JP3984332B2 - 身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体 - Google Patents

身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
JP3984332B2
JP3984332B2 JP22487597A JP22487597A JP3984332B2 JP 3984332 B2 JP3984332 B2 JP 3984332B2 JP 22487597 A JP22487597 A JP 22487597A JP 22487597 A JP22487597 A JP 22487597A JP 3984332 B2 JP3984332 B2 JP 3984332B2
Authority
JP
Japan
Prior art keywords
frequency
impedance
subject
body composition
water removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22487597A
Other languages
English (en)
Other versions
JPH1156800A (ja
Inventor
康之 久保田
徹哉 石井
真史 栗脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP22487597A priority Critical patent/JP3984332B2/ja
Publication of JPH1156800A publication Critical patent/JPH1156800A/ja
Application granted granted Critical
Publication of JP3984332B2 publication Critical patent/JP3984332B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体に関し、特に、生体電気インピーダンス法に基づいて、被験者の体水分分布や体脂肪の状態を推計するのに有用な身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体に関する。
【0002】
【従来の技術】
近年、人間や動物の身体組成を評価する目的で、生体の電気特性に関する研究が行われている。生体の電気特性は、組織又は臓器の種類によって著しく異なっており、例えば、ヒトの場合、血液の電気抵抗率は150Ω・cm前後であるのに対して、骨や脂肪の電気抵抗率は1〜5kΩ・cmもある。この生体の電気特性は、生体電気インピーダンス(Bioelectric Impedance)と呼ばれ、生体の体表面に装着された複数の電極間に微小電流を流すことにより測定される。
このようにして得られた生体電気インピーダンスから被験者の体水分分布(細胞外液量、細胞内液量、これらの総和たる体水分量(体液量)等)や、体脂肪の状態(体脂肪率、脂肪重量、除脂肪重量等)を推計する方法を生体電気インピーダンス法という(「身体組成の評価法としての生体電気インピーダンス法」, Baumgartner, R.N., etc.著、「生体電気インピーダンスとその臨床応用」, 医用電子と生体工学, 金井寛著, 20(3) Jun 1982、「インピーダンス法による体肢の水分分布の推定とその応用」, 医用電子と生体工学 ,波江野誠等著, 23(6) 1985、「インピーダンス法による膀胱内尿量の長時間計測」, 人間工学, 口ノ町康夫等著, 28(3) 1992 等参照)。
【0003】
生体電気インピーダンスは、生体中のイオンによって搬送される電流に対する生体の抵抗(レジスタンス)と、細胞膜、組織界面、あるいは非イオン化組織によって作り出される様々な種類の分極プロセスと関連したリアクタンスとから構成される。リアクタンスの逆数である容量(キャパシタンス)は、電圧よりも電流に時間的遅れをもたらし、位相のズレ(フェーズシフト)を作り出すが、この値はレジスタンスに対するリアクタンスの比率の逆正接角(アークタンジェント)、即ち、電気位相角として幾何学的に定量できる。
これら生体電気インピーダンスZ、抵抗R、リアクタンスX及び電気位相角φとの間の幾何学的な関係は、図10に人体のインピーダンス軌跡として実線Dに示すように、周波数に依存している。周波数が0Hzの時では、細胞膜と組織界面の生体電気インピーダンスZは、電気を伝導するには高すぎる。従って、電気は細胞外液を通してのみ流れ、測定される生体電気インピーダンスZは純粋にレジスタンスである。次に、周波数が増加するにつれて、電流は細胞膜を貫通するようになり、リアクタンスXが高くなって位相角φを広げることになる。生体電気インピーダンスZの大きさは、公式(Z=R2+X2)によって定義されるベクトルの値に等しい。
リアクタンスXが最大になる時の周波数を臨界周波数fCといい、伝導導体である生体の1つの電気的特性値である。この臨界周波数fCを超えると、細胞膜と組織界面が容量性能力を失うようになり、これにつれてリアクタンスXが減少する。周波数が無限大では、生体電気インピーダンスは再び純粋にレジスタンスと等価になる。
【0004】
ここで、生体の組織を構成する細胞について言及すると、図11に示すように、細胞1,1,…は、細胞膜2,2,…によって取り囲まれているが、細胞膜2,2,…は、電気的には容量(キャパシタンス)の大きなコンデンサと見ることができる。従って、生体電気インピーダンスは、図12に示すように、細胞外液抵抗1/Yeのみからなる細胞外液インピーダンスと、細胞内液抵抗1/Yiと細胞膜容量Cmとの直列接続からなる細胞内液インピーダンスとの並列合成インピーダンスと考えることができる。
そこで、上記生体電気インピーダンス法を用いて被験者の体水分分布や体脂肪の状態を推計する従来の身体組成推計方法においては、手足に装着された表面電極間に流すべき正弦波交流電流の周波数を、臨界周波数fCに近い50kHz(図10)に固定してこれを疑似的に臨界周波数fCであるとして、被験者の生体電気インピーダンスを測定して、細胞外液インピーダンスと細胞内液インピーダンスとの並列合成インピーダンスを得、得られた並列合成インピーダンスに基づいて、被験者の体水分分布や体脂肪の状態を推計していた。例えば、得られた並列合成インピーダンスから、体脂肪率を計算し、計算された体脂肪率より除脂肪重量を求め、その除脂肪重量の約73.2%が水分であるとして被験者の体水分量を算出していた。
【0005】
【発明が解決しようとする課題】
ところで、上記した従来の身体組成推計方法においては、手足の表面電極間に流すべき正弦波交流電流の周波数を臨界周波数fCに近い50kHzに固定しているが、臨界周波数fCは、人体の高周波領域と低周波領域とを分ける周波数と考えられ、個人によって異なるものであるので、50kHzに固定してしまうのでは、正確な臨界周波数fCを算出できないという欠点があった。
【0006】
この発明は、上述の事情に鑑みてなされたもので、正確な臨界周波数を個別的に算出できる身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記課題を解決するために
【0010】
求項記載の発明に係る身体組成推計装置は、マルチ周波のプローブ電流を生成し、生成した各周波のプローブ電流を被験者の体に投入して該被験者の体の電気インピーダンスを測定する生体電気インピーダンス測定手段と、該生体電気インピーダンス測定手段によって測定された各周波数についての上記電気インピーダンスに基づいて、上記被験者の体のインピーダンス軌跡を算出するインピーダンス軌跡算出手段と、該インピーダンス軌跡算出手段によって算出された上記インピーダンス軌跡に基づいて、上記電気インピーダンスのリアクタンスが最大になる時の周波数である臨界周波数を算出する臨界周波数算出手段とを備えてなることを特徴としている。
【0011】
また、請求項記載の発明に係る身体組成推計装置は、上記臨界周波数に基づいて、人工透析において設定すべき除水量を推計する除水量推計手段を備えてなることを特徴としている。
【0012】
記除水量推計手段は、上記除水量が上記臨界周波数と負の相関関係にあるとして与えられる身体組成推計式を用いて、上記除水量を推計することを特徴としている。
【0013】
さらに、請求項記載の発明に係る身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体は、コンピュータによって被験者の体の体水分分布や体脂肪の状態を推計するための身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体であって、該身体組成推計プログラムは、コンピュータに、マルチ周波のプローブ電流を被験者の体に投入することにより測定された各周波数についての電気インピーダンスに基づいて、最小二乗法の演算手法を駆使して、インピーダンス軌跡を算出させ、算出された該インピーダンス軌跡から、上記電気インピーダンスのリアクタンスが最大になる時の周波数である臨界周波数を算出させることを特徴としている。
【0014】
また、請求項記載の発明に係る身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体は、上記身体組成推計プログラムは、コンピュータに、上記臨界周波数に基づいて、人工透析において設定すべき除水量を推計させることを特徴としている。
【0015】
記身体組成推計プログラムは、コンピュータに、上記除水量が上記臨界周波数と負の相関関係にあるとして与えられる身体組成推計式を用いて、除水量を推計させることを特徴としている。
【0016】
【作用】
この発明の構成において、マルチ周波のプローブ電流を被験者の体に投入することにより、被験者の体の電気インピーダンスが測定されると、得られた各周波数についての電気インピーダンスに基づいて、被験者の体のインピーダンス軌跡が算出されるので、この得られたインピーダンス軌跡に基づいて、臨界周波数が算出される。
た、得られた臨界周波数に基づいて、人工透析において設定すべき除水量が推計される。
それ故、この発明の構成によれば、正確な臨界周波数が算出できる。また、除水を細胞外液又は細胞外液を中心として行うのか、また、除水量をどれぐらいに設定すべきかなどの目安として利用できる。
【0017】
【発明の実施の形態】
以下、図面を参照して、この発明の実施の形態について説明する。説明は、実施例を用いて具体的に行う。
図1はこの発明の一実施例である身体組成推計装置の電気的構成を示すブロック図、図2は、同装置の使用状態を模式的に示す模式図、図3は、組織内細胞の電気的等価回路図、図4は、周波数無限大時の組織内細胞の電気的等価回路図、図5は、除水量ufを推計するための身体組成推計式の導出方法を説明するための説明図、図6は、同装置の動作処理手順を示すフローチャート、図7は、同装置における表示器の表示例を示す図、図8は、同動作を説明するためのタイミングチャート、図9は、同装置における表示器の別の表示例を示す図である。
この例の身体組成推計装置4は、被験者の体水分分布(細胞外液量、細胞内液量、体液量)や除脂肪重量、臨界周波数等を測定し、測定結果を表示する装置に係り、図1及び図2に示すように、被験者の体Eに測定信号としてマルチ周波数電流Ibを流すための信号出力回路5と、被験者の体Eを流れるマルチ周波数電流Ibを検出するための電流検出回路6と、被験者の手足間の電圧Vpを検出するための電圧検出回路7と、入力装置としてのキーボード8と、出力装置としての表示器9と、装置各部を制御すると共に、各種演算処理を行うCPU(中央処理装置)10と、CPU10の処理プログラムを記憶するROM11と、各種データを一時記憶するデータ領域及びCPU10の作業領域が設定されるRAM12と、測定時に被験者の手甲部Haや足甲部Leの皮膚表面に導電可能に貼り付けられる4個の表面電極Hp,Hc,Lp,Lcとから概略構成されている。
【0018】
まず、キーボード8は、被験者の身長や体重、測定時間等を入力するためのテンキーや機能キー、体水分分布測定モード又は体脂肪測定モードの一方を選択するモード選択キー、及び操作者(又は被験者)が測定開始/測定終了を指示するための開始/終了スイッチ等を有して構成されている。キーボード8から供給される操作データ及び身長・体重データは、図示せぬキーコード発生回路でキーコードに変換されてCPU10に供給される。CPU10は、コード入力された各種操作信号及び身長・体重データをRAM12のデータ領域に一時記憶する。
この例では、体脂肪測定モードにおいては、全測定期間Tf及び後述する測定信号Iaの掃引回数Nが入力される。また、体水分分布測定モードにおいては、全測定時間Tw、測定間隔t、及び掃引回数Nが入力され、全測定時間Twは、例えば、人工透析をモニターするのに充分な時間を考慮して、4.5時間、5時間、5.5時間、6時間、6.5時間、7時間の中から、また、測定間隔tは、10分、20分、30分の中から任意に選択できるようになっている。これにより、全測定時間Twの間、被験者の体液量TBWの経時変化が測定される。このように、与えられたいくつかの時間の中から選択する代わりに、操作者が、キーボード8を用いて自由に時間Tw,tを設定できるようにしても良い。
【0019】
上記信号出力回路5は、PIO(パラレル・インタフェース)51、測定信号発生器52及び出力バッファ53から構成されている。測定信号発生器52は、所定の掃引周期で、PIO51を介してCPU10から信号発生指示信号SGが供給されると、周波数が、例えば1kHz〜400kHzの範囲で、かつ、15kHzの周波数間隔で段階変化する測定信号(電流)Iaを、所定の掃引回数Nに亘って、繰り返し生成して、出力バッファ53に入力する。出力バッファ53は、入力される測定信号Iaを定電流状態に保ちながら、マルチ周波数電流Ibとして表面電極Hcに送出する。この表面電極Hcは、測定時、被験者の手甲部Haに導電可能に貼り付けられ、これにより、100〜800μAの範囲にあるマルチ周波数電流Ibが被験者の体Eを流れることになる。
なお、体水分分布測定モードにおいては、信号発生指示信号SGの供給周期は、操作者がキーボード8を用いて設定した測定間隔tに一致する。
【0020】
上記電流検出回路6は、I/V変換器(電流/電圧変換器)61、BPF(バンドパスフィルタ)62、A/D変換器63及びサンプリングメモリ64から概略構成されている。I/V変換器61は、被験者の体E、即ち、被験者の手甲部Ha(図2)に貼り付けられた表面電極Hcと足甲部Leに貼り付けられた表面電極Lcとの間を流れるマルチ周波数電流Ibを検出して電圧Vbに変換し、変換により得られた電圧VbをBPF62に供給する。BPF62は、入力された電圧Vbのうち、略1kHz〜400kHzの帯域の電圧信号のみを通して、A/D変換器63に供給する。
A/D変換器63は、CPU10が発行するデジタル変換指示に従って、アナログの入力電圧Vbをデジタルの電圧信号Vbに変換した後、デジタル化された電圧信号Vbを電流データVbとして、サンプリング周期毎、測定信号Iaの周波数毎にサンプリングメモリ64に格納する。また、サンプリングメモリ64は、SRAMから構成され、測定信号Iaの周波数毎に一時格納されたデジタルの電圧信号Vbを、CPU10の求めに応じて、CPU10に送出する。
【0021】
また、上記電圧検出回路7は、差動増幅器71、BPF(バンドパスフィルタ)72、A/D変換器73及びサンプリングメモリ74から構成されている。差動増幅器71は、被験者の体E、即ち、被験者の手甲部Haに貼り付けられた表面電極Hpと足甲部Leに貼り付けられた表面電極Lpとの間の電圧(電位差)を検出する。BPF72は、入力された電圧Vpのうち、略1kHz〜400kHzの帯域の電圧信号のみを通して、A/D変換器73に供給する。
A/D変換器73は、CPU10が発行するデジタル変換指示に従って、アナログの入力電圧Vpをデジタルの電圧信号Vpに変換した後、デジタル化された電圧信号Vpを電圧データVpとして、サンプリング周期毎、測定信号Iaの周波数毎にサンプリングメモリ74に格納する。また、サンプリングメモリ74は、SRAMから構成され、測定信号Iaの周波数毎に一時格納されたデジタルの電圧信号Vpを、CPU10の求めに応じて、CPU10に送出する。
なお、CPU10は、2つのA/D変換器63,73に対して同一のタイミングでデジタル変換指示を行う。
【0022】
ROM11は、CPU10の処理プログラムとして、主プログラムの他、例えば、生体電気インピーダンス算出サブプログラム、インピーダンス軌跡算出サブプログラム、周波数0時インピーダンス決定サブプログラム、周波数無限大時インピーダンス決定サブプログラム、臨界周波数算出サブプログラム、除水量推計サブプログラム、細胞内液抵抗算出サブプログラム、除脂肪重量推計サブプログラム、体脂肪重量推計サブプログラム、体脂肪率推計サブプログラム、細胞外液量推計サブプログラム、細胞内液量推計サブプログラム、体液量推計サブプログラム、体液量−除脂肪重量比算出サブプログラム、体液量偏差算出サブプログラム等を格納する。
また、ROM11には、予め統計的に処理された一般健常者の体の正常状態における体液量TBWSを、除脂肪重量LBMSで除した数値データも、正常体液量−除脂肪重量比(TBWS/LBMS)として予め設定登録されている。各種プログラムは、ROM11からCPU10に読み込まれ、CPU10の動作を制御する。なお、これらのサブプログラムを記録する記録媒体は、ROM11等の半導体メモリに限らず、FD(フロッピーディスク)やHD(ハードディスク)等の磁気ディスク、CD−ROM等の光ディスクに記録されていても良い。
【0023】
ここで、上述の生体電気インピーダンス算出サブプログラムは、CPU10に、サンプリングメモリ64,74に記憶された周波数毎の電流データ及び電圧データを順次読み出させて、各周波数についての被験者の生体電気インピーダンスを算出させる。「従来の技術」欄で説明したように、細胞膜2,2,…は、容量の大きなコンデンサとみることができるため、外部から印加された電流は、周波数の低いときには、図11に実線A,A,…で示すように、細胞外液3のみを流れる。しかし、周波数が高くなるにつれて、細胞膜2,2,…を通って流れる電流が増え、周波数が非常に高くなると、同図に破線B,B,…で示すように、細胞1,1,…内を通って流れるようになる。
【0024】
インピーダンス軌跡算出サブプログラムには、CPU10に、生体電気インピーダンス算出サブプログラムの稼働により得られた各周波数についての被験者の生体電気インピーダンスに基づいて、最小二乗法の演算手法に従って、周波数0から周波数無限大までのインピーダンス軌跡を算出させる処理手順が書き込まれている。「従来の技術」の欄では、人体の組織内細胞を単純な電気的等価回路(図12)で表したが、実際の人体の組織では、いろいろな大きさの細胞が不規則に配置されているので、実際の人体のインピーダンス軌跡は、図10に実線Dで示すように、中心が実軸より上がった円弧となり、電気的等価回路は、図3に示すように、時定数τ=Cmk/Yikが分布している分布定数回路で表される。なお、同図において、1/Yeは細胞外液抵抗、1/Yikは各細胞の細胞内液抵抗、Cmkは各細胞の細胞膜容量を示す。
【0025】
周波数0時インピーダンス決定サブプログラム及び周波数無限大時インピーダンス決定サブプログラムには、それぞれ、CPU10に、インピーダンス軌跡算出サブプログラムの稼働により得られたインピーダンス軌跡に基づいて、それぞれ、周波数0時、無限大時の被験者の生体電気インピーダンスを決定させる手順が書き込まれている。
【0026】
臨界周波数算出サブプログラムには、CPU10に、インピーダンス軌跡算出サブプログラムの稼働により得られたインピーダンス軌跡に基づいて、臨界周波数fCを算出させる手順が書き込まれている。臨界周波数fCは、インピーダンス軌跡(図10)の円弧の頂点を超える前後のデータの周波数を求め、各データの頂点から離れた割合から求めることができる。
除水量推計サブプログラムには、CPU10に、臨界周波数推計サブプログラムの稼働により得られた臨界周波数fCに基づいて、人工透析において設定すべき最適な除水量ufを推計させるための推計式(1)が記述されている。ここで、式(1)は、多数の被験者について予め標本調査を実施した結果得られた除水量ufの回帰式であり、定数α,βは、人工透析終了後に実測した除水量ufをfCの1つの説明変数で回帰分析することによって求めたものである。相関係数は、0.96であり、高い相関が確認されている。なお、この式(1)によって表される回帰直線は、図5に示すような直線となる。
【0027】
【数1】
uf=−αfC+β… …(1)
uf:人工透析による被験者の除水量[l]
fC:被験者の臨界周波数[kHz]
α,β:定数
【0028】
細胞内液抵抗算出サブプログラムには、CPU10に、周波数0時インピーダンス決定サブプログラム及び周波数無限大時インピーダンス決定サブプログラムの稼働により得られた両インピーダンスに基づいて、細胞内液抵抗1/Yiを算出させる算出式(2)が記述されている。周波数0Hzでは、測定される生体電気インピーダンス1/Y(0)は、細胞外液抵抗1/Yeと等価となるので、周波数0時インピーダンス決定サブプログラムにおいて得られたインピーダンス1/Y(0)が求めるべき細胞外液抵抗1/Yeとなる(式(3)参照)。また、周波数無限大では、図10に示すように、細胞膜が容量性能力を失い、測定される生体電気インピーダンス1/Y(∞)は、細胞内液抵抗1/Yiと細胞外液抵抗1/Yeとの合成抵抗と等価(図4)になる。従って、周波数0時及び無限大時の生体電気インピーダンス1/Y(0)及び1/Y(∞)から、細胞内液抵抗1/Yiが正確に算出される。
【0029】
【数2】
Yi=Y(∞)−Y(0)… …(2)
【0030】
【数3】
Ye=Y(0)… …(3)
【0031】
除脂肪重量推計サブプログラムには、CPU10に、周波数0時インピーダンス決定サブプログラムにより得られた細胞外液抵抗1/Ye、細胞内液抵抗算出サブプログラムにより得られた細胞内液抵抗1/Yi、キーボード8を介して入力された被験者の身長データHや体重データWに基づいて、被験者の除脂肪重量LBMを推計させるための推計式(4)が記述されている。
ここで、式(4)は、多数の被験者について予め標本調査を実施した結果得られた除脂肪重量LBMの重回帰式であり、定数a1,b1,c1,d1は、DXAで測定した除脂肪重量LBMをW、H2Ye、H2Yiの3つの説明変数で重回帰分析することによって求めたものである。説明変数に体重Wを付加することで、DXAで測定したデータとの相関係数が、0.96に上昇する。
【0032】
【数4】
LBM=a1W+b12Ye+c12Yi+d1… …(4)
LBM:被験者の体の除脂肪重量[kg]
W:被験者の体重[kg]
H:被験者の身長[cm]
Ye:細胞外液抵抗の逆数[1/Ω]
Yi:細胞内液抵抗の逆数[1/Ω]
1,b1,c1,d1:定数
【0033】
上記体脂肪重量推計サブプログラムは、CPU10に、除脂肪重量LBMを被験者の体重Wから減算させることによって、被験者の体脂肪重量FATを算出させる。体脂肪率推計サブプログラムには、CPU10に、除脂肪重量推計サブプログラムにより得られた除脂肪重量LBMと、体脂肪重量推計サブプログラムにより得られた体脂肪重量FATとに基づいて、被験者の体脂肪率%FATを算出させるための手順(式(5))が記述されている。
【0034】
【数5】
%FAT=100FAT/(FAT+LBM)… …(5)
【0035】
細胞外液量推計サブプログラムには、CPU10に、細胞外液抵抗1/Ye、被験者の身長データHに基づいて、被験者の細胞外液量Veを推計させるための推計式(6)が記述されている。
ここで、式(6)は、多数の被験者について予め標本調査を実施した結果得られた細胞外液量Veの回帰式であり、定数b2は、細胞外液量VeをH2Yeの1つの説明変数で回帰分析することによって求められたものである。
【0036】
【数6】
Ve=b22Ye… …(6)
Ve:被験者の細胞外液量[kg]
H:被験者の身長[cm]
Ye:細胞外液抵抗の逆数[1/Ω]
2:定数
【0037】
細胞内液量推計サブプログラムには、CPU10に、細胞内液抵抗1/Yi、被験者の身長データHに基づいて、被験者の細胞内液量Viを推計させるための推計式(7)が記述されている。
ここで、式(7)は、多数の被験者について予め標本調査を実施した結果得られた細胞内液量Viの回帰式であり、定数c2は、細胞内液量ViをH2Yiの1つの説明変数で回帰分析することによって求められたものである。
【0038】
【数7】
Vi=c22Yi… …(7)
Vi:被験者の細胞内液量[kg]
H:被験者の身長[cm]
Yi:細胞内液抵抗の逆数[1/Ω]
2:定数
【0039】
体液量推計サブプログラムには、CPU10に、細胞外液抵抗1/Ye、細胞内液抵抗1/Yi、被験者の身長データHや体重データWに基づいて、被験者の体液量TBWを推計させるための推計式(8)が記述されている。
ここで、式(8)は、多数の被験者について予め標本調査を実施した結果得られた体液量TBWの重回帰式であり、定数a3,b3,c3,d3は、DXAで測定した体液量TBWをW、H2Ye、H2Yiの3つの説明変数で重回帰分析することによって求められたものである。
【0040】
【数8】
TBW=a3W+b32Ye+c32Yi+d3… …(8)
TBW:被験者の体液量[kg]
W:被験者の体重[kg]
H:被験者の身長[cm]
Ye:細胞外液抵抗の逆数[1/Ω]
Yi:細胞内液抵抗の逆数[1/Ω]
3,b3,c3,d3:定数
【0041】
体液量−除脂肪重量比算出サブプログラムには、CPU10に、被験者の体液量−除脂肪重量比(TBW/LBM)を算出させる手順が記述されている。
また、体液量偏差算出サブプログラムには、被験者の体液量−除脂肪重量比(TBW/LBM)と正常体液量−除脂肪重量比(TBWs/LBMs)との差である体液量−除脂肪重量比偏差Δ(TBW/LBM)に除脂肪重量LBMを乗ずることで与えられる体液量偏差ΔTBW(式(9))を算出させる手順が記述されている。
【0042】
【数9】
ΔTBW=LBM{(TBW/LBM)−(TBWs/LBMs)}… …(9)
【0043】
RAM12のデータ領域には、例えば、生体電気インピーダンス算出サブプログラム等により得られた被験者の生体電気インピーダンスを周波数毎に格納する生体電気インピーダンス記憶領域と、キーボード8を介して入力された被験者の身長・体重データ等を格納する身長・体重データ記憶領域と、体脂肪率推計サブプログラムにより得られた体脂肪率等の数値を記憶する体脂肪記憶領域等が設定される。
【0044】
CPU10は、ROM11に記憶された各種処理プログラムの制御により、RAM12を用いて、被験者の除脂肪重量LBM、脂肪重量FAT、体液量TBW等を推計する処理を順次実行する。
表示器9は、例えば、カラー表示が可能な液晶表示パネルからなり、キーボード8からの入力データやCPU10の演算結果、例えば、体液量−除脂肪重量比に関するトレンドグラフや、体液量偏差、体脂肪率、インピーダンス軌跡(図9(a),(b)参照)、細胞外液抵抗、細胞内液抵抗、被験者の身長・体重等を表示する。
【0045】
次に、この例の動作について説明する。
まず、測定に先だって、図2に示すように、2個の表面電極Hc,Hpを被験者の手甲部Haに、2個の表面電極Lp,Lcを被験者の同じ側の足甲部Leにそれぞれ導電クリームを介して貼り付ける(このとき、表面電極Hc,Lcを、表面電極Hp,Lpよりも人体の中心から遠い部位に取り付ける)。上記構成の身体組成推計装置4を、例えば、透析時のモニターとして用いる場合には、操作者(又は被験者自身)が身体組成推計装置4のキーボード8を操作して、モード設定キーを操作して、体水分分布測定モードを設定し、さらに、被験者の身長H及び体重Wを入力すると共に、測定開始から測定終了までの全測定時間Twや測定間隔等t(図8)や掃引回数Nを設定する。この例では、全測定時間Twは、透析をモニターするのに充分な時間を考慮して、7時間が選択され、また、測定間隔tは、30分が選択されたとする。キーボード8から入力された身長H及び体重W等のデータや設定値は、RAM12に記憶される。
【0046】
次に、操作者(又は被験者自身)が、透析開始の時刻に合わせてキーボード8の開始/終了スイッチをオンにすると、これより、CPU10は、図6に示す処理の流れに従って、動作を開始する。まず、ステップSP10において、CPU10は、信号出力回路5の測定信号発生器52に、信号発生指示信号SGを供給する。測定信号発生器52は、CPU10から信号発生指示信号SGを受け取ると、駆動を開始して、全測定時間の間、所定の掃引周期で、周波数が、1kHz〜400kHzの範囲で、かつ、15kHzの周波数間隔で段階変化する測定信号Iaを繰り返し生成して、出力バッファ53に入力する。出力バッファ53は、入力される測定信号Iaを定電流状態(100〜800μAに範囲の一定値)に保ちながら、マルチ周波数電流Ibとして表面電極Hcに送出する。これにより、定電流のマルチ周波数電流Ibが、表面電極Hcから被験者の体Eを流れ、測定が開始される。
【0047】
マルチ周波数電流Ibが被験者の体Eに供給されると、電流検出回路6のI/V変換器61において、表面電極Hc,Lcが貼り付けられた手足間を流れるマルチ周波数電流Ibが検出され、アナログの電圧信号Vbに変換された後、BPF62に供給される。BPF62では、入力された電圧信号Vbの中から1kHz〜400kHzの帯域の電圧信号成分のみが通過を許されて、A/D変換器63へ供給される。A/D変換器63では、供給されたアナログの電圧信号Vbが、デジタルの電圧信号Vbに変換され、電流データVbとして、所定のサンプリング周期毎、測定信号Iaの周波数毎にサンプリングメモリ64に格納される。サンプリングメモリ64では、格納されたデジタルの電圧信号VbがCPU10の求めに応じて、CPU10に送出される。
一方、電圧検出回路7の差動増幅器71において、表面電極Hp,Lpが貼り付けられた手足間で生じた電圧Vpが検出され、BPF72に供給される。BPF72では、入力された電圧信号Vpの中から1kHz〜400kHzの帯域の電圧信号成分のみが通過を許されて、A/D変換器73へ供給される。A/D変換器73では、供給されたアナログの電圧信号Vpが、デジタルの電圧信号Vpに変換され、電圧データVpとして、所定のサンプリング周期毎、測定信号Iaの周波数毎にサンプリングメモリ74に格納される。サンプリングメモリ74では、格納されたデジタルの電圧信号VpがCPU10の求めに応じて、CPU10に送出される。CPU10は、プローブ電流Iaの掃引回数が、指定された掃引回数Nになるまで繰り返す。
【0048】
そして、掃引回数が指定の回数Nになると、CPU10は、測定を停止する制御を行った後、ステップSP11へ進み、これより、まず、生体電気インピーダンス算出サブプログラムを起動して、両サンプリングメモリ64,74に格納された周波数毎の電流データ及び電圧データを順次読み出して、各周波数についての被験者の生体電気インピーダンス(掃引回数N回の平均値)を算出する。なお、生体電気インピーダンスの算出には、その成分(抵抗及びリアクタンス)の算出も含まれる。次に、CPU10は、インピーダンス軌跡算出サブプログラムを起動して、生体電気インピーダンス算出サブプログラムにより得られた各周波数についての被験者の生体電気インピーダンス及びその成分(抵抗及びリアクタンス)に基づいて、最小二乗法を用いるカーブフィッティングの手法に従って、周波数0から周波数無限大までのインピーダンス軌跡を算出する。このようにして算出されたインピーダンス軌跡は、図9(a),(b)に示すように、中心が実軸より上がった円弧となる。
【0049】
次に、CPU10は、周波数0時インピーダンス決定サブプログラム及び周波数無限大時インピーダンス決定サブプログラムの制御に従って、インピーダンス軌跡算出サブプログラムにより得られたインピーダンス軌跡に基づいて、それぞれ、周波数0時及び無限大時の被験者の生体電気インピーダンスを求める。つまり、インピーダンス軌跡の円弧が、図中X軸と交わる点が、それぞれ周波数0Hzと無限大の時の生体電気インピーダンスになる。ここで、周波数0Hz時の生体電気インピーダンスが、求める細胞外液抵抗となる。
次に、CPU10は、臨界周波数算出サブプログラムの制御に従って、インピーダンス軌跡算出サブプログラムの稼働により得られたインピーダンス軌跡に基づいて、臨界周波数fCを求める。つまり、インピーダンス軌跡(図10)の円弧の頂点を超える前後のデータの周波数を求め、各データの頂点から離れた割合から求める。次に、CPU10は、細胞内液抵抗算出サブプログラムに従って、周波数0時インピーダンス決定サブプログラム及び周波数無限大時インピーダンス決定サブプログラムにより得られた両インピーダンスに基づいて、細胞内液抵抗を算出する。
【0050】
(a)体水分分布測定モード時
次に、ステップSP12へ進み、CPU10は、図示せぬモード設定フラグを見て、現在のモードが体水分分布測定モードであるか体脂肪測定モードであるかを調べる。
いまは、操作者(又は被験者自身)によって、体水分分布測定モードが設定されているので、CPU10は、ステップSP13へ進み、まず、除水量推計サブプログラムの制御により、式(1)を用いて、被験者の設定すべき除水量ufを推計する処理を実行する。次に、CPU10は、細胞外液量推計サブプログラムの制御により、式(6)を用いて、被験者の細胞外液量Veを推計する処理を実行した後、細胞内液量推計サブプログラムの制御により、式(7)を用いて、被験者の細胞内液量Viを推計する処理を実行する。さらに、CPU10は、体液量推計サブプログラムの制御により、式(8)を用いて、被験者の体液量TBWを推計する処理を実行する。
次に、CPU10は、除脂肪重量推計サブプログラムの制御により、式(4)を用いて、被験者の除脂肪重量LBMを推計し、この後、体液量−除脂肪重量比算出サブプログラムの制御により、体液量−除脂肪重量比(TBW/LBM)を算出し、最後に、体液量偏差算出サブプログラムの制御により、式(9)を用いて、被験者の現在の体液量偏差ΔTBWを算出する。
【0051】
上述の一連の算出処理が完了すると、CPU10は、算出された被験者の除水量uf、細胞外液量Ve、細胞内液量Vi、体液量TBW、除脂肪重量LBM、体液量−除脂肪重量比(TBW/LBM)、体液量偏差ΔTBW等を測定時点における測定結果としてRAM12に記憶すると共に、ステップSP14へ進み、図7に示すように、表示器9に画面表示されたトレンドグラフ(透析開始からの経過時間を横軸とし、体液量−除脂肪重量比(TBW/LBM)を縦軸とする折れ線グラフ)上に体液量−除脂肪重量比(TBW/LBM)の値をプロットし、また、除水量ufを目安とすべき推奨除水量として表示すると共に、細胞外液量Ve、細胞内液量Vi、体液量偏差ΔTBW、体液量TBW、除脂肪重量LBMを現在のデータとして画面表示する。
【0052】
この後、ステップSP15へ進み、CPU10は、全測定時間Tw(図8)が経過したか否かを判断する。この判断において、全測定時間Tw(この例では、7時間)が経過したとの結論が得られれば、以後の測定処理を終了するが、いま、最初の測定が終了したばかりなので、全測定時間Twがいまだ経過していないと判断され、ステップSP16へ進み、測定間隔に相当する時間t(同図)が経過するのを待つ。なお、この待ち時間の間も、表示器9のトレンドグラフ画面は、表示されている。そして、測定間隔に相当する時間t(この例では、30分)が経過すると、ステップSP10へ戻り、2回目の測定を開始する。そして、上述の処理を、全測定時間Twが経過するまで、すなわち、透析終了時まで繰り返す。
【0053】
(b)体脂肪測定モード時
一方、被験者が除脂肪重量LBM、体脂肪重量FAT、体脂肪率%FAT等の測定を希望する場合には、まず、測定に先だって、操作者(又は被験者自身)が身体組成推計装置4のキーボード8を操作して、モード設定キーを操作して、体脂肪測定モードを設定し、さらに、被験者の身長H及び体重Wを入力すると共に、全測定時間Tf、及び掃引回数Nを設定する。次に、キーボード8の開始/終了スイッチを押下すると、これより、CPU10は、上述した測定演算処理(ステップSP10及びステップSP11)を実行する。そして、ステップSP12へ進み、CPU10は、モード設定フラグを見て、現在のモードが体水分分布測定モードであるか体脂肪測定モードであるかを調べる。
今度は、体脂肪測定モードが選択されているので、ステップSP17へ進み、CPU10は、除脂肪重量推計サブプログラムの制御により、式(4)を用いて、被験者の除脂肪重量LBMを推計する。次に、CPU10は、体脂肪重量推計サブプログラムの制御により、被験者の脂肪重量FATを推計し、次いで、体脂肪率推計サブプログラムの制御により、式(5)を用いて、体脂肪率%FATを算出する。
【0054】
上述の一連の算出処理が完了すると、CPU10は、算出された被験者の除脂肪重量LBM、体脂肪重量FAT、体脂肪率%FAT等をRAM12に記憶すると共に、ステップSP18において、図9に示すように、被験者の除脂肪重量LBM、体脂肪重量FAT、体脂肪率%FAT等、インピーダンス軌跡、細胞外液抵抗、被験者の身長・体重等を表示器9に表示させる。そして、当該一連の処理を終了する。
【0055】
このように、上記構成によれば、細胞外液抵抗1/Yeと細胞内液抵抗1/Yiとを、互いに確実に分離でき、しかも、細胞膜の容量成分を全く含まない上、被験者の身長Hのみならず、体重Wも考慮されるので、被験者の除脂肪重量LBM、体脂肪重量FAT、体液量TBW等について、一段と正確な推計値を得ることがでる。例えば、除脂肪重量LBMでは、DXAで測定したデータとの相関係数が、0.96に上昇する。
また、インピーダンス軌跡算出サブプログラムにより、最小二乗法の演算手法を駆使して、インピーダンス軌跡を求め、求められた軌跡から、周波数0時及び無限大時の生体電気インピーダンスを求め、求められた生体電気インピーダンスに基づいて、細胞外液抵抗及び細胞内液抵抗を算出するので、高周波投入時の浮遊容量や外来ノイズの影響を回避でき、また、人体への直流の直接投入を回避できる。それ故、測定精度が向上する。また、体水分分布測定モードにおいて、表示器9に、体液量−除脂肪重量比(TBW/LBM)の現在の値がトレンド表示され、かつ、除水量ufが目安とすべき推奨除水量として表示されると共に、被験者の現在の細胞外液量Ve、細胞内液量Vi、体液量偏差ΔTBW、体液量TBW、除脂肪重量LBMが表示されるので、例えば、人工透析の際に、除水を細胞外液又は細胞外液を中心として行うのか、また、除水量をどれぐらいに設定すべきかなどの目安として利用できる。また、この際、被験者の体格の差異の影響を補正する必要はない。
【0056】
以上、この発明の実施例を図面を参照して詳述してきたが、具体的な構成はこの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。
例えば、上述の実施例では、4個の表面電極Hc,Hp,Lc,Lpのうち、2個の表面電極Hc,Hpを被験者Eの手甲部Haに、残り2個の表面電極Lc,Lpを被験者Eの足甲部Leに、貼り付けるようにしたが、これに限らず、例えば、4個とも片足に取り付けるようにしても良い。
また、測定信号(電流)Iaの周波数範囲は、1kHz〜400kHzに限定されない。同様に、周波数の数も複数である限り任意である。また、生体電気インピーダンスを算出する代わりに、生体電気アドミッタンスを算出するようにしても良く、これに伴い、インピーダンス軌跡を算出する代わりに、アドミッタンス軌跡を算出するようにしても良い。
また、上述の実施例では、最小二乗法によるカーブフィッティングの手法を用いて、周波数0時及び無限大時の生体電気インピーダンスを求めるようにしたが、これに限らず、浮遊容量や外来ノイズの影響を他の手段により回避できる場合には、例えば、2周波数(5kHz以下の低周波と、200kHz以上の高周波)の測定信号を生成して被験者に投入し、被験者の体の低周波時の生体電気インピーダンスを周波数0時の生体電気インピーダンスとみなすと共に、被験者の体の高周波時の生体電気インピーダンスを周波数無限大時の生体電気インピーダンスとみなすようにしても良い。
また、表示器9のトレンドグラフを折れ線グラフに代えて棒グラフとしても良い。また、出力装置は、表示器に限らず、プリンタを用いても良い。
【0057】
【発明の効果】
以上説明したように、この発明の構成によれば、正確な臨界周波数を個人毎に算出できる。また、目安とすべき人工透析における除水量の推定が行われるので、除水を細胞外液又は細胞外液を中心として行うのか、また、除水量をどれぐらいに設定すべきかなどの目安として利用できる。
【図面の簡単な説明】
【図1】この発明の一実施例である身体組成推計装置の電気的構成を示すブロック図である。
【図2】同身体組成推計装置の使用状態を模式的に示す模式図である。
【図3】組織内細胞の電気的等価回路図である。
【図4】周波数無限大時の組織内細胞の電気的等価回路図である。
【図5】除水量を推計するための身体組成推計式の導出方法を説明するための説明図である。
【図6】同身体組成推計装置の動作処理手順を示すフローチャートである。
【図7】同身体組成推計装置における表示器の表示例を示す図である。
【図8】同身体組成推計装置の動作を説明するためのタイミングチャートである。
【図9】同身体組成推計装置における表示器の別の表示例を示す図である。
【図10】人体のインピーダンス軌跡を示す図である。
【図11】人体の組織内細胞を模式的に示す模式図である。
【図12】組織内細胞の電気的等価回路図である。
【符号の説明】
4 身体組成推計装置
5 信号出力回路(生体電気インピーダンス算出手段の一部)
6 電流検出回路(生体電気インピーダンス算出手段の一部)
7 電圧検出回路(生体電気インピーダンス算出手段の一部)
8 キーボード
10 CPU(生体電気インピーダンス算出手段)
11 ROM
12 RAM
52 測定信号発生器
53 出力バッファ
61 I/V変換器
62,72 BPF
63,73 A/D変換器
64,74 サンプリングメモリ
71 差動増幅器
Hc,Hp,Lc,Lp 表面電極
E 被験者の体
Ha 被験者の手甲部
Le 被験者の足甲部
Ia 測定信号
Ib マルチ周波数電流(マルチ周波のプローブ電流)
Vp 被験者の手足間の電圧

Claims (2)

  1. マルチ周波のプローブ電流を生成し、生成した各周波のプローブ電流を被験者の体に投入して該被験者の体の電気インピーダンスを測定する生体電気インピーダンス測定手段と、
    該生体電気インピーダンス測定手段によって測定された各周波数についての前記電気インピーダンスに基づいて、前記被験者の体のインピーダンス軌跡を算出するインピーダンス軌跡算出手段と、
    該インピーダンス軌跡算出手段によって算出された前記インピーダンス軌跡に基づいて、前記電気インピーダンスのリアクタンスが最大になる時の周波数である臨界周波数を算出する臨界周波数算出手段とを備えてなる身体組成推計装置であって、
    前記臨界周波数に基づいて、人工透析において設定すべき除水量を推計する除水量推計手段を備え、前記除水量推計手段は、前記除水量が前記臨界周波数と負の相関関係にあるとして与えられる身体組成推計式を用いて、前記除水量を推計することを特徴とする身体組成推計装置。
  2. コンピュータによって被験者の体の体水分分布や体脂肪の状態を推計するための身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体であって、
    該身体組成推計プログラムは、コンピュータに、
    マルチ周波のプローブ電流を被験者の体に投入することにより測定された各周波数についての電気インピーダンスに基づいて、最小二乗法の演算手法を駆使して、インピーダンス軌跡を算出させ、算出された該インピーダンス軌跡から、前記電気インピーダンスのリアクタンスが最大になる時の周波数である臨界周波数を算出させ、かつ、前記臨界周波数に基づいて、人工透析において設定すべき除水量を推計させるものであり、コンピュータに、前記除水量が前記臨界周波数と負の相関関係にあるとして与えられる身体組成推計式を用いて、前記除水量を推計させることを特徴とする身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体。
JP22487597A 1997-08-21 1997-08-21 身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体 Expired - Fee Related JP3984332B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22487597A JP3984332B2 (ja) 1997-08-21 1997-08-21 身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22487597A JP3984332B2 (ja) 1997-08-21 1997-08-21 身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体

Publications (2)

Publication Number Publication Date
JPH1156800A JPH1156800A (ja) 1999-03-02
JP3984332B2 true JP3984332B2 (ja) 2007-10-03

Family

ID=16820548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22487597A Expired - Fee Related JP3984332B2 (ja) 1997-08-21 1997-08-21 身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体

Country Status (1)

Country Link
JP (1) JP3984332B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255120A (ja) * 2003-02-28 2004-09-16 Tanita Corp 体組成推定法及び体組成測定装置
EP1912563B1 (en) * 2005-08-02 2016-04-20 Impedimed Limited Impedance parameter values
JP5186141B2 (ja) 2007-06-29 2013-04-17 ユニ・チャーム株式会社 動物用***物処理シート
JP4996997B2 (ja) 2007-06-29 2012-08-08 ユニ・チャーム株式会社 動物用***物処理シート

Also Published As

Publication number Publication date
JPH1156800A (ja) 1999-03-02

Similar Documents

Publication Publication Date Title
JP3636826B2 (ja) 生体電気インピーダンス測定装置
JP4025438B2 (ja) 身体組成推計装置
CA2262924C (en) Device and method for measuring the composition of the body
JPH1014899A (ja) 身体組成推計装置及び身体組成推計方法
JP3947379B2 (ja) 電気特性測定装置
JP2001321352A (ja) 電気特性測定装置
JP3492038B2 (ja) 体脂肪測定装置
JPH09220209A (ja) 生体電気インピーダンス測定装置
JP3984332B2 (ja) 身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2001212101A (ja) 電気特性測定装置
JP2022540590A (ja) カテーテルと組織との間の接触角の推定、並びに関連するデバイス、システム、および方法
JP3636825B2 (ja) 体脂肪測定装置
JP2001321350A (ja) 電気特性測定装置
JP2005131434A (ja) 身体組成推計装置
JP3819611B2 (ja) 身体組成推計装置
JP3872889B2 (ja) 身体組成推計装置及び身体組成推計プログラムを記録したコンピュータ読み取り可能な記録媒体
JP3819637B2 (ja) 身体組成推計装置
JP2001204707A (ja) 電気特性測定装置
JPH08191808A (ja) 生体電気インピーダンス測定装置
JP2001321353A (ja) 電気特性測定装置
JP4359292B2 (ja) 身体組成推計装置
JP3461646B2 (ja) 体脂肪測定装置
JP3636824B2 (ja) 体脂肪測定装置
JP2001276008A (ja) 脂肪細胞測定装置及び脂肪細胞測定方法
JP2001212100A (ja) 電気特性測定装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140713

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees