JPH04259743A - Scanning type reflecting electron-diffraction microscope - Google Patents

Scanning type reflecting electron-diffraction microscope

Info

Publication number
JPH04259743A
JPH04259743A JP3021763A JP2176391A JPH04259743A JP H04259743 A JPH04259743 A JP H04259743A JP 3021763 A JP3021763 A JP 3021763A JP 2176391 A JP2176391 A JP 2176391A JP H04259743 A JPH04259743 A JP H04259743A
Authority
JP
Japan
Prior art keywords
diffraction
image
electron
scanning
crt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3021763A
Other languages
Japanese (ja)
Other versions
JPH071688B2 (en
Inventor
Takao Marui
隆雄 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3021763A priority Critical patent/JPH071688B2/en
Priority to US07/827,422 priority patent/US5675148A/en
Priority to DE69211378T priority patent/DE69211378T2/en
Priority to EP92301263A priority patent/EP0499490B1/en
Publication of JPH04259743A publication Critical patent/JPH04259743A/en
Publication of JPH071688B2 publication Critical patent/JPH071688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/26Image pick-up tubes having an input of visible light and electric output
    • H01J31/48Tubes with amplification of output effected by electron multiplier arrangements within the vacuum space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/224Luminescent screens or photographic plates for imaging ; Apparatus specially adapted therefor, e.g. cameras, TV-cameras, photographic equipment, exposure control; Optical subsystems specially adapted therefor, e.g. microscopes for observing image on luminescent screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes
    • H01J37/2955Electron or ion diffraction tubes using scanning ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2445Photon detectors for X-rays, light, e.g. photomultipliers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2538Low energy electron microscopy [LEEM]
    • H01J2237/2544Diffraction [LEED]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To detect a diffracted electron with a large angle of diffraction without using a large scanning coil and while holding a wide space between 5 sample and a detector. CONSTITUTION:A primary electron beam 4 from an electron gun 2 is fixed and emitted to the analyzing point of a sample 7 to form a diffraction image on a fluorescent plate 9, and this diffraction image is optically contracted by an optical lens 10 and imaged on a photo-electric surface 11. The electrons from the photo-electric surface 11 are deflected by an electron deflecting system consisting of a deflecting coil 12 and a focusing coil 13 and detected by an electron doubling tube 15, and a reflected diffraction image is displayed on a CRT 19.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、走査型反射高速電子回
折(RHEED)顕微鏡、走査型低速電子回折(LEE
D)顕微鏡など、回折電子像の観察を行うとともに、特
定の回折斑点強度の時間的変化を観察する装置に関する
[Industrial Application Field] The present invention relates to a scanning reflection high-speed electron diffraction (RHEED) microscope, a scanning low-speed electron diffraction (LEEED) microscope, and a scanning low-speed electron diffraction (LEEED) microscope.
D) It relates to a device such as a microscope that observes a diffracted electron image and observes temporal changes in the intensity of a specific diffraction spot.

【0002】0002

【従来の技術】従来の走査型反射高速電子回折顕微鏡の
一例を図2に示す。図2において、加速電源1を有する
電子銃2から放出される一次電子ビーム4が収束レンズ
3によって真空容器6内にある試料7の表面に収束され
、走査電源17によって一次電子ビーム用偏向コイル5
を動作させることにより、一次電子ビーム4が試料7の
表面上で走査される。そのときに得られる試料7の吸収
電流信号をCRT16に輝度変調信号として入力するこ
とによりCRT16上に試料7の吸収電流像が得られる
。この吸収電流像から試料7の分析すべき場所を選択す
る。 そして、この選択した分析点に一次電子線4を固定照射
すると、分析点から得られる反射回折線8によって螢光
板9上に像が形成され、のぞき窓21を通して反射回折
像として観測することができる。この回折像を解析する
ことによって試料7の表面上の任意の場所の結晶状態を
分析することが可能となる。さらに、アパーチャ22を
使用してある特定の回折スポットを選び、光電変換素子
23から得られる電気信号を一次電子ビーム4の走査に
同期させてCRT16に輝度変調信号として加えること
によってCRT16上に回折顕微像が得られる。この回
折顕微像から試料7の表面の結晶分布がわかり、試料7
の表面の結晶解析の有力な手段となる。しかし、この走
査型反射電子回折顕微鏡は広範囲の反射回折線を螢光板
9上で観察する必要があるため、螢光板9が大きくなり
結果として装置が大型化する、ある特定の回折スポット
を選択する場合、光電変換素子23やアパーチャ22を
機械的に動かす必要があり操作性が良くない、反射回折
像を画像処理する場合二次元画像を記憶する等の特別な
装置を必要とする、等の欠点がある。
2. Description of the Related Art An example of a conventional scanning reflection high-speed electron diffraction microscope is shown in FIG. In FIG. 2, a primary electron beam 4 emitted from an electron gun 2 having an accelerating power source 1 is converged by a converging lens 3 onto the surface of a sample 7 in a vacuum container 6, and by a scanning power source 17, a primary electron beam deflection coil 5
By operating the primary electron beam 4, the surface of the sample 7 is scanned. By inputting the absorbed current signal of the sample 7 obtained at that time to the CRT 16 as a brightness modulation signal, an absorbed current image of the sample 7 is obtained on the CRT 16. A location on the sample 7 to be analyzed is selected from this absorbed current image. When the primary electron beam 4 is fixedly irradiated onto the selected analysis point, an image is formed on the fluorescent plate 9 by the reflected diffraction lines 8 obtained from the analysis point, and can be observed as a reflected diffraction image through the viewing window 21. . By analyzing this diffraction image, it becomes possible to analyze the crystalline state at any location on the surface of the sample 7. Furthermore, by selecting a specific diffraction spot using the aperture 22 and applying the electric signal obtained from the photoelectric conversion element 23 to the CRT 16 as a brightness modulation signal in synchronization with the scanning of the primary electron beam 4, a diffraction microscope is displayed on the CRT 16. An image is obtained. This diffraction microscopic image reveals the crystal distribution on the surface of sample 7.
It is an effective means of surface crystal analysis. However, in this scanning backscattered electron diffraction microscope, it is necessary to observe a wide range of reflected diffraction lines on the fluorescent plate 9, so the fluorescent plate 9 becomes large, resulting in an increase in the size of the device. In this case, it is necessary to mechanically move the photoelectric conversion element 23 and the aperture 22, resulting in poor operability, and image processing of a reflection diffraction image requires special equipment for storing two-dimensional images, etc. There is.

【0003】上記のような欠点を解消するために、図3
のような走査型反射電子回折顕微鏡が提案されている(
特開昭60−56344号公報参照)。図3において、
一次電子ビーム4を試料7の表面に固定したときに得ら
れる反射回折線8の一部は磁場遮蔽板27を通過し、さ
らに小さな部分がアパーチャ22を通過して螢光板9上
に輝点を形成する。さらに、のぞき窓21を通して光電
変換素子23によってこの輝点による光信号を受けて電
気信号に変換し、反射回折線用CRT19の輝度変調信
号として使用する。このとき、反射回折線用走査電源2
0によって反射回折線用偏向コイル28を動作させ、磁
場遮蔽板27を通過した反射回折線8を偏向し、この偏
向に同期した輝度変調像を反射回折線用CRT19上に
表示する。磁場遮蔽板27は反射回折線用コイル28を
動作させたときに生ずる磁場を遮蔽し、一次電子ビーム
4の照射点を一定に保つ役割をはたす。このようにして
得られた反射回折線用CRT19上の輝度変調像は、図
2の装置で螢光板9上に得られる反射回折像とまったく
等価な像になる。また、ある特定回折スポットを信号と
する回折顕微像を得る場合には、CRT19の走査回路
を調整することにより、反射回折線用CRT19上に表
示されている反射回折像中の回折スポットの位置にCR
T19の陰極線を固定し、この状態で信号切替スイッチ
18をCRT16の方に切替え、走査電源17により電
子ビーム4を試料7の表面上で走査することによって回
折顕微像をCRT13上に得ることができる。この走査
型反射電子回折顕微鏡は反射回折像を取得する場合に大
口径の螢光板を必要とせず、すべての信号取得を電気的
に行えるので、操作性が非常によく、また、走査電源2
0の走査に同期して得られる光電変換素子23からの電
気信号をメモリに記憶し種々の処理を行うことによって
信号のS/N増大等画像処理を容易に行うことができる
[0003] In order to eliminate the above-mentioned drawbacks, FIG.
A scanning backscattered electron diffraction microscope has been proposed (
(See Japanese Patent Application Laid-Open No. 60-56344). In Figure 3,
A part of the reflected diffraction line 8 obtained when the primary electron beam 4 is fixed on the surface of the sample 7 passes through the magnetic field shielding plate 27, and an even smaller part passes through the aperture 22 and forms a bright spot on the fluorescent plate 9. Form. Further, an optical signal from this bright spot is received by a photoelectric conversion element 23 through a peephole 21, converted into an electric signal, and used as a brightness modulation signal for the CRT 19 for reflected diffraction lines. At this time, the scanning power source 2 for the reflected diffraction line
0, the reflected diffraction line deflection coil 28 is operated to deflect the reflected diffraction line 8 that has passed through the magnetic field shielding plate 27, and a brightness modulated image synchronized with this deflection is displayed on the reflected diffraction line CRT 19. The magnetic field shielding plate 27 functions to shield the magnetic field generated when the reflective diffraction line coil 28 is operated, and to keep the irradiation point of the primary electron beam 4 constant. The brightness modulation image thus obtained on the CRT 19 for reflected diffraction lines is completely equivalent to the reflected diffraction image obtained on the fluorescent plate 9 with the apparatus shown in FIG. In addition, when obtaining a diffraction microscopic image using a specific diffraction spot as a signal, by adjusting the scanning circuit of the CRT 19, the position of the diffraction spot in the reflected diffraction image displayed on the CRT 19 for reflected diffraction lines can be adjusted. CR
A diffraction microscopic image can be obtained on the CRT 13 by fixing the cathode ray of T19, switching the signal changeover switch 18 to the CRT 16 in this state, and scanning the electron beam 4 over the surface of the sample 7 using the scanning power supply 17. . This scanning backscattered electron diffraction microscope does not require a large-diameter fluorescent plate when acquiring a reflection diffraction image, and all signal acquisition can be done electrically, making it extremely easy to operate.
By storing the electrical signal from the photoelectric conversion element 23 obtained in synchronization with the zero scanning in a memory and performing various processing, image processing such as increasing the S/N of the signal can be easily performed.

【0004】0004

【発明が解決しようとする課題】従来の走査型反射電子
回折顕微鏡は、上記のように構成されているが、図2の
走査型反射電子回折顕微鏡は、上記のように、ある特定
の回折スポットを選択する場合、光電変換素子23やア
パーチャ22を機械的に動かす必要があり操作性が良く
ない、反射回折像を画像処理する場合二次元画像を記憶
する等の特別な装置を必要とする、等の欠点がある。ま
た、図3の走査型反射電子回折顕微鏡は操作性がよく、
画像処理も容易に行うことができるが、検出することが
できる回折電子の回折角は試料7と走査コイル部との距
離および反射回折線用偏向コイルの発生する磁場の大き
さによって制限されるので、回折角の大きい回折電子を
検出することができない。回折角の大きい回折電子を検
出するためには、大きな走査コイルを作るか、走査コイ
ル部を試料に近づける必要がある。しかし、大きな走査
コイルを用いると、装置が大型化するという問題があり
、また、試料交換等の必要性から常時試料と走査コイル
部との間隔を小さくしておくことはできないので、走査
コイル部の移動機構や位置調整機構等が必要となり、装
置が複雑化するという問題があった。
[Problems to be Solved by the Invention] A conventional scanning backscattered electron diffraction microscope is configured as described above, but the scanning backscattered electron diffraction microscope shown in FIG. When selecting , it is necessary to mechanically move the photoelectric conversion element 23 and the aperture 22, which is not good in operability, and when processing a reflection diffraction image, a special device is required to store a two-dimensional image, etc. There are drawbacks such as. In addition, the scanning backscattered electron diffraction microscope shown in Figure 3 is easy to operate;
Image processing can also be easily performed, but the diffraction angle of the diffracted electrons that can be detected is limited by the distance between the sample 7 and the scanning coil section and the magnitude of the magnetic field generated by the deflection coil for reflected diffraction rays. , diffracted electrons with large diffraction angles cannot be detected. In order to detect diffracted electrons with a large diffraction angle, it is necessary to create a large scanning coil or to move the scanning coil section close to the sample. However, if a large scanning coil is used, there is a problem that the device will become larger, and the distance between the sample and the scanning coil section cannot be kept small at all times due to the need for sample exchange, etc., so the scanning coil section This requires a moving mechanism, a position adjustment mechanism, etc., and there is a problem that the device becomes complicated.

【0005】本発明は、上記問題点を解消するために創
案されたものであり、大きな走査コイルを用いることな
く、また、試料と検出器との間の空間を広く取ったまま
で、回折角の大きな回折電子まで検出することができる
、走査性の良い走査型反射電子回折顕微鏡を提供するこ
とを目的とする。
The present invention was devised to solve the above problems, and it is possible to increase the diffraction angle without using a large scanning coil and while maintaining a wide space between the sample and the detector. An object of the present invention is to provide a scanning backscattered electron diffraction microscope with good scanning performance that can detect even large diffracted electrons.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の走査型反射電子回折顕微鏡は、反射回折像の
検出手段を、螢光板上の回折像を光学的に縮小する光学
縮小部と、光学的に縮小された回折像を電子像に変換す
る光電面と、光電面からの電子を偏向する偏向系と、偏
向系により偏向された電子が通過するアパーチャと、ア
パーチャを通過した電子を検出する検出器とにより構成
している。
[Means for Solving the Problems] In order to achieve the above object, the scanning reflection electron diffraction microscope of the present invention replaces the reflection diffraction image detection means with an optical reduction section that optically reduces the diffraction image on the fluorescent plate. , a photocathode that converts the optically reduced diffraction image into an electron image, a deflection system that deflects the electrons from the photocathode, an aperture through which the electrons deflected by the deflection system pass, and the electrons that have passed through the aperture. It consists of a detector that detects

【0007】[0007]

【作用】本発明の走査型反射電子回折顕微鏡は上記のよ
うに構成されており、蛍光板上の回折像が光学縮小部に
よって光学的に縮小されて光電面に結像され、光電面か
らの電子が電子偏向系によって偏向される。そして、ア
パーチャを通過した電子を検出する検出器の出力が、電
子偏向系の偏向に同期したCRTに輝度変調信号として
加えられ、輝度変調像が反射回折線用CRT上に表示さ
れる。このようにして得られたCRT上の輝度変調像は
、螢光板上に得られる反射回折像と全く等価な像になる
。また、ある特定の回折スポットを信号とする回折顕微
像を得る場合には、反射回折像中の回折スポットの位置
に電子偏向系を固定した状態で、電子ビームを試料の表
面上で走査することにより回折顕微像をCRT上に得る
ことができる。
[Operation] The scanning backscattered electron diffraction microscope of the present invention is constructed as described above, and the diffraction image on the fluorescent screen is optically reduced by the optical reduction unit and imaged on the photocathode, and the electrons from the photocathode are is deflected by the electron deflection system. Then, the output of the detector that detects the electrons passing through the aperture is applied as a brightness modulation signal to a CRT synchronized with the deflection of the electron deflection system, and a brightness modulated image is displayed on the CRT for reflected diffraction lines. The brightness modulation image on the CRT thus obtained is completely equivalent to the reflection diffraction image obtained on the fluorescent plate. In addition, when obtaining a diffraction microscopic image using a specific diffraction spot as a signal, the electron beam must be scanned over the surface of the sample with the electron deflection system fixed at the position of the diffraction spot in the reflection diffraction image. A diffraction microscopic image can be obtained on a CRT.

【0008】[0008]

【実施例】図1は本発明の走査型反射電子回折顕微鏡を
示す図である。図1において、1〜8および16〜20
は図3の走査型反射電子回折顕微鏡と同じであり、9は
螢光板、10は光学レンズ、11は光電面、12は偏向
コイル、13は集束コイル、14はアパーチャ、15は
電子増倍管である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a scanning electron diffraction microscope according to the present invention. In FIG. 1, 1 to 8 and 16 to 20
is the same as the scanning backscattered electron diffraction microscope shown in Fig. 3, 9 is a fluorescent plate, 10 is an optical lens, 11 is a photocathode, 12 is a deflection coil, 13 is a focusing coil, 14 is an aperture, and 15 is an electron multiplier tube. It is.

【0009】この装置を使用して反射電子回折像を得る
方法を説明する。図3の走査型反射電子回折顕微鏡と同
様に、加速電源1を有する電子銃2から放出される一次
電子ビーム4が収束レンズ3により真空容器6内にある
試料7の表面に収束され、走査電源17によって一次電
子ビーム用偏向コイル5を動作させることにより一次電
子ビーム4が試料7の表面上で走査される。このとき得
られる試料7の吸収電流信号をCRT16の輝度変調信
号として入力することによりCRT16上に試料7の吸
収電流像が得られる。この吸収電流像から試料7の分析
すべき場所を選定し、その分析点に一次電子線を固定照
射することにより、反射回折線8により蛍光板9上に回
折像が形成される。そして、蛍光板9上の回折像は光学
レンズ10によって光学的に縮小されて光電面11上に
結像されて電子像に変換され、アパーチャ14の孔を通
過した電子が電子増倍管15によって検出され、スイッ
チ18を介して反射回折線用CRT19に輝度変調信号
として入力される。 このとき、CRT19の走査信号によって反射回折線用
走査電源20を駆動し、偏向コイル12、集束コイル1
3よりなる電子偏向系によって光電面11からの電子を
偏向することにより輝度変調像を反射回折線用CRT1
9上に表示する。このようにして得られたCRT19上
の輝度変調像は、螢光板9上に得られる反射回折像と全
く等価な像になる。
A method for obtaining a reflected electron diffraction image using this apparatus will be explained. Similar to the scanning backscattered electron diffraction microscope shown in FIG. The primary electron beam 4 is scanned over the surface of the sample 7 by operating the primary electron beam deflection coil 5 by means of the primary electron beam 17 . By inputting the absorbed current signal of the sample 7 obtained at this time as a brightness modulation signal to the CRT 16, an absorbed current image of the sample 7 is obtained on the CRT 16. By selecting a location on the sample 7 to be analyzed from this absorption current image and fixedly irradiating that analysis point with a primary electron beam, a diffraction image is formed on the fluorescent screen 9 by the reflected diffraction rays 8. The diffraction image on the fluorescent screen 9 is optically reduced by an optical lens 10 and formed on a photocathode 11 to be converted into an electron image, and the electrons passing through the hole of the aperture 14 are detected by an electron multiplier 15. The signal is then input as a brightness modulation signal to the reflected diffraction line CRT 19 via the switch 18. At this time, the scanning power source 20 for the reflected diffraction line is driven by the scanning signal of the CRT 19, and the deflection coil 12 and the focusing coil 1 are driven.
By deflecting electrons from the photocathode 11 by an electron deflection system consisting of 3, a brightness modulated image is reflected on the CRT 1 for diffraction lines.
Display on 9. The brightness modulation image thus obtained on the CRT 19 is completely equivalent to the reflection diffraction image obtained on the fluorescent plate 9.

【0010】一方、ある特定の回折スポットを信号とす
る回折顕微像を得る場合には、CRT19の走査信号を
調整して反射回折線用CRT19上に表示されている反
射回折像中の回折スポットの位置にCRT19の陰極線
を固定し、螢光板9上の回折スポット位置に対応する光
電面上の位置からの電子のみがアパーチャ14を介して
電子増倍管15によって検出されている状態とする。こ
の状態で信号切換えスイッチ18をCRT16の方に切
替え、走査電源17によって電子ビーム4を試料7の表
面上で走査することによって回折顕微像をCRT16上
に得ることができる。
On the other hand, when obtaining a diffraction microscopic image using a certain specific diffraction spot as a signal, the scanning signal of the CRT 19 is adjusted so that the diffraction spot in the reflection diffraction image displayed on the reflection diffraction line CRT 19 is obtained. The cathode ray of the CRT 19 is fixed at a position such that only electrons from a position on the photocathode corresponding to the diffraction spot position on the fluorescent plate 9 are detected by the electron multiplier 15 via the aperture 14. In this state, a diffraction microscopic image can be obtained on the CRT 16 by switching the signal changeover switch 18 to the CRT 16 and scanning the electron beam 4 over the surface of the sample 7 using the scanning power supply 17.

【0011】なお、上記実施例では光学縮小系として光
学レンズを用いた場合を説明したが、オプティカルファ
イバープレートを使用することもでき、オプティカルフ
ァイバープレートを用いた場合には、真空封じと光学的
な像の縮小が同時に行え、また、光信号の伝達ロスも少
なくすることができる。
In the above embodiment, an optical lens is used as the optical reduction system, but an optical fiber plate can also be used, and when an optical fiber plate is used, vacuum sealing and optical Images can be reduced at the same time, and optical signal transmission loss can also be reduced.

【0012】また、上記実施例では、走査電源をCRT
の走査信号によって駆動しているが走査電源出力によっ
てCRTの掃引を制御することもでき、さらに、単一の
CRTを使用し、反射回折線用走査電源20、走査電源
17の出力を切り替えて掃引信号としてCRTに供給す
ることにより、単一のCRTに反射回折像と回折顕微像
を切り替えて表示させることもできる。
Furthermore, in the above embodiment, the scanning power source is connected to the CRT.
Although the CRT is driven by a scanning signal, it is also possible to control the sweep of the CRT by the output of the scanning power supply.Furthermore, by using a single CRT, the outputs of the scanning power supply 20 for reflected diffraction lines and the scanning power supply 17 are switched to perform sweeping. By supplying the signal to a CRT, a reflection diffraction image and a diffraction microscopic image can be switched and displayed on a single CRT.

【0013】[0013]

【発明の効果】以上のように、本発明による走査型反射
電子回折顕微鏡は、蛍光板上の回折像を光学縮小系によ
って光学的に縮小して光電面に結像し、得られた電子像
を電子偏向系によって偏向するので、大きな走査コイル
を用いることなく、また、試料と検出器との間の空間を
広く取ったままで、回折角の大きな回折電子まで検出す
ることができる。
As described above, the scanning backscattered electron diffraction microscope according to the present invention optically reduces the diffraction image on the fluorescent screen using the optical reduction system and forms the image on the photocathode, and the obtained electron image is Since the electrons are deflected by the electron deflection system, even diffracted electrons with large diffraction angles can be detected without using a large scanning coil and while maintaining a wide space between the sample and the detector.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の走査型反射電子回折顕微鏡の一実施例
を示す図である。
FIG. 1 is a diagram showing an embodiment of a scanning backscattered electron diffraction microscope of the present invention.

【図2】従来の走査型反射電子回折顕微鏡を示す図であ
る。
FIG. 2 is a diagram showing a conventional scanning backscattered electron diffraction microscope.

【図3】従来の走査型反射電子回折顕微鏡の他の例を示
す図である。
FIG. 3 is a diagram showing another example of a conventional scanning backscattered electron diffraction microscope.

【符号の説明】[Explanation of symbols]

4      一次電子ビーム 7      試料 8      反射回折線 9      螢光板 10      光学レンズ 11      光電面 12      偏向コイル 13      集束コイル 14      アパーチャ 15      電子増倍管 16、19  CRT 4 Primary electron beam 7 Sample 8 Reflection diffraction line 9. Fluorescent plate 10 Optical lens 11 Photocathode 12 Deflection coil 13 Focusing coil 14 Aperture 15     Electron multiplier tube 16, 19 CRT

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電子源からの一次電子ビームを試料表
面上の所定領域に所定角度で照射し、上記試料表面で反
射される反射回折線による回折像を螢光板上に形成し、
上記螢光板上の回折像の中の特定回折スポットからの発
光のみを選択的に取出して走査電子顕微像を得る走査型
反射電子回折顕微鏡において、上記螢光板上の回折像を
光学的に縮小する光学縮小部と、光学的に縮小された回
折像を電子像に変換する光電面と、上記光電面からの電
子を偏向する偏向系と、上記偏向系により偏向された電
子が通過するアパーチャと、上記アパーチャを通過した
電子を検出する検出器とを有することを特徴とする走査
型反射電子回折顕微鏡。
1. A primary electron beam from an electron source is irradiated onto a predetermined area on a sample surface at a predetermined angle, and a diffraction image is formed on a fluorescent plate by reflected diffraction rays reflected from the sample surface,
In a scanning backscattered electron diffraction microscope that obtains a scanning electron microscopic image by selectively extracting only the light emitted from a specific diffraction spot in the diffraction image on the fluorescent plate, the diffraction image on the fluorescent plate is optically reduced. an optical reduction unit, a photocathode that converts the optically reduced diffraction image into an electron image, a deflection system that deflects electrons from the photocathode, and an aperture through which the electrons deflected by the deflection system pass; A scanning backscattered electron diffraction microscope, comprising a detector for detecting electrons that have passed through the aperture.
JP3021763A 1991-02-15 1991-02-15 Scanning reflection electron diffraction microscope Expired - Lifetime JPH071688B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3021763A JPH071688B2 (en) 1991-02-15 1991-02-15 Scanning reflection electron diffraction microscope
US07/827,422 US5675148A (en) 1991-02-15 1992-01-29 Scanning reflection electron diffraction microscope
DE69211378T DE69211378T2 (en) 1991-02-15 1992-02-17 Raster reflection diffraction electron microscope
EP92301263A EP0499490B1 (en) 1991-02-15 1992-02-17 Scanning reflection electron diffraction microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3021763A JPH071688B2 (en) 1991-02-15 1991-02-15 Scanning reflection electron diffraction microscope

Publications (2)

Publication Number Publication Date
JPH04259743A true JPH04259743A (en) 1992-09-16
JPH071688B2 JPH071688B2 (en) 1995-01-11

Family

ID=12064111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3021763A Expired - Lifetime JPH071688B2 (en) 1991-02-15 1991-02-15 Scanning reflection electron diffraction microscope

Country Status (4)

Country Link
US (1) US5675148A (en)
EP (1) EP0499490B1 (en)
JP (1) JPH071688B2 (en)
DE (1) DE69211378T2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213832A (en) * 1993-01-18 1994-08-05 Shimadzu Corp Detecting apparatus of diffracted electron
JPH11132975A (en) * 1997-10-31 1999-05-21 Toshiba Corp Inspection method and device using electron beam
WO2000016372A1 (en) * 1998-09-11 2000-03-23 Japan Science And Technology Corporation High energy electron diffraction apparatus
WO2003019163A1 (en) * 2001-08-28 2003-03-06 Vadim Israilovich Rakhovski Method for determining the structure of a polyatomic molecule.
TW589723B (en) * 2001-09-10 2004-06-01 Ebara Corp Detecting apparatus and device manufacturing method
US9576770B2 (en) 2013-05-15 2017-02-21 Okinawa Institute Of Science And Technology School Corporation LEED for SEM
US10424458B2 (en) 2017-08-21 2019-09-24 Government Of The United States Of America, As Represented By The Secretary Of Commerce Electron reflectometer and process for performing shape metrology
CN114235868B (en) * 2020-09-09 2023-06-20 中国科学院沈阳科学仪器股份有限公司 Differential high-energy electron diffraction system and method with automatic focusing function

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887810A (en) * 1973-01-02 1975-06-03 Texas Instruments Inc Photon-multiplier imaging system
DE2640260C3 (en) * 1976-09-03 1979-03-01 Siemens Ag, 1000 Berlin Und 8000 Muenchen Transmission scanning particle beam microscope
US4211924A (en) * 1976-09-03 1980-07-08 Siemens Aktiengesellschaft Transmission-type scanning charged-particle beam microscope
JPS58204454A (en) * 1982-05-21 1983-11-29 Hitachi Ltd Reflected electron diffraction microscopic device of scanning type
JPS6056344A (en) * 1983-09-07 1985-04-01 Hitachi Ltd Scanning type reflecting electron diffraction microscope apparatus
JPH0630236B2 (en) * 1984-04-27 1994-04-20 株式会社日立製作所 Scanning backscattered electron diffraction microscope
US5010250A (en) * 1990-01-09 1991-04-23 The University Of Rochester System for surface temperature measurement with picosecond time resolution
DE69024485T2 (en) * 1990-06-04 1996-05-30 Nobuo Mikoshiba Method for observing a microscopic surface structure

Also Published As

Publication number Publication date
EP0499490B1 (en) 1996-06-12
EP0499490A3 (en) 1992-08-26
EP0499490A2 (en) 1992-08-19
DE69211378D1 (en) 1996-07-18
JPH071688B2 (en) 1995-01-11
US5675148A (en) 1997-10-07
DE69211378T2 (en) 1996-11-07

Similar Documents

Publication Publication Date Title
US4211924A (en) Transmission-type scanning charged-particle beam microscope
US4983832A (en) Scanning electron microscope
US4537477A (en) Scanning electron microscope with an optical microscope
JPH04259743A (en) Scanning type reflecting electron-diffraction microscope
JPH05290787A (en) Scanning electron microscope
JP2661908B2 (en) Energy selection visualization device
JPS6127856B2 (en)
JP4129088B2 (en) Scanning transmission electron microscope
GB1588234A (en) Transmission type beam nicroscopes utilising a scanning technique
JPH0586022B2 (en)
JPS62223961A (en) Scanning type reflecting electron diffraction microscope device
JP2775812B2 (en) Charged particle beam equipment
JP3270627B2 (en) Display method of sample height in electron beam microanalyzer
JPH1167138A (en) Micro-area observation device
JPS5923444A (en) Scanning type reflected electron diffraction microscope
JPS60230346A (en) Scanning-type reflected-electron-diffracting microscope
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPH0352179B2 (en)
JPS586267B2 (en) scanning electron microscope
JPS58189950A (en) Electron microscope
JPS60138252U (en) Sample image display device in particle beam equipment
JPS61269842A (en) Electron microscope
JPS58204454A (en) Reflected electron diffraction microscopic device of scanning type
JPS62110249A (en) Scanning electron reflection difraction microscopic device
JP2002117795A (en) Charged particle beam device