JP3975235B2 - Method for producing composite sintered body and reaction vessel therefor - Google Patents

Method for producing composite sintered body and reaction vessel therefor Download PDF

Info

Publication number
JP3975235B2
JP3975235B2 JP2001325774A JP2001325774A JP3975235B2 JP 3975235 B2 JP3975235 B2 JP 3975235B2 JP 2001325774 A JP2001325774 A JP 2001325774A JP 2001325774 A JP2001325774 A JP 2001325774A JP 3975235 B2 JP3975235 B2 JP 3975235B2
Authority
JP
Japan
Prior art keywords
powder
diamond
silicon
reaction vessel
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001325774A
Other languages
Japanese (ja)
Other versions
JP2003137653A (en
Inventor
勝 下埜
久米昭一
博 石塚
Original Assignee
株式会社石塚研究所
勝 下埜
久米 昭一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石塚研究所, 勝 下埜, 久米 昭一 filed Critical 株式会社石塚研究所
Priority to JP2001325774A priority Critical patent/JP3975235B2/en
Publication of JP2003137653A publication Critical patent/JP2003137653A/en
Application granted granted Critical
Publication of JP3975235B2 publication Critical patent/JP3975235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はダイヤモンド焼結体に関し、特に耐熱性の切削工具の製造や、超高圧力下での物性研究等に使用する加圧アンビルの材料として有用な、特にX線によるかかる研究に利用可能なダイヤモンド焼結体の製造法、ならびにこの製造工程に効果的に使用される反応容器に関する。
【0002】
【従来技術】
炭化ケイ素系の結合相を使用するダイヤモンド焼結体は、高温でダイヤモンドのグラファイト化を促進する遷移金属を含まないことから、過酷な条件で用いられる掘削ビットや切削工具として用いられている。また結合相がX線を透過する軽元素のみで構成され、透過を妨げる物質を含まないことから、超高圧力下でのその場観察による物性研究用の加圧アンビル材料としても有用である。
【0003】
このような焼結体は一般に、ダイヤモンドが熱力学的に安定な超高圧力下において溶融ケイ素をダイヤモンド粒子間に導入し、炭化ケイ素の結合相を形成するという手法で、焼結が行われている。一方、立体形状品については超高圧力反応装置に伴う制約からこの手法が適用困難であり、この場合はHIPによる焼結が行われ、一部実用に供されている。
【0004】
上記HIPによる炭化ケイ素系ダイヤモンド焼結体の製造においては、ダイヤモンドとケイ素との混合粉末が焼結反応容器に充填され、これを、ガラスカプセルに装填・加熱脱気後真空封入して、HIP処理に供する。本発明者らは、炭化ケイ素系の焼結品がかかる焼結反応容器材料として好適であることを知見し、先に特許出願を行っている(特開2000-203955公報)。
【0005】
しかし上掲発明方法の場合には、ダイヤモンドとケイ素との粉末を予め計量して混合粉末とし反応容器内へ充填するので、結合剤としてのケイ素量が焼結製品全体で必ずしも最適値とはならず、さらにダイヤモンド粒子相互間の間隔も、必ずしも、望まれるような必要最小限の値とならない。その結果、部分的に結合剤量の過不足生じたり、あるいは粉末粒子間隔の不均等性に基づいて焼結製品強度がばらつく等の問題が生じていた。
【0006】
【発明が解決しようとする課題】
したがって本発明の目的とするところは、結合剤としてのケイ素の融液を、ダイヤモンド粉末を包囲している反応容器材料から供給してダイヤモンド粒子間に浸透させる(溶浸焼結法)ことにより、ダイヤモンド粒子同士が必要最小限分量の結合剤、即ち実質的に金属ケイ素がダイヤモンドとの反応により転換した炭化ケイ素のみによって強固に結合された、未焼結個所や金属ケイ素の残留個所のない、焼結体の製造法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の要旨は、以下の各段階を有する、ダイヤモンド/炭化ケイ素複合焼結体の製造方法にある。(1)質量比が10:90乃至90:10のケイ素粉末と炭化ケイ素粉末との混合粉末を、加圧成形によって容器体とし、(2)上記容器体にダイヤモンド粉末を充填して通気可能に封鎖し、(3)上記容器体をガラスカプセル内に収め、脱気後真空封入し、(4)次いでHIP焼結に供し、この際上記容器体からケイ素を含有する融液を形成させ、ダイヤモンド粒子間に浸透させてダイヤモンド粒子を焼結する。
【0008】
即ち本発明においては、HIP焼結のための反応容器を、容器の構造材料としての炭化ケイ素粉末と、成型バインダー及びダイヤモンド粉末に対する結合剤(溶浸剤)として機能するケイ素粉末とで構成する。これによって、焼結反応容器が原料のダイヤモンド粉末を保持するのに十分な強度を得ると共に、反応容器壁から結合剤の融液がダイヤモンドの粒子間に供給されて浸透し、焼結が達成される。
【0009】
本発明方法においては、溶浸剤として利用するケイ素を、反応容器加圧成形のためのバインダーとして使用するので、炭化ケイ素のみで反応容器を形成した先願の場合のように有機物系の成形バインダーを用いる必要がなく、反応容器の製作工程が簡略化できる。
【0010】
反応容器をケイ素粉末のみで製作することも可能である。しかしケイ素製の反応容器を用いては、充分な性能を持った焼結体は得られにくい。
【0011】
つまりHIP焼結の過程で加熱され1400℃でケイ素が溶融すると、その一部は接しているダイヤモンドと反応して炭化ケイ素を形成する。このとき、ダイヤモンドと比べて相対的に比重の小さなケイ素は上方へ移動するので、軟化ないし溶融したカプセル材のガラス(ホウケイ酸ガラス)が直接焼結体に接触して焼結体中へ巻き込まれることになる。その結果ダイヤモンド焼結体内にガラスが結合相となっている個所が生じ、全体としての強度が低下するので、刃具や硬質構造材としての実用に供することができないのである。
【0012】
これとは対照的に、本発明にのようにHIP焼結反応容器をケイ素と炭化ケイ素との混合粉で製作すると、炭化ケイ素は構造材料としてHIP過程を通じて容器の形状を維持し、溶融したケイ素は炭化ケイ素容器を濡らした状態で焼結体の周囲に止まっていることから、焼結体とガラスとの接触を防ぐ隔壁として機能し、ガラスの巻き込みのない均質な焼結体が得られる。
【0013】
HIP焼結過程を通じて反応容器がその形状を維持し、ケイ素融液の移動を確実に防ぐために、反応容器を構成するケイ素と炭化ケイ素との混合物は、原料混合粉の状態において炭化ケイ素を質量比で10(質量)%以上を含有し、30%以上含有しているのが好ましい。
【0014】
一方反応容器材中のケイ素の含有量は、溶浸剤としてのケイ素の融液を充分に供給し焼結を確実ならしめるために、原料混合粉の状態において10%以上、より好ましくは30%以上である。
【0015】
上記ケイ素粉末は、成型バインダーとしての機能を発現させるために、40μm以下の微粉が適切である。一方炭化ケイ素については、溶浸剤のケイ素融液を透過させる必要があることから、粒度10μm以上の比較的粗い粉末が望ましい。
【0016】
なお本発明においては、焼結に要するケイ素融液の全量を、必ずしも反応容器材から供給することは必須でない。ダイヤモンド粉末に予め焼結所要量に満たない量のケイ素微粉を混合しておき、溶浸融液の不足分を反応容器からのケイ素融液で補うようにすることも可能である。
【0017】
本発明で用いるダイヤモンドは、平均粒度で1〜100μmの範囲のものが使用可能である。また通常の合成ダイヤモンドを利用できるが、次の点に注意を要する。即ち合成ダイヤモンドは精製過程で酸化性の薬品処理を経ていることから、粉末表面に酸素または酸素を含む官能基が付着ないし吸着している。これらは800℃付近で行う加熱脱気処理段階においても完全には除去できず、焼結反応の際にもCOガスとして脱離する。この真空封入後の加熱によって生じたガスは、ダイヤモンド粉末の粒子間隔を拡げて結合強度を低下させ、さらには得られた焼結体内のクラックや剥がれの原因となっている。
【0018】
上記の弊害を除くためには、焼結反応容器内へ仕込む前に、ダイヤモンド粒子表面の酸素を除去しておく必要があり、有効な方法の一つとして水素置換を挙げることができる。即ち水素雰囲気中で700℃以上に加熱することによって、ダイヤモンド粉末表面の酸素または酸素を含む官能基は水素で置換され、ダイヤモンド表面の炭素原子は水素で終端された安定な状態になる。
【0019】
別の方法として、酸素ガスのゲッターとして機能する金属(例えばチタン)を用いてもよい。ゲッター金属は、薄板としてHIP焼結反応容器とガラスカプセルとの間に挿入して用いることができる。或いは粉末状態でガラス管の底部へ置いてもよい。ゲッターは真空封入後の反応容器内で発生するガスを固定し、反応空間を無酸素状態に保つことができる。
【0020】
ダイヤモンド粉末表面の酸素の大半を水素で置換するか、酸素ガスのゲッターを用いることにより、加熱時に酸素によって促進されるダイヤモンドのグラファイト化が抑えられる。その結果HIP焼結可能なダイヤモンドの粒度は、従来は10μm程度が下限であったのが、本発明方法においては平均粒径1μmのダイヤモンド粒子も焼結可能となった。
【0021】
以上述べたように、本発明においては、炭化ケイ素系結合のダイヤモンド焼結体のHIP焼結による製法において、ケイ素と炭化ケイ素との混合粉末を成形構成した反応容器を用意する。ダイヤモンド粉末をこの反応容器に入れてガラスカプセルに真空封入し、HIP焼結反応に供する。反応容器は炭化ケイ素の構造体(骨格)によって形状を維持し、構造体(骨格)の間で結合剤のケイ素が溶融し、この融液をダイヤモンド粉末の粒子間へ供給することにより、溶浸焼結が達成される。
【0022】
この結果HIP焼結過程においては、ダイヤモンド粉末の焼結に必要な融液が最小限の分量だけが粉末粒子間に浸透することになるので、ダイヤモンド粒子間の間隔が小さく、粒子間には未焼結箇所がなく、さらに金属ケイ素を含まない焼結体が得られる。得られた焼結体については1000MPa以上の抗折強度が測定されており、再現性も良好であった。
【0023】
【実施例1】
30(質量)%のケイ素粉末(粒径25μm以下)と、70%の炭化ケイ素粉末(平均粒径30μm)との混合粉末をCIP成形して、図1に示すような外径10mm、内径5mm、長さ50mmの一端封止管状のHIP焼結反応容器11を作製し、1100℃、1Paの減圧下で1時間保持することにより脱ガスを行った。
【0024】
上記のHIP焼結反応容器内に公称値8-16μmのダイヤモンド粉末12を充填し(充填密度2.18g/cm3)、反応容器11と同じ材料の蓋13をかぶせた。この反応容器をホウケイ酸ガラス管14内に入れ、800℃、1Paで真空封入し、HIP焼結の出発物質とした。
【0025】
HIP操作は、200MPa、1450℃、30分間保持の条件で実施した。得られたダイヤモンド/炭化ケイ素焼結体の密度は3.37g/cm3であり、3点曲げによる抗折強度は1031MPaであった。
【0026】
【実施例2】
70%のケイ素粉末(粒径25μm以下)と、30%の炭化ケイ素粉末(平均粒径40μm)との混合粉末をCIP成形して、図2に示すような、外径24mm、内寸10.3×10.3mm、深さ15.6mmの角柱の孔を有する長さ23mmの反応容器21を作製し、1100℃、1Paの減圧下で1時間保持することにより脱ガス処理を施した。
【0027】
上記のHIP焼結反応容器内に、公称4-8μmの、水素終端処理を施したダイヤモンド粉末22を充填し(充填密度2.17g/cm3)、反応容器21と同じ材料の蓋23をかぶせた。この反応容器をホウケイ酸ガラス管24内に入れて800℃、1Paで真空封入し、HIP焼結の出発物質とした。
【028】
HIP操作は、実施例1と同様に、200MPa、1450℃、30分間保持の条件で実施した。得られたダイヤモンド/炭化ケイ素焼結体は10.1×10.1×10.1mmであって、焼結による収縮率は1.94%であった。得られた焼結体の密度は3.38g/cm3であり、X線透過 6-8マルチアンビル装置(川井型装置)による12GPaの超高圧力下での物性測定装置の先端アンビルとして使用した。
【0029】
【発明の効果】
本発明では、HIP焼結によって、炭化ケイ素系の結合相を用いてダイヤモンド焼結体を作製するために、ケイ素と炭化ケイ素との混合粉末で成形構成された反応容器を用いる。反応容器で発生するケイ素の融液を用いて溶浸焼結を行う本発明方法においては、ダイヤモンド粉末の焼結に必要な最低量のケイ素融液がダイヤモンド粒子間に供給され、ダイヤモンドと接して炭化ケイ素となるので、粒子間隔が小さく、未焼結個所や、金属ケイ素を含まない、強固な焼結体(抗折強度1000MPa以上)が確保される。
【図面の簡単な説明】
【図1】 本発明の実施例で用いた試料の構成
【図2】 本発明の実施例で用いた別の試料の構成
【符号の説明】
11 焼結反応容器
12 ダイヤモンド粉末
13 蓋
14 ガラス管
21 焼結反応容器
22 ダイヤモンド粉末
23 蓋
24 ガラス管
[0001]
[Industrial application fields]
The present invention relates to a diamond sintered body, which is particularly useful as a material for a pressure anvil used for manufacturing a heat-resistant cutting tool or studying physical properties under an ultra-high pressure. The present invention relates to a method for producing a diamond sintered body and a reaction vessel that is effectively used in the production process.
[0002]
[Prior art]
A diamond sintered body using a silicon carbide-based binder phase does not contain a transition metal that promotes graphitization of diamond at a high temperature, and is therefore used as a drill bit or a cutting tool used under severe conditions. In addition, since the binder phase is composed only of light elements that transmit X-rays and does not contain substances that impede transmission, it is also useful as a pressurized anvil material for physical property research by in-situ observation under ultrahigh pressure.
[0003]
Such sintered bodies are generally sintered by a technique in which molten silicon is introduced between diamond particles under an ultrahigh pressure at which diamond is thermodynamically stable to form a silicon carbide binder phase. Yes. On the other hand, this method is difficult to apply to three-dimensional shaped products due to restrictions associated with the ultra-high pressure reactor, and in this case, sintering by HIP is performed and a part of them is put into practical use.
[0004]
In the production of the silicon carbide-based diamond sintered body by the HIP, a mixed powder of diamond and silicon is filled in a sintering reaction vessel, which is charged into a glass capsule, heated and degassed and vacuum-sealed, and subjected to HIP processing. To serve. The present inventors have found that a silicon carbide-based sintered product is suitable as a material for such a sintering reaction vessel, and have previously filed a patent application (Japanese Patent Laid-Open No. 2000-203955).
[0005]
However, in the case of the above-described invention method, since the powder of diamond and silicon is pre-weighed and mixed into a reaction vessel, the amount of silicon as a binder is not necessarily the optimum value for the entire sintered product. Furthermore, the distance between the diamond particles is not necessarily the minimum necessary value as desired. As a result, problems such as partial excess or deficiency in the amount of binder or variations in the strength of the sintered product based on non-uniformity of the powder particle spacing have occurred.
[0006]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to supply a silicon melt as a binder from the reaction vessel material surrounding the diamond powder and infiltrate between the diamond particles (infiltration sintering method). The diamond particles are firmly bonded only by the minimum amount of binder, i.e., silicon carbide in which metallic silicon is converted by reaction with diamond, and there is no unsintered or residual metallic silicon. The object is to provide a method for producing a knot.
[0007]
[Means for Solving the Problems]
The gist of the present invention resides in a method for producing a diamond / silicon carbide composite sintered body having the following steps. (1) A mixed powder of silicon powder and silicon carbide powder having a mass ratio of 10:90 to 90:10 is formed into a container body by pressure molding, and (2) The container body is filled with diamond powder so as to be ventilated. (3) The container body is placed in a glass capsule, vacuum-sealed after degassing, and (4) then subjected to HIP sintering, in which a silicon-containing melt is formed from the container body, diamond The diamond particles are sintered by infiltrating between the particles.
[0008]
That is, in the present invention, the reaction vessel for HIP sintering is constituted by silicon carbide powder as a structural material of the vessel and silicon powder that functions as a binder (infiltrant) for the molding binder and diamond powder. As a result, the sintering reaction vessel obtains sufficient strength to hold the raw diamond powder, and the binder melt is supplied between the diamond particles from the reaction vessel wall to penetrate and the sintering is achieved. The
[0009]
In the method of the present invention, silicon used as an infiltrant is used as a binder for pressure molding of a reaction vessel, so that an organic-based molding binder is used as in the case of a prior application in which a reaction vessel is formed only of silicon carbide. There is no need to use it, and the manufacturing process of the reaction vessel can be simplified.
[0010]
It is also possible to manufacture the reaction vessel with only silicon powder. However, using a silicon reaction vessel, it is difficult to obtain a sintered body with sufficient performance.
[0011]
In other words, when silicon is melted at 1400 ° C. in the course of HIP sintering, a part of it reacts with the diamond in contact with it to form silicon carbide. At this time, silicon having a relatively small specific gravity as compared with diamond moves upward, so that the glass of the softened or melted capsule material (borosilicate glass) is brought into direct contact with the sintered body and rolled into the sintered body. It will be. As a result, a portion in which the glass is a binder phase is formed in the diamond sintered body, and the overall strength is lowered, so that it cannot be put into practical use as a cutting tool or a hard structural material.
[0012]
In contrast, when the HIP sintering reaction vessel is made of a mixed powder of silicon and silicon carbide as in the present invention, the silicon carbide maintains the shape of the vessel as a structural material through the HIP process, and melts silicon. Since the silicon carbide container remains wet around the sintered body, it functions as a partition that prevents contact between the sintered body and the glass, and a homogeneous sintered body free from glass entrainment can be obtained.
[0013]
In order to maintain the shape of the reaction vessel through the HIP sintering process and reliably prevent the movement of the silicon melt, the mixture of silicon and silicon carbide constituting the reaction vessel has a mass ratio of silicon carbide in the raw material mixed powder state. It contains 10 (mass)% or more, preferably 30% or more.
[0014]
On the other hand, the content of silicon in the reaction vessel material is 10% or more, more preferably 30% or more in the state of the raw material mixed powder in order to sufficiently supply the silicon melt as the infiltrant and ensure sintering. It is.
[0015]
The silicon powder is suitably a fine powder of 40 μm or less in order to develop the function as a molding binder. On the other hand, for silicon carbide, since it is necessary to permeate the silicon melt of the infiltrant, a relatively coarse powder having a particle size of 10 μm or more is desirable.
[0016]
In the present invention, it is not always necessary to supply the entire amount of silicon melt required for sintering from the reaction vessel material. It is also possible to mix silicon powder in an amount that does not satisfy the required sintering amount in advance with the diamond powder to make up for the shortage of the infiltrated melt with the silicon melt from the reaction vessel.
[0017]
As the diamond used in the present invention, those having an average particle size in the range of 1 to 100 μm can be used. Ordinary synthetic diamond can be used, but the following points should be noted. That is, since synthetic diamond has undergone an oxidizing chemical treatment during the purification process, oxygen or a functional group containing oxygen is attached to or adsorbed on the powder surface. These cannot be completely removed even in the heat deaeration process performed at around 800 ° C., and are desorbed as CO gas during the sintering reaction. The gas generated by the heating after the vacuum encapsulation widens the particle interval of the diamond powder to lower the bonding strength, and further causes cracks and peeling in the obtained sintered body.
[0018]
In order to eliminate the above-mentioned adverse effects, it is necessary to remove the oxygen on the surface of the diamond particles before charging into the sintering reaction vessel. One effective method is hydrogen substitution. That is, by heating to 700 ° C. or higher in a hydrogen atmosphere, oxygen on the diamond powder surface or functional groups containing oxygen are replaced with hydrogen, and the carbon atoms on the diamond surface are in a stable state terminated with hydrogen.
[0019]
Alternatively, a metal that functions as an oxygen gas getter (eg, titanium) may be used. The getter metal can be used as a thin plate inserted between a HIP sintering reaction vessel and a glass capsule. Alternatively, it may be placed on the bottom of the glass tube in a powder state. The getter can fix the gas generated in the reaction vessel after the vacuum sealing, and keep the reaction space in an oxygen-free state.
[0020]
By replacing most of the oxygen on the surface of the diamond powder with hydrogen or using a getter of oxygen gas, the graphitization of diamond promoted by oxygen during heating can be suppressed. As a result, the lower limit of the particle size of diamond capable of HIP sintering was conventionally about 10 μm, but diamond particles having an average particle size of 1 μm can be sintered in the method of the present invention.
[0021]
As described above, in the present invention, a reaction vessel is prepared in which a mixed powder of silicon and silicon carbide is molded in a method of manufacturing a silicon carbide-bonded diamond sintered body by HIP sintering. Diamond powder is put into this reaction container, vacuum-sealed in a glass capsule, and used for the HIP sintering reaction. The shape of the reaction vessel is maintained by the silicon carbide structure (skeleton), and the silicon binder is melted between the structures (skeleton), and this melt is supplied between the particles of the diamond powder. Sintering is achieved.
[0022]
As a result, in the HIP sintering process, only a minimum amount of the melt necessary for sintering the diamond powder penetrates between the powder particles, so the distance between the diamond particles is small and there is no gap between the particles. There is no sintered portion, and a sintered body containing no metallic silicon is obtained. With respect to the obtained sintered body, the bending strength of 1000 MPa or more was measured, and the reproducibility was also good.
[0023]
[Example 1]
A mixed powder of 30% (mass)% silicon powder (particle size 25 μm or less) and 70% silicon carbide powder (average particle size 30 μm) is CIP-molded to obtain an outer diameter of 10 mm and an inner diameter of 5 mm as shown in FIG. A 50 mm long end-sealed tubular HIP sintering reaction vessel 11 was prepared, and degassing was performed by holding it at 1100 ° C. under a reduced pressure of 1 Pa for 1 hour.
[0024]
The above HIP sintering reaction vessel was filled with diamond powder 12 having a nominal value of 8-16 μm (packing density 2.18 g / cm 3 ) and covered with a lid 13 made of the same material as the reaction vessel 11. This reaction vessel was placed in a borosilicate glass tube 14 and vacuum-sealed at 800 ° C. and 1 Pa as a starting material for HIP sintering.
[0025]
The HIP operation was performed under the conditions of 200 MPa, 1450 ° C., and 30 minutes holding. The density of the obtained diamond / silicon carbide sintered body was 3.37 g / cm 3 , and the bending strength by three-point bending was 1031 MPa.
[0026]
[Example 2]
A mixed powder of 70% silicon powder (particle size 25 μm or less) and 30% silicon carbide powder (average particle size 40 μm) is CIP-molded to obtain an outer diameter of 24 mm and an inner size of 10.3 × as shown in FIG. A reaction vessel 21 having a length of 10.3 mm and a prismatic column having a depth of 15.6 mm and having a length of 23 mm was prepared and degassed by being held at 1100 ° C. under a reduced pressure of 1 Pa for 1 hour.
[0027]
The above HIP sintering reaction vessel was filled with diamond powder 22 having a nominal 4-8 μm hydrogen-terminated treatment (packing density 2.17 g / cm 3 ) and covered with a lid 23 made of the same material as the reaction vessel 21. . This reaction vessel was placed in a borosilicate glass tube 24 and vacuum-sealed at 800 ° C. and 1 Pa as a starting material for HIP sintering.
[028]
The HIP operation was performed in the same manner as in Example 1 under the conditions of 200 MPa, 1450 ° C., and 30 minutes holding. The obtained diamond / silicon carbide sintered body was 10.1 × 10.1 × 10.1 mm, and the shrinkage ratio due to sintering was 1.94%. The density of the obtained sintered body was 3.38 g / cm 3 , and it was used as a tip anvil of a physical property measuring apparatus under an ultrahigh pressure of 12 GPa by an X-ray transmission 6-8 multi-anvil apparatus (Kawai type apparatus).
[0029]
【The invention's effect】
In the present invention, in order to produce a diamond sintered body using a silicon carbide-based binder phase by HIP sintering, a reaction vessel formed by a mixed powder of silicon and silicon carbide is used. In the method of the present invention in which infiltration sintering is performed using a silicon melt generated in a reaction vessel, a minimum amount of silicon melt required for sintering of diamond powder is supplied between diamond particles and in contact with diamond. Since it becomes silicon carbide, the space between the particles is small, and an unsintered portion and a strong sintered body (with a bending strength of 1000 MPa or more) that does not contain metallic silicon are secured.
[Brief description of the drawings]
FIG. 1 Sample configuration used in an embodiment of the present invention FIG. 2 Configuration of another sample used in an embodiment of the present invention
11 Sintering reaction vessel 12 Diamond powder 13 Lid 14 Glass tube 21 Sintering reaction vessel 22 Diamond powder 23 Lid 24 Glass tube

Claims (5)

以下の各段階を有する、ダイヤモンド/炭化ケイ素複合焼結体の製造方法:
(1) 質量比が10:90乃至90:10のケイ素粉末と炭化ケイ素粉末との混合粉末を、加圧成形によって容器体とし、
(2) 上記容器体にダイヤモンド粉末を充填して通気可能に封鎖し、
(3) 上記容器体をガラスカプセル内に収め、脱気後真空封入し、
(4) 次いでHIP焼結に供し、この際上記容器体からケイ素を含有する融液を形成させ、ダイヤモンド粒子間に浸透させてダイヤモンド粒子を焼結する。
A method for producing a diamond / silicon carbide composite sintered body having the following steps:
(1) A mixed powder of silicon powder and silicon carbide powder having a mass ratio of 10:90 to 90:10 is formed into a container body by pressure molding,
(2) Fill the container body with diamond powder and seal it to allow ventilation,
(3) Put the container body in a glass capsule, deaerate it and vacuum seal it,
(4) Next, it is subjected to HIP sintering. At this time, a melt containing silicon is formed from the container body, and is infiltrated between diamond particles to sinter diamond particles.
上記ダイヤモンド粉末が、予め水素終端処理されている、請求項1に記載の複合焼結体の製造方法。  The method for producing a composite sintered body according to claim 1, wherein the diamond powder is preliminarily hydrogen-terminated. ケイ素粒子と炭化ケイ素の粒子を、実質的に緻密かつ均質に配合し、容器体に成形してなる、ダイヤモンド/炭化ケイ素複合焼結体製造用反応容器。  A reaction vessel for producing a diamond / silicon carbide composite sintered body, wherein silicon particles and silicon carbide particles are substantially densely and uniformly blended and formed into a container body. 上記容器体が、ケイ素粉末及び炭化ケイ素粉末をそれぞれ、質量比で10:90乃至90:10含有する、請求項3に記載のHIP焼結反応容器。  The HIP sintering reaction container according to claim 3, wherein the container body contains silicon powder and silicon carbide powder in a mass ratio of 10:90 to 90:10, respectively. 上記容器体が、ケイ素粉末及び炭化ケイ素粉末をそれぞれ、質量比で30:70乃至70:30含有する、請求項3に記載のHIP焼結反応容器。  The HIP sintering reaction container according to claim 3, wherein the container body contains silicon powder and silicon carbide powder in a mass ratio of 30:70 to 70:30, respectively.
JP2001325774A 2001-10-24 2001-10-24 Method for producing composite sintered body and reaction vessel therefor Expired - Fee Related JP3975235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325774A JP3975235B2 (en) 2001-10-24 2001-10-24 Method for producing composite sintered body and reaction vessel therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325774A JP3975235B2 (en) 2001-10-24 2001-10-24 Method for producing composite sintered body and reaction vessel therefor

Publications (2)

Publication Number Publication Date
JP2003137653A JP2003137653A (en) 2003-05-14
JP3975235B2 true JP3975235B2 (en) 2007-09-12

Family

ID=19142268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325774A Expired - Fee Related JP3975235B2 (en) 2001-10-24 2001-10-24 Method for producing composite sintered body and reaction vessel therefor

Country Status (1)

Country Link
JP (1) JP3975235B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176436B (en) * 2011-03-17 2012-08-29 北京科技大学 Process for preparing high-performance Diamond/SiC electronic packaging material
CN102184873B (en) * 2011-04-21 2012-10-10 北京科技大学 Method for quickly preparing diamond-silicon carbide electronic packaging material
JP6390152B2 (en) * 2014-04-30 2018-09-19 住友電気工業株式会社 Composite sintered body
JP7040991B2 (en) 2018-04-26 2022-03-23 トーメイダイヤ株式会社 A method for producing a diamond / silicon carbide complex having improved hardness and such a complex.
CN115921861B (en) * 2022-12-02 2023-11-10 同创(丽水)特种材料有限公司 Cold isostatic pressing preparation method of metal bar
CN116143542A (en) * 2022-12-08 2023-05-23 中国科学院上海硅酸盐研究所 Preparation method and application of diamond-bonded silicon carbide composite ceramic

Also Published As

Publication number Publication date
JP2003137653A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US4513030A (en) Method of producing silicon carbide articles
US4247304A (en) Process for producing a composite of polycrystalline diamond and/or cubic boron nitride body and substrate phases
US4242106A (en) Composite of polycrystalline diamond and/or cubic boron nitride body/silicon carbide substrate
FI84343B (en) FOERFARANDE FOER FRAMSTAELLNING AV ETT SJAELVBAERANDE KERAMISKT KOMPOSITSTYCKE OCH ETT SAODANT KOMPOSITSTYCKE.
US4626516A (en) Infiltration of Mo-containing material with silicon
US4171339A (en) Process for preparing a polycrystalline diamond body/silicon carbide substrate composite
JPH0692732A (en) Self-retaining ceramic composite
JP2004525050A (en) Thermal conductive material
EP0012966B1 (en) Integral composite of polycristalline diamond and/or cubic boron nitride body phase and substrate phase and process for making it
US4353953A (en) Integral composite of polycrystalline diamond and/or cubic boron nitride body phase and substrate phase
CN107922273B (en) Method for manufacturing a part of a composite of diamond and binder
JP3975235B2 (en) Method for producing composite sintered body and reaction vessel therefor
US4793859A (en) Infiltration of mo-containing material with silicon
US20180065894A9 (en) Superhard pcd constructions and methods of making same
EP1691398B1 (en) Ceramic heater unit
US4597923A (en) Production of reaction-bonded silicon carbide bodies
DK169917B1 (en) Process for making ceramic and metal ceramic composites with fillers
JP2006347837A (en) Method for manufacturing continuous fiber-reinforced composite material
JP5320132B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP3946896B2 (en) Method for producing diamond-silicon carbide composite sintered body
JP2004250725A (en) Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode
JPH05163065A (en) Silicon-free infiltrate-forming composite material of silicon carbide and molybdenum silicide
JP2000143359A (en) Production of silicon carbide sintered product
JP2008239404A (en) Hyperfine silicon carbide particle, its preparing method and hyperfine silicon carbide sintered compact
JPH01115888A (en) Production of jig for producing semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3975235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees