JP2003137653A - Method of manufacturing composite sintered compact and reaction vessel for the same - Google Patents

Method of manufacturing composite sintered compact and reaction vessel for the same

Info

Publication number
JP2003137653A
JP2003137653A JP2001325774A JP2001325774A JP2003137653A JP 2003137653 A JP2003137653 A JP 2003137653A JP 2001325774 A JP2001325774 A JP 2001325774A JP 2001325774 A JP2001325774 A JP 2001325774A JP 2003137653 A JP2003137653 A JP 2003137653A
Authority
JP
Japan
Prior art keywords
silicon
powder
diamond
silicon carbide
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001325774A
Other languages
Japanese (ja)
Other versions
JP3975235B2 (en
Inventor
Masaru Shimono
勝 下埜
Shoichi Kume
久米昭一
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA KENKYUSHO
Ishizuka Research Institute Ltd
Original Assignee
ISHIZUKA KENKYUSHO
Ishizuka Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA KENKYUSHO, Ishizuka Research Institute Ltd filed Critical ISHIZUKA KENKYUSHO
Priority to JP2001325774A priority Critical patent/JP3975235B2/en
Publication of JP2003137653A publication Critical patent/JP2003137653A/en
Application granted granted Critical
Publication of JP3975235B2 publication Critical patent/JP3975235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a sintered compact which is securely bonded with diamond particles to each other only by the silica carbide metathesized by the reaction of a minimum required amount of a binder, i.e., substantially metal silicate with diamond and is free of unsintered points and the residual points of the metal silicate by feeding the melt of silicon as a binder from a reaction vessel material enclosing diamond powder and penetrating the same among the diamond particles (an filtration sintering process). SOLUTION: This method of manufacturing the composite sintered compact of diamond/silicon carbide has steps of; (1) forming a powder mixture composed of silicon powder and silicon carbide powder of 10:90 to 90:10 by mass to a vessel body by pressure molding; (2) packing the diamond powder into this vessel body and sealing the vessel body airpermeably; (3) confining the vessel body into a glass capsule, subjecting the vessel body to deaeration and then vacuum sealing; and (4) then subjecting the vessel body to HIP sintering and at this time, forming the melt containing the silicon from the vessel body to penetrate the silicon among the diamond particles, thereby sintering the diamond particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明はダイヤモンド焼結体に
関し、特に耐熱性の切削工具の製造や、超高圧力下での
物性研究等に使用する加圧アンビルの材料として有用
な、特にX線によるかかる研究に利用可能なダイヤモン
ド焼結体の製造法、ならびにこの製造工程に効果的に使
用される反応容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond sintered body, and particularly useful as a material for a pressure anvil used for manufacturing a heat-resistant cutting tool, researching physical properties under ultrahigh pressure, and particularly X-rays. The present invention relates to a method for producing a diamond sintered body that can be used in such research, and a reaction vessel effectively used in this production process.

【0002】[0002]

【従来技術】 炭化ケイ素系の結合相を使用するダイヤ
モンド焼結体は、高温でダイヤモンドのグラファイト化
を促進する遷移金属を含まないことから、過酷な条件で
用いられる掘削ビットや切削工具として用いられてい
る。また結合相がX線を透過する軽元素のみで構成さ
れ、透過を妨げる物質を含まないことから、超高圧力下
でのその場観察による物性研究用の加圧アンビル材料と
しても有用である。
2. Description of the Related Art A diamond sintered body using a silicon carbide based binder phase is used as a drilling bit or a cutting tool used under severe conditions because it does not contain a transition metal that promotes graphitization of diamond at high temperatures. ing. Further, since the binder phase is composed of only light elements that transmit X-rays and does not contain a substance that impedes transmission, it is also useful as a pressurized anvil material for physical property studies by in-situ observation under ultrahigh pressure.

【0003】このような焼結体は一般に、ダイヤモンド
が熱力学的に安定な超高圧力下において溶融ケイ素をダ
イヤモンド粒子間に導入し、炭化ケイ素の結合相を形成
するという手法で、焼結が行われている。一方、立体形
状品については超高圧力反応装置に伴う制約からこの手
法が適用困難であり、この場合はHIPによる焼結が行
われ、一部実用に供されている。
Such a sintered body is generally sintered by a method of introducing molten silicon between diamond particles under an ultrahigh pressure at which diamond is thermodynamically stable to form a bonded phase of silicon carbide. Has been done. On the other hand, this method is difficult to apply to a three-dimensional product due to the restrictions associated with the ultrahigh pressure reactor. In this case, sintering by HIP is performed and it is partially put to practical use.

【0004】上記HIPによる炭化ケイ素系ダイヤモン
ド焼結体の製造においては、ダイヤモンドとケイ素との
混合粉末が焼結反応容器に充填され、これを、ガラスカ
プセルに装填・加熱脱気後真空封入して、HIP処理に
供する。本発明者らは、炭化ケイ素系の焼結品がかかる
焼結反応容器材料として好適であることを知見し、先に
特許出願を行っている(特開2000-203955公報)。
In the production of a silicon carbide-based diamond sintered body by the above HIP, a mixed powder of diamond and silicon is filled in a sintering reaction container, which is charged in a glass capsule, heated and deaerated, and then vacuum-sealed. , HIP treatment. The present inventors have found that a silicon carbide-based sintered product is suitable as such a sintering reaction container material, and have previously filed a patent application (Japanese Patent Laid-Open No. 2000-203955).

【0005】しかし上掲発明方法の場合には、ダイヤモ
ンドとケイ素との粉末を予め計量して混合粉末とし反応
容器内へ充填するので、結合剤としてのケイ素量が焼結
製品全体で必ずしも最適値とはならず、さらにダイヤモ
ンド粒子相互間の間隔も、必ずしも、望まれるような必
要最小限の値とならない。その結果、部分的に結合剤量
の過不足生じたり、あるいは粉末粒子間隔の不均等性に
基づいて焼結製品強度がばらつく等の問題が生じてい
た。
However, in the case of the above-mentioned invention method, the powder of diamond and silicon is weighed in advance and mixed powder is filled in the reaction vessel, so that the amount of silicon as a binder is not necessarily the optimum value for the whole sintered product. In addition, the spacing between diamond particles is not necessarily the minimum required value as desired. As a result, there have been problems that the amount of the binder is partially excessive or insufficient, or the strength of the sintered product varies due to the nonuniformity of the powder particle intervals.

【0006】[0006]

【発明が解決しようとする課題】 したがって本発明の
目的とするところは、結合剤としてのケイ素の融液を、
ダイヤモンド粉末を包囲している反応容器材料から供給
してダイヤモンド粒子間に浸透させる(溶浸焼結法)こと
により、ダイヤモンド粒子同士が必要最小限分量の結合
剤、即ち実質的に金属ケイ素がダイヤモンドとの反応に
より転換した炭化ケイ素のみによって強固に結合され
た、未焼結個所や金属ケイ素の残留個所のない、焼結体
の製造法を提供することにある。
Therefore, the object of the present invention is to provide a melt of silicon as a binder,
By supplying the diamond powder from the surrounding reaction vessel material and infiltrating it between the diamond particles (infiltration sintering method), the diamond particles are bound to each other in the necessary minimum amount of binder, that is, substantially metallic silicon is diamond. It is an object of the present invention to provide a method for producing a sintered body, which is firmly bonded only by silicon carbide converted by the reaction with, and which has no unsintered portion or residual portion of metallic silicon.

【0007】[0007]

【課題を解決するための手段】 本発明の要旨は、以下
の各段階を有する、ダイヤモンド/炭化ケイ素複合焼結
体の製造方法にある。(1)質量比が10:90乃至90:10の
ケイ素粉末と炭化ケイ素粉末との混合粉末を、加圧成形
によって容器体とし、(2)上記容器体にダイヤモンド粉
末を充填して通気可能に封鎖し、(3)上記容器体をガラ
スカプセル内に収め、脱気後真空封入し、(4)次いでH
IP焼結に供し、この際上記容器体からケイ素を含有す
る融液を形成させ、ダイヤモンド粒子間に浸透させてダ
イヤモンド粒子を焼結する。
Means for Solving the Problems The gist of the present invention is a method for producing a diamond / silicon carbide composite sintered body, which has the following steps. (1) A powder mixture of silicon powder and silicon carbide powder having a mass ratio of 10:90 to 90:10 is formed into a container by pressure molding, and (2) diamond powder is filled into the container to enable ventilation. (3) The container is placed in a glass capsule, degassed and vacuum-sealed, and (4) then H
It is subjected to IP sintering, and at this time, a melt containing silicon is formed from the container body and penetrated between the diamond particles to sinter the diamond particles.

【0008】即ち本発明においては、HIP焼結のため
の反応容器を、容器の構造材料としての炭化ケイ素粉末
と、成型バインダー及びダイヤモンド粉末に対する結合
剤(溶浸剤)として機能するケイ素粉末とで構成する。こ
れによって、焼結反応容器が原料のダイヤモンド粉末を
保持するのに十分な強度を得ると共に、反応容器壁から
結合剤の融液がダイヤモンドの粒子間に供給されて浸透
し、焼結が達成される。
That is, in the present invention, the reaction vessel for HIP sintering is composed of silicon carbide powder as the structural material of the vessel and silicon powder which functions as a binder (infiltrant) for the molding binder and diamond powder. To do. As a result, the sintering reaction vessel has sufficient strength to hold the raw material diamond powder, and the melt of the binder is supplied from the reaction vessel wall between the diamond particles and penetrates to achieve sintering. It

【0009】本発明方法においては、溶浸剤として利用
するケイ素を、反応容器加圧成形のためのバインダーと
して使用するので、炭化ケイ素のみで反応容器を形成し
た先願の場合のように有機物系の成形バインダーを用い
る必要がなく、反応容器の製作工程が簡略化できる。
In the method of the present invention, since silicon used as an infiltrant is used as a binder for pressure molding of the reaction vessel, it is possible to use an organic material-based material such as the case of the prior application in which the reaction vessel was formed of only silicon carbide. Since it is not necessary to use a molding binder, the manufacturing process of the reaction container can be simplified.

【0010】反応容器をケイ素粉末のみで製作すること
も可能である。しかしケイ素製の反応容器を用いては、
充分な性能を持った焼結体は得られにくい。
It is also possible to manufacture the reaction vessel only with silicon powder. However, using a silicon reaction vessel,
It is difficult to obtain a sintered body with sufficient performance.

【0011】つまりHIP焼結の過程で加熱され1400℃
でケイ素が溶融すると、その一部は接しているダイヤモ
ンドと反応して炭化ケイ素を形成する。このとき、ダイ
ヤモンドと比べて相対的に比重の小さなケイ素は上方へ
移動するので、軟化ないし溶融したカプセル材のガラス
(ホウケイ酸ガラス)が直接焼結体に接触して焼結体中へ
巻き込まれることになる。その結果ダイヤモンド焼結体
内にガラスが結合相となっている個所が生じ、全体とし
ての強度が低下するので、刃具や硬質構造材としての実
用に供することができないのである。
That is, it is heated to 1400 ° C. in the process of HIP sintering.
When the silicon melts at, part of it reacts with the diamond in contact to form silicon carbide. At this time, silicon, which has a relatively smaller specific gravity than diamond, moves upward, so the glass of the softened or melted encapsulant
The (borosilicate glass) comes into direct contact with the sintered body and is caught in the sintered body. As a result, a portion where glass is a binder phase is generated in the diamond sintered body, and the strength as a whole is lowered, so that it cannot be put to practical use as a cutting tool or a hard structural material.

【0012】これとは対照的に、本発明にのようにHI
P焼結反応容器をケイ素と炭化ケイ素との混合粉で製作
すると、炭化ケイ素は構造材料としてHIP過程を通じ
て容器の形状を維持し、溶融したケイ素は炭化ケイ素容
器を濡らした状態で焼結体の周囲に止まっていることか
ら、焼結体とガラスとの接触を防ぐ隔壁として機能し、
ガラスの巻き込みのない均質な焼結体が得られる。
In contrast to this, as in the present invention, HI
When the P-sintering reaction vessel is made of a mixed powder of silicon and silicon carbide, silicon carbide maintains the shape of the vessel as a structural material through the HIP process, and the molten silicon retains the sintered state of the sintered body in a wet state. Since it stays around, it functions as a partition that prevents contact between the sintered body and the glass.
A homogeneous sintered body free of glass entrainment is obtained.

【0013】HIP焼結過程を通じて反応容器がその形
状を維持し、ケイ素融液の移動を確実に防ぐために、反
応容器を構成するケイ素と炭化ケイ素との混合物は、原
料混合粉の状態において炭化ケイ素を質量比で10(質量)
%以上を含有し、30%以上含有しているのが好ましい。
In order to maintain the shape of the reaction vessel through the HIP sintering process and to prevent the movement of the silicon melt, the mixture of silicon and silicon carbide forming the reaction vessel is silicon carbide in the raw material mixed powder state. In mass ratio 10 (mass)
% Or more, preferably 30% or more.

【0014】一方反応容器材中のケイ素の含有量は、溶
浸剤としてのケイ素の融液を充分に供給し焼結を確実な
らしめるために、原料混合粉の状態において10%以上、
より好ましくは30%以上である。
On the other hand, the content of silicon in the reaction vessel material is 10% or more in the state of the raw material mixed powder in order to sufficiently supply the melt of silicon as the infiltrant to ensure sintering.
It is more preferably 30% or more.

【0015】上記ケイ素粉末は、成型バインダーとして
の機能を発現させるために、40μm以下の微粉が適切で
ある。一方炭化ケイ素については、溶浸剤のケイ素融液
を透過させる必要があることから、粒度10μm以上の比
較的粗い粉末が望ましい。
The silicon powder is preferably a fine powder having a particle size of 40 μm or less in order to exert the function as a molding binder. On the other hand, for silicon carbide, a relatively coarse powder having a particle size of 10 μm or more is desirable because it is necessary to allow the silicon melt of the infiltrant to pass through.

【0016】なお本発明においては、焼結に要するケイ
素融液の全量を、必ずしも反応容器材から供給すること
は必須でない。ダイヤモンド粉末に予め焼結所要量に満
たない量のケイ素微粉を混合しておき、溶浸融液の不足
分を反応容器からのケイ素融液で補うようにすることも
可能である。
In the present invention, it is not always necessary to supply all of the silicon melt required for sintering from the reaction vessel material. It is also possible to previously mix the diamond powder with an amount of silicon fine powder that is less than the required amount for sintering, and supplement the shortage of the infiltration melt with the silicon melt from the reaction vessel.

【0017】本発明で用いるダイヤモンドは、平均粒度
で1〜100μmの範囲のものが使用可能である。また通常
の合成ダイヤモンドを利用できるが、次の点に注意を要
する。即ち合成ダイヤモンドは精製過程で酸化性の薬品
処理を経ていることから、粉末表面に酸素または酸素を
含む官能基が付着ないし吸着している。これらは800℃
付近で行う加熱脱気処理段階においても完全には除去で
きず、焼結反応の際にもCOガスとして脱離する。この
真空封入後の加熱によって生じたガスは、ダイヤモンド
粉末の粒子間隔を拡げて結合強度を低下させ、さらには
得られた焼結体内のクラックや剥がれの原因となってい
る。
The diamond used in the present invention may have an average grain size of 1 to 100 μm. Ordinary synthetic diamond can be used, but note the following points. That is, since the synthetic diamond has been subjected to an oxidizing chemical treatment in the refining process, oxygen or a functional group containing oxygen is attached or adsorbed to the powder surface. These are 800 ℃
It cannot be completely removed even in the thermal degassing treatment stage performed in the vicinity, and is also desorbed as CO gas during the sintering reaction. The gas generated by the heating after the vacuum filling expands the particle intervals of the diamond powder to reduce the bonding strength, and causes cracks and peeling in the obtained sintered body.

【0018】上記の弊害を除くためには、焼結反応容器
内へ仕込む前に、ダイヤモンド粒子表面の酸素を除去し
ておく必要があり、有効な方法の一つとして水素置換を
挙げることができる。即ち水素雰囲気中で700℃以上に
加熱することによって、ダイヤモンド粉末表面の酸素ま
たは酸素を含む官能基は水素で置換され、ダイヤモンド
表面の炭素原子は水素で終端された安定な状態になる。
In order to eliminate the above-mentioned adverse effects, it is necessary to remove oxygen on the surface of the diamond particles before charging into the sintering reaction vessel, and one of the effective methods is hydrogen substitution. . That is, by heating at 700 ° C. or higher in a hydrogen atmosphere, oxygen or a functional group containing oxygen on the surface of the diamond powder is replaced with hydrogen, and the carbon atoms on the diamond surface are brought into a stable state terminated with hydrogen.

【0019】別の方法として、酸素ガスのゲッターとし
て機能する金属(例えばチタン)を用いてもよい。ゲッタ
ー金属は、薄板としてHIP焼結反応容器とガラスカプ
セルとの間に挿入して用いることができる。或いは粉末
状態でガラス管の底部へ置いてもよい。ゲッターは真空
封入後の反応容器内で発生するガスを固定し、反応空間
を無酸素状態に保つことができる。
As another method, a metal (for example, titanium) that functions as a getter of oxygen gas may be used. The getter metal can be used as a thin plate by inserting it between the HIP sintering reaction container and the glass capsule. Alternatively, it may be placed in the powder state on the bottom of the glass tube. The getter can fix the gas generated in the reaction container after vacuum sealing and keep the reaction space in an oxygen-free state.

【0020】ダイヤモンド粉末表面の酸素の大半を水素
で置換するか、酸素ガスのゲッターを用いることによ
り、加熱時に酸素によって促進されるダイヤモンドのグ
ラファイト化が抑えられる。その結果HIP焼結可能な
ダイヤモンドの粒度は、従来は10μm程度が下限であっ
たのが、本発明方法においては平均粒径1μmのダイヤ
モンド粒子も焼結可能となった。
By replacing most of the oxygen on the surface of the diamond powder with hydrogen or using a getter of oxygen gas, the graphitization of diamond promoted by oxygen during heating can be suppressed. As a result, the particle size of HIP-sinterable diamond was conventionally about 10 μm, but in the method of the present invention, diamond particles having an average particle size of 1 μm can be sintered.

【0021】以上述べたように、本発明においては、炭
化ケイ素系結合のダイヤモンド焼結体のHIP焼結によ
る製法において、ケイ素と炭化ケイ素との混合粉末を成
形構成した反応容器を用意する。ダイヤモンド粉末をこ
の反応容器に入れてガラスカプセルに真空封入し、HI
P焼結反応に供する。反応容器は炭化ケイ素の構造体
(骨格)によって形状を維持し、構造体(骨格)の間で結合
剤のケイ素が溶融し、この融液をダイヤモンド粉末の粒
子間へ供給することにより、溶浸焼結が達成される。
As described above, according to the present invention, in the method for manufacturing the diamond-sintered body of silicon carbide type by HIP sintering, the reaction container formed by molding the mixed powder of silicon and silicon carbide is prepared. Diamond powder was placed in this reaction vessel and vacuum sealed in a glass capsule.
Subjected to P sintering reaction. The reaction vessel is a silicon carbide structure
The shape is maintained by the (skeleton), silicon as a binder is melted between the structures (skeletons), and this melt is supplied between the particles of the diamond powder to achieve infiltration sintering.

【0022】この結果HIP焼結過程においては、ダイ
ヤモンド粉末の焼結に必要な融液が最小限の分量だけが
粉末粒子間に浸透することになるので、ダイヤモンド粒
子間の間隔が小さく、粒子間には未焼結箇所がなく、さ
らに金属ケイ素を含まない焼結体が得られる。得られた
焼結体については1000MPa以上の抗折強度が測定され
ており、再現性も良好であった。
As a result, in the HIP sintering process, the minimum amount of the melt necessary for sintering the diamond powder penetrates between the powder particles, so that the intervals between the diamond particles are small and Has no unsintered part, and a sintered body containing no metallic silicon can be obtained. With respect to the obtained sintered body, a bending strength of 1000 MPa or more was measured, and reproducibility was also good.

【0023】[0023]

【実施例1】 30(質量)%のケイ素粉末(粒径25μm以
下)と、70%の炭化ケイ素粉末(平均粒径30μm)との混
合粉末をCIP成形して、図1に示すような外径10mm、
内径5mm、長さ50mmの一端封止管状のHIP焼結反応容
器11を作製し、1100℃、1Paの減圧下で1時間保持す
ることにより脱ガスを行った。
Example 1 A mixed powder of 30 (mass)% silicon powder (particle size 25 μm or less) and 70% silicon carbide powder (average particle size 30 μm) was CIP-molded to obtain an external powder as shown in FIG. Diameter 10 mm,
A HIP sintering reaction container 11 having an inner diameter of 5 mm and a length of 50 mm and having one end sealed in a tubular shape was prepared and degassed by holding it at 1100 ° C. under a reduced pressure of 1 Pa for 1 hour.

【0024】上記のHIP焼結反応容器内に公称値8-16
μmのダイヤモンド粉末12を充填し(充填密度2.18g/c
m3)、反応容器11と同じ材料の蓋13をかぶせた。こ
の反応容器をホウケイ酸ガラス管14内に入れ、800
℃、1Paで真空封入し、HIP焼結の出発物質とした。
In the above HIP sintering reaction vessel, a nominal value of 8-16
Filled with diamond powder 12 of μm (packing density 2.18 g / c
m 3 ), and covered with a lid 13 made of the same material as the reaction vessel 11. Put this reaction vessel in the borosilicate glass tube 14 and
It was vacuum-sealed at 1 ° C. at 1 ° C. and used as a starting material for HIP sintering.

【0025】HIP操作は、200MPa、1450℃、30分間
保持の条件で実施した。得られたダイヤモンド/炭化ケ
イ素焼結体の密度は3.37g/cm3であり、3点曲げによる
抗折強度は1031MPaであった。
The HIP operation was carried out under the conditions of 200 MPa, 1450 ° C. and holding for 30 minutes. The obtained diamond / silicon carbide sintered body had a density of 3.37 g / cm 3 and a bending strength by 10-point bending of 1031 MPa.

【0026】[0026]

【実施例2】 70%のケイ素粉末(粒径25μm以下)と、
30%の炭化ケイ素粉末(平均粒径40μm)との混合粉末を
CIP成形して、図2に示すような、外径24mm、内寸1
0.3×10.3mm、深さ15.6mmの角柱の孔を有する長さ23mm
の反応容器21を作製し、1100℃、1Paの減圧下で1時
間保持することにより脱ガス処理を施した。
Example 2 70% silicon powder (particle size 25 μm or less),
CIP molding of mixed powder with 30% silicon carbide powder (average particle size 40μm), outer diameter 24mm, inner dimension 1 as shown in Fig. 2.
23 mm long with 0.3 × 10.3 mm, 15.6 mm deep prismatic holes
The reaction vessel 21 was prepared and degassed by holding it at 1100 ° C. under a reduced pressure of 1 Pa for 1 hour.

【0027】上記のHIP焼結反応容器内に、公称4-8
μmの、水素終端処理を施したダイヤモンド粉末22を
充填し(充填密度2.17g/cm3)、反応容器21と同じ材料
の蓋23をかぶせた。この反応容器をホウケイ酸ガラス
管24内に入れて800℃、1Paで真空封入し、HIP焼
結の出発物質とした。
In the above HIP sintering reaction vessel, nominally 4-8
A hydrogen-terminated diamond powder 22 of μm was filled (filling density 2.17 g / cm 3 ), and a lid 23 made of the same material as the reaction vessel 21 was covered. This reaction vessel was placed in a borosilicate glass tube 24 and vacuum-sealed at 800 ° C. and 1 Pa to obtain a starting material for HIP sintering.

【028】HIP操作は、実施例1と同様に、200MP
a、1450℃、30分間保持の条件で実施した。得られたダ
イヤモンド/炭化ケイ素焼結体は10.1×10.1×10.1mmで
あって、焼結による収縮率は1.94%であった。得られた
焼結体の密度は3.38g/cm3であり、X線透過 6-8マルチ
アンビル装置(川井型装置)による12GPaの超高圧力下
での物性測定装置の先端アンビルとして使用した。
The HIP operation is performed in the same manner as in the first embodiment, 200MP.
a, 1450 ° C., holding for 30 minutes. The obtained diamond / silicon carbide sintered body had a size of 10.1 × 10.1 × 10.1 mm, and the shrinkage ratio due to sintering was 1.94%. The density of the obtained sintered body was 3.38 g / cm 3 , and it was used as a tip anvil of a physical property measuring apparatus under an ultrahigh pressure of 12 GPa by an X-ray transmission 6-8 multi-anvil apparatus (Kawai type apparatus).

【0029】[0029]

【発明の効果】 本発明では、HIP焼結によって、炭
化ケイ素系の結合相を用いてダイヤモンド焼結体を作製
するために、ケイ素と炭化ケイ素との混合粉末で成形構
成された反応容器を用いる。反応容器で発生するケイ素
の融液を用いて溶浸焼結を行う本発明方法においては、
ダイヤモンド粉末の焼結に必要な最低量のケイ素融液が
ダイヤモンド粒子間に供給され、ダイヤモンドと接して
炭化ケイ素となるので、粒子間隔が小さく、未焼結個所
や、金属ケイ素を含まない、強固な焼結体(抗折強度100
0MPa以上)が確保される。
EFFECTS OF THE INVENTION In the present invention, a reaction container formed of a mixed powder of silicon and silicon carbide is used in order to produce a diamond sintered body using a silicon carbide-based binder phase by HIP sintering. . In the method of the present invention in which infiltration sintering is performed using the melt of silicon generated in the reaction vessel,
The minimum amount of silicon melt required for sintering the diamond powder is supplied between the diamond particles and becomes silicon carbide in contact with the diamond, so the particle spacing is small, and there are no unsintered parts or metal silicon, and it is strong. Sintered body (Bending strength 100
0 MPa or more) is secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例で用いた試料の構成FIG. 1 is a constitution of a sample used in an example of the present invention.

【図2】 本発明の実施例で用いた別の試料の構成FIG. 2 is a constitution of another sample used in the example of the present invention.

【符号の説明】[Explanation of symbols]

11 焼結反応容器 12 ダイヤモンド粉末 13 蓋 14 ガラス管 21 焼結反応容器 22 ダイヤモンド粉末 23 蓋 24 ガラス管 11 Sintering reaction vessel 12 diamond powder 13 lid 14 glass tubes 21 Sintering reaction vessel 22 Diamond powder 23 lid 24 glass tubes

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年10月24日(2001.10.
24)
[Submission date] October 24, 2001 (2001.10.
24)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 複合焼結体の製造方法及びそのため
の反応容器
Title: Method for producing composite sintered body and reaction container therefor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久米昭一 神戸市中央区熊内町五丁目10番7号 (72)発明者 石塚 博 東京都品川区荏原六丁目19番2号 Fターム(参考) 4G046 MA14 MA19 MB02 MC04 MC06   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shoichi Kume             5-10-7 Kumauchi-cho, Chuo-ku, Kobe-shi (72) Inventor Hiroshi Ishizuka             6-19-2 Ebara, Shinagawa-ku, Tokyo F-term (reference) 4G046 MA14 MA19 MB02 MC04 MC06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】以下の各段階を有する、ダイヤモンド/炭
化ケイ素複合焼結体の製造方法: (1) 質量比が10:90乃至90:10のケイ素粉末と炭化ケイ
素粉末との混合粉末を、加圧成形によって容器体とし、
(2) 上記容器体にダイヤモンド粉末を充填して通気可能
に封鎖し、(3) 上記容器体をガラスカプセル内に収め、
脱気後真空封入し、(4) 次いでHIP焼結に供し、この
際上記容器体からケイ素を含有する融液を形成させ、ダ
イヤモンド粒子間に浸透させてダイヤモンド粒子を焼結
する。
1. A method for producing a diamond / silicon carbide composite sintered body, comprising the following steps: (1) a mixed powder of silicon powder and silicon carbide powder having a mass ratio of 10:90 to 90:10, Made into a container by pressure molding,
(2) The container body is filled with diamond powder and sealed so that it can be aerated, (3) the container body is placed in a glass capsule,
After deaeration, vacuum encapsulation is performed, and (4) it is then subjected to HIP sintering. At this time, a melt containing silicon is formed from the above-mentioned container body and penetrated between the diamond particles to sinter the diamond particles.
【請求項2】上記ダイヤモンド粉末が、予め水素終端処
理されている、請求項1に記載の複合焼結体の製造方
法。
2. The method for producing a composite sintered body according to claim 1, wherein the diamond powder is hydrogen-terminated in advance.
【請求項3】ケイ素粒子と炭化ケイ素の粒子を、実質的
に緻密かつ均質に配合し、容器体に成形してなる、ダイ
ヤモンド/炭化ケイ素複合焼結体製造用反応容器。
3. A reaction vessel for producing a diamond / silicon carbide composite sintered body, which is obtained by blending silicon particles and silicon carbide particles in a substantially dense and homogeneous manner and molding into a container body.
【請求項4】上記容器体が、ケイ素粉末及び炭化ケイ素
粉末をそれぞれ、質量比で10:90乃至90:10含有する、
請求項3に記載のHIP焼結反応容器。
4. The container body contains silicon powder and silicon carbide powder in a mass ratio of 10:90 to 90:10, respectively.
The HIP sintering reaction container according to claim 3.
【請求項5】上記容器体が、ケイ素粉末及び炭化ケイ素
粉末をそれぞれ、質量比で30:70乃至70:30含有する、
請求項3に記載のHIP焼結反応容器。
5. The container body contains silicon powder and silicon carbide powder in a mass ratio of 30:70 to 70:30, respectively.
The HIP sintering reaction container according to claim 3.
【請求項6】重量比において30:70乃至70:30のダイヤ
モンド粉末とケイ素系結合剤とで構成され、かつ該結合
剤中に金属ケイ素を実質的に含有しない、超高圧加圧用
アンビル材。
6. An anvil material for ultra-high pressure application, which comprises diamond powder in a weight ratio of 30:70 to 70:30 and a silicon-based binder, and the binder does not substantially contain metallic silicon.
JP2001325774A 2001-10-24 2001-10-24 Method for producing composite sintered body and reaction vessel therefor Expired - Fee Related JP3975235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325774A JP3975235B2 (en) 2001-10-24 2001-10-24 Method for producing composite sintered body and reaction vessel therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325774A JP3975235B2 (en) 2001-10-24 2001-10-24 Method for producing composite sintered body and reaction vessel therefor

Publications (2)

Publication Number Publication Date
JP2003137653A true JP2003137653A (en) 2003-05-14
JP3975235B2 JP3975235B2 (en) 2007-09-12

Family

ID=19142268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325774A Expired - Fee Related JP3975235B2 (en) 2001-10-24 2001-10-24 Method for producing composite sintered body and reaction vessel therefor

Country Status (1)

Country Link
JP (1) JP3975235B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176436A (en) * 2011-03-17 2011-09-07 北京科技大学 Process for preparing high-performance Diamond/SiC electronic packaging material
CN102184873A (en) * 2011-04-21 2011-09-14 北京科技大学 Method for preparing diamond-silicon carbide electronic packaging material fast
WO2015166731A1 (en) * 2014-04-30 2015-11-05 住友電気工業株式会社 Composite sintered body
JP7040991B2 (en) 2018-04-26 2022-03-23 トーメイダイヤ株式会社 A method for producing a diamond / silicon carbide complex having improved hardness and such a complex.
CN115921861A (en) * 2022-12-02 2023-04-07 同创(丽水)特种材料有限公司 Cold isostatic pressing preparation method of metal bar
CN116143542A (en) * 2022-12-08 2023-05-23 中国科学院上海硅酸盐研究所 Preparation method and application of diamond-bonded silicon carbide composite ceramic

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176436A (en) * 2011-03-17 2011-09-07 北京科技大学 Process for preparing high-performance Diamond/SiC electronic packaging material
CN102184873A (en) * 2011-04-21 2011-09-14 北京科技大学 Method for preparing diamond-silicon carbide electronic packaging material fast
WO2015166731A1 (en) * 2014-04-30 2015-11-05 住友電気工業株式会社 Composite sintered body
CN106164017A (en) * 2014-04-30 2016-11-23 住友电气工业株式会社 Composite sinter
US9950960B2 (en) 2014-04-30 2018-04-24 Sumitomo Electric Industries, Ltd. Composite sintered body
CN106164017B (en) * 2014-04-30 2020-09-01 住友电气工业株式会社 Composite sintered body
JP7040991B2 (en) 2018-04-26 2022-03-23 トーメイダイヤ株式会社 A method for producing a diamond / silicon carbide complex having improved hardness and such a complex.
CN115921861A (en) * 2022-12-02 2023-04-07 同创(丽水)特种材料有限公司 Cold isostatic pressing preparation method of metal bar
CN115921861B (en) * 2022-12-02 2023-11-10 同创(丽水)特种材料有限公司 Cold isostatic pressing preparation method of metal bar
CN116143542A (en) * 2022-12-08 2023-05-23 中国科学院上海硅酸盐研究所 Preparation method and application of diamond-bonded silicon carbide composite ceramic

Also Published As

Publication number Publication date
JP3975235B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
FI84343B (en) FOERFARANDE FOER FRAMSTAELLNING AV ETT SJAELVBAERANDE KERAMISKT KOMPOSITSTYCKE OCH ETT SAODANT KOMPOSITSTYCKE.
US9387571B2 (en) Manufacture of thermally stable cutting elements
KR100522859B1 (en) A method of manufacturing the heat sink material
JP2004525050A (en) Thermal conductive material
GB2461198A (en) Thermally stable sintered cutting element with catalyst removed
JP2003137653A (en) Method of manufacturing composite sintered compact and reaction vessel for the same
JP2019189500A (en) Method for producing diamond/silicon carbide composite with improved hardness and such composite
DK169917B1 (en) Process for making ceramic and metal ceramic composites with fillers
HU204240B (en) Process for producing self-carrying ceramic composite structure
JP5362992B2 (en) Diamond synthesis
JP2911936B2 (en) Method for producing ceramic composite
JP2004250725A (en) Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode
JP3946896B2 (en) Method for producing diamond-silicon carbide composite sintered body
JPH05163065A (en) Silicon-free infiltrate-forming composite material of silicon carbide and molybdenum silicide
JP2010235417A (en) Porous body, metal-ceramic composite material and method of manufacturing them
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JPH01115888A (en) Production of jig for producing semiconductor
JPS61264103A (en) Production of high melting point metallic sintered body
GB2468806A (en) Forming a thermally stable cutting element with ultrasonically assisted leaching
JP2625610B2 (en) Manufacturing method of impregnated cathode
WO2023117745A1 (en) Method of making a diamond composite
JP2005248239A (en) Method for manufacturing aluminum matrix composite
JP2006189669A (en) Mask stage for stepper
JP2002371330A (en) Method for manufacturing metal-ceramic composite material
JPS61264104A (en) Production of high melting point metallic sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3975235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees