrons may be detected and added to the intensity of transmitted electrons.
[0009]
The present invention has been made on the basis of such studies, and among the electrons scattered forward from the sample irradiated with the electron beam, the scattering angle equal to or less than the convergence angle of the irradiated electron beam from the irradiated region of the irradiated electron beam. The output signal of the bright-field image detection means that detects the electrons scattered forward within the range and outputs a signal with an intensity corresponding to the number of detected electrons, and the forward scattered light with a scattering angle larger than the convergence angle of the irradiated electron beam By using the output signal of the dark field image detecting means for detecting the detected electrons and outputting a signal having an intensity corresponding to the detected number of electrons, alone or in combination for the standardization of the image forming signal, the object is achieved. Achieve.
[0010]
That is, the scanning transmission electron microscope according to the present invention is a scanning transmission electron microscope including a bright-field image detection means and a dark-field image detection means. The output signal of the bright-field image detection means and the output of the dark-field image detection means An image is formed using a signal obtained by dividing one of the signals by the other.
[0011]
The dark field image detection means or the bright field image detection means includes one or more types of electron detectors that can output the incident electron beam intensity as a signal. Any electron beam detector that can extract the incident electron beam intensity as a signal can be used. For example, a combination of a metal plate and an ammeter, a combination of a scintillator and an ammeter, a combination of a scintillator and a photodetector such as a photomultiplier tube, a combination of a scintillator and an area detector such as a two-dimensional CCD array Can be used as an electron beam detector.
[0012]
The scanning transmission electron microscope according to the present invention also includes an output signal of the dark field image detection means or an output of the bright field image detection means in the scanning transmission electron microscope including the dark field image detection means and the bright field image detection means. An image is formed using a signal obtained by dividing the signal by a signal corresponding to the sum of output signals of the dark field image detecting means and the bright field image detecting means. In this case, it is preferable that the amplification factor of the dark field image detection unit and the amplification factor of the bright field image detection unit are the same. The divided signal is amplified and used for image formation.
[0013]
The scanning transmission electron microscope according to the present invention is a scanning transmission electron microscope including a dark field image detection unit and a bright field image detection unit. The dark field image detection unit has an intensity corresponding to the number of incident electrons. A first detection unit that outputs a signal; and a second detection unit that detects an incident electron beam as a current. The bright-field image detection unit outputs a signal having an intensity corresponding to the number of incident electrons. And a second detection means for detecting the incident electron beam as a current, and an output signal of the first detection means of the dark field image detection means or an output signal of the first detection means of the bright field image detection means Forming an image using a signal divided by an amount proportional to the sum of the current value detected by the second detection means of the field image detection means and the current value detected by the second detection means of the bright field detection means; Features. The second detection means for detecting the incident electron beam as a current can be composed of, for example, a scintillator and an ammeter connected to the scintillator, and the first detection means for outputting a signal having an intensity corresponding to the number of incident electrons. For example, it can be constituted by a photodetector such as a scintillator and a photomultiplier tube for detecting light emission of the scintillator.
[0014]
The scanning transmission electron microscope according to the present invention is also a scanning transmission electron microscope including a dark field image detection unit and a bright field image detection unit. The bright field image detection unit is a central region of the bright field image detection unit. First detection means for outputting an intensity signal corresponding to the number of electrons incident in the vicinity, and second detection for outputting an intensity signal corresponding to the number of electrons incident on a wider area including the detection area of the first detection means A signal obtained by dividing the output signal of the dark field image detecting means by the output signal of the second detecting means of the bright field image detecting means or the output signal of the first detector of the bright field image detecting means. An image is formed using a signal divided by the output signal of the device. The second detection means can be, for example, a scintillator provided in the bright field image detection means, and the first detection means is, for example, a photodetector arranged so as to detect light emission in a part of the scintillator. Can do.
[0015]
The scanning transmission electron microscope according to the present invention is also a scanning transmission electron microscope including a dark field image detection means and a diffraction pattern observation means by electrons scattered at an angle smaller than the detection range of the dark field image detection means. The diffraction pattern observation means has means for detecting an incident electron beam as a current, and an image is obtained by using a signal obtained by dividing the output signal of the dark field image detection means by an amount proportional to the current value detected by the diffraction pattern observation means. It is characterized by forming.
[0016]
Here, the dark field image detection means has means for detecting the incident electron beam as a current, and the output signal of the dark field image detection means is detected by the current value detected by the diffraction pattern observation means and the dark field image detection means. An image can also be formed using a signal divided by an amount proportional to the sum of the current values.
The scanning transmission electron microscope of the present invention further includes electron beam intensity distribution detection means in which unit detection means for outputting a signal corresponding to the intensity of the incident electron beam is two-dimensionally arranged. In the scanning transmission electron microscope that simultaneously detects the amount of electrons detected by all the unit detection means, an amount proportional to the electron beam intensity detected by the unit detection means within the predetermined region of the electron beam intensity distribution detection means. An image is formed using a signal divided by an amount proportional to the line intensity. The predetermined region of the electron beam intensity distribution detection means can be a transmission electron detection region, a scattered electron detection region, a single diffraction wave detection region of a specific order, or the like.
[0017]
The scanning transmission electron microscope of the present invention further includes electron beam intensity distribution detection means in which unit detection means for outputting a signal corresponding to the intensity of the incident electron beam is two-dimensionally arranged. In the scanning transmission electron microscope that simultaneously detects the electron beam intensity distribution, the electron beam intensity distribution detection means has means for detecting the incident electron beam as a current, and is detected by a unit detection means within a predetermined region of the electron beam intensity distribution detection means. An image is formed by using a signal obtained by dividing an amount proportional to the electron beam intensity by an amount proportional to the current value detected by the electron beam intensity distribution detecting means.
[0018]
The scanning transmission electron microscope according to the present invention is also a scanning transmission electron microscope including a dark field image detection unit and a bright field image detection unit. The bright field image detection unit includes a diaphragm for limiting a transmission electron capture angle. A signal obtained by dividing the output signal of the dark field image detection means by an amount proportional to the current value detected by the diaphragm plate, or a bright field image. An image is formed using a signal obtained by dividing the output signal of the passing electron detection means of the detection means by an amount proportional to the current value detected by the diaphragm plate.
[0019]
The scanning transmission electron microscope according to the present invention is also a scanning transmission electron microscope including a bright field image detection means. The bright field image detection means includes a scintillator and scatters within the range of the angular distribution of the transmission electrons and the transmission electrons. The intensity signal of the emitted electrons is extracted as light, and the electrons incident on the scintillator are detected as current.
[0020]
The scanning transmission electron microscope according to the present invention is also a scanning transmission electron microscope including a dark field image detection means. The dark field image detection means includes a scintillator and takes out an intensity signal of incident scattered electrons as light. It is characterized in that electrons incident on the are detected as current.
The scanning transmission electron microscope according to the present invention is also a scanning transmission electron microscope including a diffraction pattern observation unit. The diffraction pattern observation unit includes a scintillator, converts image information of the diffraction pattern into a light intensity distribution, and extracts the light intensity distribution. The electron incident on the scintillator is detected as a current.
[0021]
The scanning transmission electron microscope according to the present invention further includes electron beam intensity distribution detection means in which unit detection means for outputting a signal corresponding to the intensity of the incident electron beam is two-dimensionally arranged. In the scanning transmission electron microscope that simultaneously detects light, the electron beam intensity distribution detection means is equipped with a scintillator to convert the image information of the electron beam intensity distribution into a light intensity distribution, and to detect the electrons incident on the scintillator as a current. It is characterized by doing.
[0022]
The scanning transmission electron microscope according to the present invention is also a scanning transmission electron microscope including a dark field image detection means and a bright field image detection means. The intensity of the pixel of the stored dark field image divided by the intensity of the corresponding pixel of the bright field image or the sum of the intensity of the pixel of the dark field image and the intensity of the corresponding pixel of the bright field image, or stored. Forming an image by dividing the intensity of the bright field image pixel by the intensity of the corresponding pixel of the dark field image or the sum of the intensity of the pixel of the bright field image and the intensity of the corresponding pixel of the dark field image. And
According to the present invention, it is possible to cancel the fluctuation of the brightness of the electron source and improve the image quality of the scanning transmission electron microscope image.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In each figure shown below, the same code | symbol is attached | subjected to the same function part and the overlapping description is abbreviate | omitted.
FIG. 1 is a schematic diagram showing an example of a scanning transmission electron microscope according to the present invention. The incident electron beam 1 emitted from the electron gun and converged by the converging lens (system) and the magnetic field in front of the sample irradiates one point on the sample 2. The scanning coil 5 is supplied with a scanning current 6 having a sawtooth waveform, and the electron beam 1 converged on the sample 2 scans a predetermined range on the sample surface two-dimensionally. The CRT scanning current 9 is also supplied to the CRT scanning coil 8 of the CRT 7, and the scanning currents 6 and 9 are synchronized. However, while the amplitude of the CRT scanning current 9 is constant, the amplitude of the current 6 flowing through the scanning coil 5 is set so that the range of scanning on the sample surface is a size obtained by dividing the size of the CRT 7 by the magnification. Has been. Therefore, the region scanned on the sample surface and the display on the CRT are similar, and one point on the sample surface corresponds to one point on the CRT on a one-to-one basis.
[0024]
When an electron beam is irradiated to a specific region of the sample 2, the intensity of the incident electrons 1 is proportional to the intensity of the transmitted electrons 3 transmitted through the sample 2. The intensity of the incident electrons 1 is proportional to the intensity of the scattered electrons 4 scattered by the sample 2. When the intensity (brightness) of the incident electrons 1 varies, the intensity of the transmitted electrons 3 and the scattered electrons 4 also varies in proportion to the intensity of the incident electrons 1. The sample 2 of the scanning transmission electron microscope is sufficiently thin, and most of the electrons 1 incident on the sample 2 are transmitted electrons 3. Most of the scattered electrons 4 are also scattered forward. Therefore, as a first approximation, the variation in the brightness of the transmitted electrons 3 is equal to the variation in the brightness of the electrons 1 incident on the sample 2.
[0025]
The transmitted electrons 3 and the scattered electrons 4 are detected by the bright field detector 10 and the dark field detector 11, respectively, and converted into electrical signals. When obtaining a dark field image, the divider 14 divides the intensity signal amplified by the dark field detector amplifier 13 by the intensity signal amplified by the bright field detector amplifier 12. When obtaining a bright field image, the divider 14 divides the intensity signal amplified by the bright field detector amplifier 12 by the intensity signal amplified by the dark field detector amplifier 13. The divided result is displayed on the CRT 7 as a change in luminance. In this way, a dark field transmission scanning electron microscope image in which the influence of the brightness variation of the electron source is reduced is obtained.
[0026]
FIG. 2 is a schematic view showing another example of a scanning transmission electron microscope according to the present invention. The bright field detector 10 includes a scintillator 15b and a photomultiplier tube 16b. The scintillator 15 is electrically insulated from other components, and the transmitted electrons 3 incident on the scintillator 15b flow to the ground through the detection resistor 17b. The voltage across the detection resistor 17b is amplified by the amplifier 18 and supplied as the denominator of the divider 14 division. The transmitted electrons 3 incident on the scintillator 15b are converted into light, and light in a part of the region, preferably in the vicinity of the central region, is converted into an electrical signal by the photomultiplier tube 16b, and the bright field detector amplifier 12 Amplified.
[0027]
The changeover switch 19 selects a signal from either the bright-field detector amplifier 12 or the dark-field detector amplifier 13 as a signal to be input to the numerator of the divider 14. The divided result is displayed on the CRT 7 as a change in luminance. When a signal from the bright field detector amplifier 12 is selected by the changeover switch 19, a bright field image is displayed on the CRT 7, and when a signal from the dark field detector amplifier 13 is selected, a dark field image is displayed. In this way, a transmission scanning electron microscope image in which the influence of the brightness variation of the electron source is reduced is obtained.
[0028]
FIG. 3 is a schematic diagram showing another example of a scanning transmission electron microscope according to the present invention. The scanning transmission electron microscope shown in FIG. 3 is such that the current of the scattered electrons 4 can be read from the scintillator 15d of the dark field detector further from FIG.
The dark field detector 11 includes a scintillator 15d, a photomultiplier tube 16d, and a light guide 20. The scattered electrons 4 incident on the dark field detector 11 are converted into light by the scintillator 15d, guided to the light guide 20, and converted into an image signal of a scanning transmission electron microscope image by the photomultiplier 16d. The output of the photomultiplier tube 16d is amplified by the dark field detector amplifier 13. The scintillator 15d of the dark field detector 11 is also electrically insulated from other components, and the scattered electrons 4 incident on the scintillator 15d flow to the ground through the detection resistor 17d.
[0029]
The voltage across the detection resistor 17b of the scintillator 15b of the bright field detector 10 and the detection resistor 17d of the scintillator 15d of the dark field detector 11 is added by the adder 21, amplified by the amplifier 18, and divided by the divider 14. Supplied as denominator. The changeover switch 19 selects a signal from either the bright-field detector amplifier 12 or the dark-field detector amplifier 13 as a signal to be input to the numerator of the divider 14. When a signal from the bright field detector amplifier 12 is selected by the changeover switch 19, a bright field image is displayed on the CRT 7, and when a signal from the dark field detector amplifier 13 is selected, a dark field image is displayed. In this way, a transmission scanning electron microscope image in which the influence of the brightness variation of the electron source is reduced is formed.
[0030]
FIG. 4 is a schematic view showing another example of a scanning transmission electron microscope according to the present invention. The scanning transmission electron microscope shown in FIG. 2 detects the current of the transmission electrons 3 by the scintillator 15 of the bright field detector. However, the scanning transmission electron microscope shown in FIG. A detection angle limiting diaphragm 26 that is electrically insulated from other components is provided at the entrance of the bright field detector 10, and the current of the transmitted electrons 3 is detected by the detection angle limiting diaphragm 26.
[0031]
A part of the transmitted electrons 3 incident on the detection angle limiting diaphragm 26 flows to the ground via the detection resistor 17. The voltage across the detection resistor 17 is amplified by the amplifier 18 and supplied as the denominator of the divider 14. The output of the bright field detector 10 that detects the transmitted electrons 3 passing through the detection angle limiting aperture 26 is amplified by the bright field detector amplifier 12, and the output of the dark field detector 11 is amplified by the dark field detector amplifier 13. . The changeover switch 19 selects a signal from either the bright-field detector amplifier 12 or the dark-field detector amplifier 13 as a signal to be input to the numerator of the divider 14. When a signal from the bright field detector amplifier 12 is selected by the changeover switch 19, a bright field image is displayed on the CRT 7, and when a signal from the dark field detector amplifier 13 is selected, a dark field image is displayed. The bright-field scanning transmission electron microscope image has an advantage that the phase contrast is improved when the detection angle is limited to about 1 milliradian. In this way, a transmission scanning electron microscope image in which the influence of the brightness variation of the electron source is reduced is formed.
[0032]
FIG. 5 is a schematic view showing another example of the scanning transmission electron microscope according to the present invention, and shows an example having diffraction pattern observation means. The diffraction pattern observation means 29 includes a scintillator 15, a lens 27, and a digital camera 28. The electron beam diffraction pattern formed on the scintillator 15 is converted from the intensity distribution of the electron beam into the light intensity distribution, imaged on the light receiving surface of the digital camera 28 by the lens 27, and image display device by the digital camera control device 30. 31 is displayed. Although the lens 27 is used here, the scintillator 15 and the digital camera 28 may be optically coupled with an optical fiber plate.
[0033]
The scintillator 15 is electrically insulated from other components, and the transmitted electrons 3 incident on the scintillator 15 flow to the ground through the detection resistor 17. The voltage across the detection resistor 17 is amplified by the amplifier 18 and supplied as the denominator of the divider 14. The electron beam intensity signal incident on the dark field detector 11 is amplified by the dark field detector amplifier 13 and supplied as a numerator for division by the divider 14. The result divided by the divider 14 is displayed as a change in luminance on the CRT 7. In this way, a scanning transmission electron microscope image in which the influence of the brightness variation of the electron source is reduced (dark field) is formed.
[0034]
FIG. 6 is a schematic diagram showing an example of a scanning transmission electron microscope in which the current of scattered electrons 4 incident on the scintillator of the dark field detector can be read from FIG. The dark field detector 11 includes a scintillator 15d, a photomultiplier tube 16d, and a light guide 20. The scattered electrons 4 incident on the dark field detector 11 are converted into light by the scintillator 15d, guided to the light guide 20, and converted into an image signal of a scanning transmission electron microscope image by the photomultiplier 16d. The scintillator 15d of the dark field detector 11 is also electrically insulated from other components, and the incident scattered electrons 4 flow to the ground through the detection resistor 17d.
[0035]
The voltage across the detection resistor 17 of the diffraction pattern observation means 29 and the detection resistor 17d of the dark field detector 11 is added by the adder 21, amplified by the amplifier 18, and supplied as the denominator of the division by the divider 14. The output signal of the photomultiplier tube 16d of the dark field detector 11 is amplified by the dark field detector amplifier 13 and supplied as the numerator of the divider 14 division. The divided result is displayed on the CRT 7 as a change in luminance. In this way, a scanning transmission electron microscope image in which the influence of the brightness variation of the electron source is reduced (dark field) is formed.
[0036]
FIG. 7 is a schematic view showing another example of a scanning transmission electron microscope according to the present invention. The transmitted electrons 3 and scattered electrons 4 that have passed through the sample 2 are simultaneously detected by the electron beam intensity distribution detecting means. Here, the electron beam intensity distribution detection means includes a scintillator 15, detection means in which light receiving elements 23 are two-dimensionally arranged like a CCD 22, and a CCD control device 24. The electron beams 3 and 4 are converted into light by the scintillator 15, and the two-dimensional light intensity distribution on the scintillator is detected by the individual light receiving elements 23 of the CCD 22.
[0037]
Since the irradiation angle of the incident electrons 1 is from several milliradians to several tens of milliradians, when the setting condition of the mirror is adjusted, a converged electron beam diffraction pattern as shown in FIG. Since the sample 2 of the scanning transmission electron microscope is sufficiently thin and most of the incident electrons 1 pass through the sample 2, the disc of the transmitted electron 3 is the brightest in the convergent electron diffraction pattern, and the disc of the scattered electron 4 is also low. The following (close to transmitted electrons) is brighter. Therefore, in the case of a system in which the disk of transmitted electrons 3 is located at the approximate center of the CCD 22 and is detected up to several orders of diffraction waves, the sum of the signals of all the light receiving elements 23 on the CCD 22 is the intensity of the incident electrons 1. Is almost equal to
[0038]
Therefore, for example, a transmission electron detection region 25 is set on the CCD 22 by the CCD controller 24, and the sum of output signals of the light receiving elements included in the range is a bright-field signal, light reception located outside the transmission electron detection region 25. The sum of the signals of the elements is determined as a dark field signal, one of them is input to the numerator of the divider 14, and the sum of the signals of all the light receiving elements on the CCD 22 is input to the denominator of the divider 14 and divided. For example, a bright-field scanning transmission electron microscope image and a dark-field scanning transmission electron microscope image in which fluctuations in brightness of the incident electron beam 1 are reduced are obtained. Alternatively, an area covered by the disk of scattered electrons 4 of a specific diffraction order is set on the CCD 22 by the CCD controller 24, and the signal input to the numerator of the divider 14 is the signal of the light receiving element 23 included in the area. When the sum is used, a dark-field scanning transmission electron microscope image formed from information on only a specific crystal plane is obtained.
[0039]
FIG. 9 is a schematic view showing another example of a scanning transmission electron microscope according to the present invention. The transmitted electrons 3 and scattered electrons 4 that have passed through the sample 2 are simultaneously detected by the electron beam intensity distribution detecting means. Here, the electron beam intensity distribution detection means includes a scintillator 15, detection means in which light receiving elements 23 are two-dimensionally arranged like a CCD 22, and a CCD control device 24. The transmitted electrons and scattered electrons 4 of the sample 2 are converted into light by the scintillator 15, and the two-dimensional light intensity distribution on the scintillator 15 is detected by the CCD 22. The scintillator 15 is electrically insulated from other components, and the incident electrons 3 and 4 flow to the ground through the detection resistor 17. When the scintillator 15 is large enough to detect high-order (approximately 5th or higher order) scattered electrons, the intensity of electrons incident on the scintillator 15 is substantially equal to the intensity of the incident electrons 1. The voltage across the detection resistor 17 is amplified by the amplifier 18 and supplied as the denominator of the division by the divider 14.
[0040]
Since the irradiation angle of the incident electrons 1 is from several milliradians to several tens of milliradians, when the setting condition of the mirror is adjusted, a converged electron beam diffraction pattern as shown in FIG. For example, the transmission electron detection area 25 is set by the CCD control device 24, and the sum of the output signals of the light receiving elements 23 included in the range is set as the bright field signal, If the sum of the signals is determined as a dark-field signal and one of them is input to the numerator of the divider 14 and divided, the bright-field scanning transmission electron microscope image and the dark-field scanning transmission with reduced variations in the brightness of incident electrons are obtained. An electron microscope image is obtained. Alternatively, an area covered by the disk of scattered electrons 4 having a specific diffraction order is set on the CCD 22 by the CCD control device 24, and the sum of the signals of the light receiving elements included in the area is input as a signal to the numerator of the divider 14. Is used to obtain a dark-field scanning transmission electron microscope image in which only a specific crystal plane is selected.
[0041]
Note that, as described above, normalization (division) is not performed during scanning, that is, when capturing individual pixels, to compensate for variations in the brightness of the electron source. For example, a bright-field scanning transmission electron microscope image and a dark-field scanning transmission After simultaneously capturing the electron microscope image as a digital image and storing both in the storage device, for example, the pixel intensity of the dark field scanning transmission electron microscope image is divided by the pixel intensity of the corresponding bright field scanning transmission electron microscope image. In addition, it is possible to obtain a bright-field scanning transmission electron microscope image and a dark-field scanning transmission electron microscope image that compensate for variations in the brightness of the electron source.
[0042]
FIG. 12 is an example of a dark field scanning transmission electron microscope image obtained by dividing the dark field scanning transmission electron microscope signal by the bright field scanning transmission electron microscope signal in the apparatus configuration shown in FIG. It can be seen that the chip noise is removed, and a clear image is obtained as compared with FIG. 11 in which the chip noise is reduced using a conventional beam monitor. FIG. 14 shows an example of an image obtained by dividing the bright-field scanning transmission electron microscope signal by the dark-field scanning transmission electron microscope signal in the apparatus configuration shown in FIG. It can be seen that the chip noise has been removed.
[0043]
【The invention's effect】
According to the present invention, it is possible to obtain a higher quality image by correcting a change in brightness of an electron source in a scanning transmission electron microscope.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a scanning transmission electron microscope according to the present invention.
FIG. 2 is a schematic diagram showing another example of a scanning transmission electron microscope according to the present invention.
FIG. 3 is a schematic diagram showing another example of a scanning transmission electron microscope according to the present invention.
FIG. 4 is a schematic diagram showing another example of a scanning transmission electron microscope according to the present invention.
FIG. 5 is a schematic diagram showing another example of a scanning transmission electron microscope according to the present invention.
FIG. 6 is a schematic diagram showing another example of a scanning transmission electron microscope according to the present invention.
FIG. 7 is a schematic diagram showing another example of a scanning transmission electron microscope according to the present invention.
FIG. 8 is an explanatory diagram of a convergent electron beam diffraction pattern.
FIG. 9 is a schematic diagram showing another example of a scanning transmission electron microscope according to the present invention.
FIG. 10 is an electron micrograph showing an example of a dark field scanning transmission electron microscope image in which measures against chip noise are not taken.
FIG. 11 is an electron micrograph showing an example of an image obtained by dividing a dark-field scanning transmission electron microscope signal by a beam current signal.
FIG. 12 is an electron micrograph showing an example of a dark field scanning transmission electron microscope image obtained by dividing a dark field scanning transmission electron microscope signal by a bright field scanning transmission electron microscope signal.
FIG. 13 is an electron micrograph showing an example of a bright-field scanning transmission electron microscope image in which measures against chip noise are not taken.
FIG. 14 is an electron micrograph showing an example of an image obtained by dividing a bright-field scanning transmission electron microscope signal by a dark-field scanning transmission electron microscope signal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Incident electron beam, 2 ... Sample, 3 ... Transmission electron, 4 ... Scattered electron, 5 ... Scanning coil, 6 ... Scanning current, 7 ... CRT, 8 ... CRT scanning coil, 9 ... CRT scanning current, 10 ... Bright field Detector: 11 ... Dark field detector, 12 ... Bright field detector amplifier, 13 ... Dark field detector amplifier, 14 ... Divider, 15, 15b, 15d ... Scintillator, 16b, 16d ... Photomultiplier tube, 17, 17b, 17d ... detection resistor, 18 ... amplifier, 19 ... changeover switch, 20 ... light guide, 21 ... adder, 22 ... CCD, 23 ... light receiving element, 24 ... CCD control device, 25 ... transmission electron detection region, 26 ... Detection angle limiting diaphragm, 27 ... lens, 28 ... digital camera, 29 ... diffraction pattern observation means, 30 ... digital camera control device, 31 ... image display device

Claims (3)

明視野像検出手段と、暗視野像検出手段とを含む走査透過型電子顕微鏡において、
前記明視野像検出手段の出力信号と前記暗視野像検出手段の出力信号のいずれか一方を他方で除算する除算器を備え、当該除算器は、暗視野像を得る場合には、前記暗視野像検出手段の出力に基づく信号を前記明視野像検出手段の出力に基づく信号で割り算し、明視野像を得る場合には、前記明視野像検出手段の出力に基づく信号を前記暗視野像検出手段の出力に基づく信号で割り算し、これら除算の結果を表示装置の輝度信号として出力することを特徴とする走査透過型電子顕微鏡。
In a scanning transmission electron microscope including a bright field image detection means and a dark field image detection means,
A divider that divides one of the output signal of the bright field image detection unit and the output signal of the dark field image detection unit by the other, and when the divider obtains a dark field image, the dark field image When a signal based on the output of the bright field image detecting unit is divided by a signal based on the output of the image detecting unit to obtain a bright field image, the signal based on the output of the bright field image detecting unit is detected as the dark field image detecting unit. A scanning transmission electron microscope characterized by dividing by a signal based on the output of the means and outputting the result of the division as a luminance signal of the display device .
暗視野像検出手段と、明視野像検出手段と、除算器とを含
前記明視野像検出手段は、該明視野像検出手段の中心領域付近に入射した電子数に対応した強度の信号を出力する第1検出手段と、前記第1検出手段の検出領域を含むより広い領域に入射した電子数に対応する強度の信号を出力する第2検出手段とを含み、
前記除算器は、暗視野像を得る場合には、前記暗視野像検出手段の出力信号を前記明視野像検出手段の第2検出手段の出力信号で除算し、明視野像を得る場合には、前記明視野像検出手段の第1検出器の出力信号を前記第2検出器の出力信号で除算し、これら除算の結果を表示装置の輝度信号として出力することを特徴とする走査透過型電子顕微鏡。
A dark field image detector, a bright field image detector, and a divider seen including,
The bright field image detection means includes a first detection means for outputting a signal having an intensity corresponding to the number of electrons incident near the central region of the bright field image detection means, and a wider area including the detection area of the first detection means. A second detection means for outputting a signal having an intensity corresponding to the number of electrons incident on the region,
When the divider obtains a dark field image, it divides the output signal of the dark field image detection means by the output signal of the second detection means of the bright field image detection means to obtain a bright field image. The scanning transmission electron, wherein the output signal of the first detector of the bright field image detecting means is divided by the output signal of the second detector, and the result of the division is output as a luminance signal of the display device. microscope.
暗視野像検出手段と、明視野像検出手段と、除算器とを含
前記明視野像検出手段は、透過電子の取り込み角度を制限する絞り板と、前記絞り板を通過した電子を検出する通過電子検出手段とを備え、
前記除算器は、暗視野像を得る場合には、前記暗視野像検出手段の出力信号を前記絞り板で検出された電流値に比例した量で除算し、明視野像を得る場合には、前記明視野像検出手段の通過電子検出手段の出力信号を前記絞り板で検出された電流値に比例した量で除算し、これら除算の結果を表示装置の輝度信号として出力することを特徴とする走査透過型電子顕微鏡。
A dark field image detector, a bright field image detector, and a divider seen including,
The bright-field image detection means includes a diaphragm plate that limits the angle at which transmitted electrons are captured, and a passing electron detection means that detects electrons that have passed through the diaphragm plate,
The divider, when obtaining a dark field image, divides the output signal of the dark field image detection means by an amount proportional to the current value detected by the diaphragm, and when obtaining a bright field image, The output signal of the passing electron detection means of the bright field image detection means is divided by an amount proportional to the current value detected by the diaphragm plate, and the result of the division is output as a luminance signal of the display device. Scanning transmission electron microscope.
JP20285898A 1998-07-03 1998-07-03 Scanning transmission electron microscope Expired - Fee Related JP3987208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20285898A JP3987208B2 (en) 1998-07-03 1998-07-03 Scanning transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20285898A JP3987208B2 (en) 1998-07-03 1998-07-03 Scanning transmission electron microscope

Publications (2)

Publication Number Publication Date
JP2000021346A JP2000021346A (en) 2000-01-21
JP3987208B2 true JP3987208B2 (en) 2007-10-03

Family

ID=16464370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20285898A Expired - Fee Related JP3987208B2 (en) 1998-07-03 1998-07-03 Scanning transmission electron microscope

Country Status (1)

Country Link
JP (1) JP3987208B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038418A1 (en) 2001-11-02 2003-05-08 Hitachi, Ltd. Elemental analyser, scanning transmission electron microscope, and element analyzing method
JP2005235665A (en) * 2004-02-23 2005-09-02 Hitachi High-Technologies Corp Dark field scanning transmission electron microscope and observation method
JP4664041B2 (en) 2004-10-27 2011-04-06 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and sample preparation method
JP4988308B2 (en) * 2006-11-07 2012-08-01 株式会社日立ハイテクノロジーズ Gas amplification type detector and electron beam application apparatus using the same
JP4597207B2 (en) * 2008-03-31 2010-12-15 株式会社日立ハイテクノロジーズ Scanning electron microscope
US8170832B2 (en) * 2008-10-31 2012-05-01 Fei Company Measurement and endpointing of sample thickness
JP5208910B2 (en) * 2009-12-07 2013-06-12 株式会社日立ハイテクノロジーズ Transmission electron microscope and sample observation method
JP2012068197A (en) * 2010-09-27 2012-04-05 Toshiba Corp Dimension measuring method, dimension measuring apparatus and dimension measurement processing program
JP5799653B2 (en) * 2011-08-17 2015-10-28 富士通株式会社 Image processing apparatus, method and system for generating image
JP6486670B2 (en) * 2014-12-08 2019-03-20 日本電子株式会社 Electron microscope and method of operating electron microscope
US10192716B2 (en) * 2015-09-21 2019-01-29 Kla-Tencor Corporation Multi-beam dark field imaging
KR102468155B1 (en) * 2017-02-07 2022-11-17 에이에스엠엘 네델란즈 비.브이. Charged particle detecting method and apparatus thereof

Also Published As

Publication number Publication date
JP2000021346A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
US4211924A (en) Transmission-type scanning charged-particle beam microscope
JP3987208B2 (en) Scanning transmission electron microscope
JP2786441B2 (en) X-ray inspection equipment
US7285776B2 (en) Scanning transmission electron microscope and electron energy loss spectroscopy
US20120287258A1 (en) Charged particle beam microscope and method of measurement employing same
CN111344830B (en) Improved system for electron diffraction analysis
JP2007179753A (en) Scanning transmission electron microscope, and aberration measuring method
US20180247790A1 (en) Charged particle beam device and image forming method using same
JP5553154B2 (en) Adjustment method of multi-segment STEM detector
JPH04110073U (en) X-ray inspection equipment
JP2006173027A (en) Scanning transmission electron microscope, aberration measuring method, and aberration correction method
US8153967B2 (en) Method of generating particle beam images using a particle beam apparatus
US10923308B1 (en) Method and system for energy resolved chroma imaging
US9859095B2 (en) Electron microscope and measurement method
JPH04259743A (en) Scanning type reflecting electron-diffraction microscope
JPH01120749A (en) Automatic focusing device for electron microscope
GB1588234A (en) Transmission type beam nicroscopes utilising a scanning technique
US4804840A (en) Apparatus for detecting focused condition of charged particle beam
JP4045058B2 (en) Multiple charged particle detector and scanning transmission electron microscope using the same
CN212341010U (en) Visual Raman probe, detector and system
JP2000131045A (en) Scanning type charged particle beam system
JPH1167138A (en) Micro-area observation device
JP2005005056A (en) Scanning electron microscope
JPS6364255A (en) Particle beam radiating device
JP2006302523A (en) Transmission electron microscope having scan image observation function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees