JP3969206B2 - Production of PZT thin films by chemical vapor deposition - Google Patents

Production of PZT thin films by chemical vapor deposition Download PDF

Info

Publication number
JP3969206B2
JP3969206B2 JP2002182207A JP2002182207A JP3969206B2 JP 3969206 B2 JP3969206 B2 JP 3969206B2 JP 2002182207 A JP2002182207 A JP 2002182207A JP 2002182207 A JP2002182207 A JP 2002182207A JP 3969206 B2 JP3969206 B2 JP 3969206B2
Authority
JP
Japan
Prior art keywords
dpm
otbu
vaporizer
film
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002182207A
Other languages
Japanese (ja)
Other versions
JP2003342730A (en
Inventor
秀公 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2002182207A priority Critical patent/JP3969206B2/en
Publication of JP2003342730A publication Critical patent/JP2003342730A/en
Application granted granted Critical
Publication of JP3969206B2 publication Critical patent/JP3969206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、化学気相成長法(以下CVD法と表す)により、PZT、PLZT薄膜を製造する方法に関する。
【0002】
【従来の技術】
高集積の不揮発性メモリーや圧電素子などに用いられるPbZr1−yTi(0<y<1,以下PZTと表す)や、(Pb1−x,La)(Zr1−y,Ti)O(0<x<1,0<y<1)(以下PLZTと表す)薄膜を量産性よく製造する方法として、CVD法が用いられる。その原料供給方式には、Pb,Zr,TiおよびLaの各化合物をそのまま気化して供給する方式と溶液にして気化供給する方式があるが、後者のほうが量産に向いている。
【0003】
Pb(dpm),Zr(OtBu),Ti(OiPr)の各化合物をそのまま気化して供給する前者の方式のCVDでは膜組成がPb/(Zr+Ti)=1と自律的になるPb供給のプロセスウィンドウが広く開くことがM.Aratani et al,Jpn.J.Appl.Phys.Vol.40,4126(2001)などに開示されている。ここでプロセスウィンドウとは、膜組成Pb/(Zr+Ti)=1.0となる原料供給速度およびその比率の領域をいう。例えば、(Zr+Ti)原料に対するPb原料の供給比が変化しても膜組成Pb/(Zr+Ti)=1.0が維持される供給比の範囲をいう。Pb/(Zr+Ti)が1.0からずれると、強誘電性の特性が低下するので、プロセスウィンドウが広く開かないと量産プロセスとしては採用し難い。
しかし溶液気化法ではCVDの際に大量の溶媒が存在するためか、CVD速度が低下すること、プロセスウィンドウがほとんどないことの問題点があることがわかってきた。
【0004】
この問題点に関しては、尾関ら、第49回応用物理学会講演予稿集p511(2002.3)が、Pb(dpm)/オクタン(0.1mol/l)、Zr(OtBu)/オクタン(0.1mol/l)、Ti(OiPr)/オクタン(0.1mol/l)を用いた溶液気化方式で、500、600℃のCVDを行った結果、堆積量が減少し、プロセスウィンドウがないことを報告している。
M.Miyake et al,Jpn.J.Appl.Phys.Vol.41,241(2002)は、Pb(dpm)/THF(0.05mol/l)、Zr(dibm)/THF(0.1mol/l)、Ti(OiPr)(dpm)/THF(0.1mol/l)を用いた溶液気化方式で、20Torr、550℃のCVDを行ったが、プロセスウィンドウの存在は記していない。
王谷ら、第49回応用物理学会講演予稿集p511(2002.3)は、[Pb(methd)+Zr(methd)+Ti(mpd)(methd)]/エチルシクロヘキサン(0.049,0.03,0.03mol/l)を用いた溶液気化方式で、3Torr、550℃基板温度のCVDを行った結果、膜のPb組成が溶液のPb濃度に敏感に影響されプロセスウィンドウが開かなかったことを発表している。ここでmethdは[1−(2−メトキシ)エトキシ−2,2,6,6−テトラメチル−3,5−ヘプタンジオナート]、mpdは[2−メチル−2,4−ペンタンジオキシ]を表す。
Y.−S.Park,Integrated Ferroelectrics,Vol.39,231(2001)は、Pb(dpm)/ヘプタン(0.05mol/l)、Zr(OiPr)(dpm)/ヘプタン(0.05mol/l)、Ti(OiPr)(dpm)/ヘプタン(0.05mol/l)を用いた溶液気化方式で、480〜570℃のCVDを行った結果、プロセスウィンドウが開かなかったことを開示している。
【0005】
以上述べたように、溶液気化方式のCVDでPZT膜を製造する方法において、プロセスウィンドウが開いたという報告は未だない。
【0006】
また溶液気化方式に用いられているZr原料はZr(dpm),Zr(OiPr)(dpm),Zr(OiPr)(dpm),Zr(dibm),Zr(methd)などであるが、CVDでの膜へのZrの取り込みが不安定であるという問題点があることがわかってきた。PZT膜のZr/Ti比は、PZT膜の結晶型を決め、強誘電特性を決めるので、所定の値に制御する必要がある。
Zrの取り込みが不安定であると、Zr/Ti比がふれることになり問題であった。
【0007】
Al配線が耐える温度以下でPZTの不揮発性メモリーを作れば、高集積化され、多層メタル化された半導体装置ができるので、500℃以下、好ましくは450℃以下の基板温度で薄膜を製造する方法が特開2000−58526号などで開示されている。しかしこの実施例は溶液気化方式ではなく、全く溶媒を使っていない方式である。
【0008】
Zr(OtBu)やTi(OiPr)の液体原料はバブリング供給するより液体マスフローコントローラーと気化器で気化供給するほうが、大量のガスを送れるので量産には好ましい。生の液体アルコキシドを液体マスフローコントローラーと気化器で気化供給する方式はSi(OEt)やTa(OEt)で工業化されている。しかしZr(OtBu)とTi(OiPr)の比を精度良く所定の値に維持するには、それらの供給量をそれぞれの液体マスフローコントローラーで高い精度で制御することが必要であるが、これは容易ではない。二つの液体マスフローコントローラーを使う代わりに、一つの原料容器中でZr(OtBu)とTi(OiPr)と所定の比率で混合しておけば良いのであるが、液体で混合すると瞬時にアルコキシル基の交換が起こり、析出物が生成するので、この方法は使えない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、PZT膜の量産には液体マスフローコントローラーと気化器を使った方式が好ましいので、それを容易にできる原料系と供給系を提供することである。またその方法において、できるだけ溶媒量をへらしてプロセスウィンドウが開きやすくし、Zr/Ti比が所定の値に維持でき、500℃以下の低温でも成膜できる方法を提供することである。
【0010】
【課題を解決するための手段】
本発明者は、Pb(dpm)だけを溶液にし、他のZrとTi原料は、生の揮発性の高いアルコキシドを使うこと、Ti源として、Zr(OtBu)と反応しないTi(OtBu)を使えば、一つの原料容器中に所定のZr/Ti比の混合液ができること、Pb(dpm)溶液を気化器1で気化させ、Zr(OtBu)とTi(OtBu)混合液を気化器2で気化させ、そのあとガスで合わせれば、不都合な反応が起こらなくCVDが行え、プロセスウィンドウが開くことを見出し、本発明を完成するに至った。
【0011】
本発明は、化学気相成長法によりPZT薄膜を製造する方法において、ビス(β−ジケトナート)鉛溶液を気化器1で気化させ、1つの原料容器中にあるZr(OtBu) とT i(OtBu) との所定比率の混合液を気化器2で気化させ、これら2つの気化器からのガスと酸化剤を混合し、CVD室に導き、基板温度が400〜500℃である基板上に成膜することを特徴とするPZT薄膜の製法である。
【0012】
【発明の実施の形態】
本発明に用いられるビス(β−ジケトナート)鉛としては、Pb(dpm)、[ビス(2,2,6,6−テトラメチル−3,5−オクタンジオナート)鉛]、ビス(2,2,6−トリメチル−3,5−ヘプタンジオナート)鉛、ビス(6−エチル−2,2−ジメチル−3,5−オクタンジオナート)鉛、Pb(methd)などである。好ましくは、容易に入手でき最も熱安定性の高いPb(dpm)である。
【0013】
CVD室に入る溶媒量をできるだけ少なくするために、本発明に用いられるビス(β−ジケトナート)鉛溶液の溶媒としては、高い溶解能を有し、Zr(OtBu)やTi(OtBu)と反応しにくいものであることが必要である。
これらの要求に合うものとして、THF、トルエン、酢酸ブチル、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンが挙げられる。種々の溶媒1Lに室温で溶解するPb(dpm)の質量(単位g)を表1に示す。
【0014】
【表1】

Figure 0003969206
【0015】
溶媒量をできるだけ減らすには、Pb(dpm)の溶解能の高い溶媒を使い、気化器圧力をできるだけ低くし、気化器温度をできるだけ高くすることが、望ましい。しかしPb(dpm)の低い蒸気圧と熱安定性を考慮すると、およそ200〜250℃の範囲である。
【0016】
Pb(dpm)の飽和蒸気圧は、本発明者が気体飽和法により130〜170℃で測定した結果、次のクラウジウス−クラペイロン式で表される。
Log10P=−4480/T+9.94 P:Torr、T:K)
またAr1気圧でのPb(dpm)の沸点をTG−DTAで調べると350〜359℃であった。これは蒸気圧式の外挿から求めた値361℃と良く一致しているので、式の外挿は、信頼できる。そこでPb(dpm)の飽和蒸気圧を、上式から求めると、3.0Torr/200℃、24Torr/250℃となる。
【0017】
気化器中の気体温度が完全に気化器温度になっていれば、200℃の気化器圧力10Torrとした場合、(10−3.0=)7.0Torr分の溶媒があれば、原理上は全量が気体となりうる。すなわち最小必要溶媒量は、Pb(dpm)の(7.0/3.0=)2.4倍mol量である。表1の溶媒の分子量はTHFの72から酢酸ブチルの116の間にあるので簡単のため、分子量100、密度0.8g/cmで代表させる。Pb(dpm)1molと溶媒2.4molの混合物の容積は、およそ
Pb(dpm)分+溶媒分=(574/1.52)+(240/0.8)=378+300=678ml
である。すなわちPb(dpm)濃度は1/0.678=1.47mol/lとなる。これは平衡状態の場合であり、実際には達成されないので、より多くの溶媒とより高い気化器温度が必要となる。
【0018】
以上のことから、Pb(dpm)1mol/l溶液は、気化器圧力10Torr、気化器温度250℃程度で気化できると考えられる。He,Ar,Nなどのイナートガスが共存すれば、より低い気化器温度で気化できる。また気化器圧力が5Torrと低ければ、より低い気化器温度で気化できる。もちろん気化器の構造や使用方法で、詰まりや溶媒の先飛びを起こさない工夫は必要である。
表1のTHF、トルエン、酢酸n−ブチル、シクロヘキサン、メチルシクロヘキサンであればPb(dpm)0.5mol/l程度の溶液にできるので好都合である。
【0019】
Ti(OtBu)は、融点4℃の室温で液体の化合物で、その物性はZr(OtBu)に非常によく似ている。それぞれの物性を表2に記す。
【0020】
【表2】
Figure 0003969206
【0021】
どちらも単量体であり、混合した場合、混じり合うだけで、会合することはない。物性も似ているので、完全に均一な混合液ができる。気化器直前の配管で混合しても、原料容器中で混合しても全く問題は起きない。また水分や酸素がなければ、気化器温度150℃でも熱分解することはない。
【0022】
Zr(OtBu)とTi(OtBu)とは、一つの原料容器中で所定の比で混合したものを使うのが好ましい。そうすれば、ZrとTiの混合均一性が良く、マスフローコントローラーが1基でよく、そのフロー制御の精度も少し低くても良いという利点がある。
Zr(OtBu)とTi(OtBu)との混合比は、膜組成、成膜温度、Pb(dpm)の共存などに影響されるので、あらかじめ実験により、求めておけばよい。
【0023】
PbTiOの下地層を形成後、PZTを成膜する場合には、上記Zr(OtBu)とTi(OtBu)との混合物の入った原料容器Aと、Ti(OtBu)の入った原料容器Bを、セットして使った方がよい。これであれば、マスフローコントローラーは、1基でもよく、かつ、B使用の場合でも、A使用の場合でも、その精度は少し低くてもよい。
しかし、Zr(OtBu)の入った原料容器CとTi(OtBu)の入った原料容器Bがセットされた場合、PZT成膜時には二つのマスフローコントローラーは高い精度が求められる。これは工業上避けるべきである。
【0024】
本発明では、PZT成膜の基板温度を400〜500℃とできる。Pb,Zr,Ti源が共に低温堆積可能な化合物であるので、このような低温でも良好な強誘電性を示す膜が得られる。
【0025】
CVD室の圧力は、0.001〜10Torrである。好ましくは、0.01〜3Torrである。圧力が3Torrより高いと、気化器圧力が10Torr程度に高くならざるを得ない。その結果、Pb(dpm)が気化しにくくなるので、濃度を下げ、多くの溶媒を使ったり、多くのキャリヤーガスを使ったり、より高温にせざるを得なくなる。高濃度の溶媒が存在すると、Pb/(Zr+Ti)=1のプロセスウィンドウが狭くなる。これらの欠点を除くためには、できるだけ低圧が好ましいが、あまり低くなると、成膜速度が低下する。
【0026】
酸化ガスとしては、O,O,NO,NOなどが使える。低温化にはこれらの種類の選択とプラズマなどのアシスト法を使うとよい。
【0027】
PLZTの場合も上記のことがそのまま当てはまる。La原料としては、La(dpm)、La(dibm)[トリス(ジイソブチリルメタナート)ランタン]などが使える。低温化には、後者のが好ましい。また後者の方が種々の溶媒に良く溶けるので、少ない溶媒で供給気化できる。これらのLa化合物とPb(dpm)とを所定の比で混合し一つの原料容器から供給すれば、組成の精度や均一性がよく、マスフローコントローラーが1基で2原料を送れるなどの工業的利点がある。
【0028】
【実施例】
PZT薄膜の製造
原料容器1からPb(dpm)のシクロヘキサン溶液(濃度0.5mol/l)をマスフローコントローラー1を通し、240℃の気化器1に送り、予熱したArガス300sccmとともに蒸発させ、ガス混合部に送った。原料容器2からZr(OtBu)とTi(OtBu)のモル比0.35/0.65の生の混合液0.10ml/minをマスフローコントローラー2を通し、140℃の気化器2に送り、予熱したArガス70sccmとともに蒸発させ、ガス混合部に送った。2つの気化器の圧力は成り行きで5〜7Torrであった。混合部からのPb,Zr,Ti化合物のガスと、予熱したOガス400sccmをCVD室のシャワーヘッドに導入し、Pt/SiO/Si基板上に導いた。CVD室圧力は、1.0Torrで、基板温度は480℃であった。20分成膜し200〜250nmの膜が得られた。XRD分析より、膜は正方晶のペロブスカイトであった。膜の一部を溶解し、ICP発光分光で組成分析を行った。Pb(dpm)溶液の供給速度との関係を表3に示す。
【0029】
【表3】
Figure 0003969206
【0030】
この結果から、Pb(dpm)供給速度0.50〜0.60ml/min間で、膜組成Pb/(Zr+Ti)=1.00〜1.01が達成され、プロセスウィンドウが開いたことがわかる。またZr/Tiも0.38〜0.39と一定にできたことがわかる。
【0031】
【発明の効果】
液体マスフローコントローラーと気化器を使った原料供給方式で、PZT膜を成膜する際、膜組成Pb/(Zr+Ti)=1となるプロセスウィンドウが開き、Zr/Tiが一定にできる。PZTやPLZT膜の量産に有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing PZT and PLZT thin films by chemical vapor deposition (hereinafter referred to as CVD).
[0002]
[Prior art]
PbZr 1-y Ti y O 3 (0 <y <1, hereinafter referred to as PZT) or (Pb 1-x , La x ) (Zr 1-y , Ti y ) O 3 (0 <x <1, 0 <y <1) (hereinafter referred to as PLZT) As a method for producing a thin film with high productivity, a CVD method is used. As the raw material supply system, there are a system in which each compound of Pb, Zr, Ti and La is vaporized and supplied as it is, and a system in which it is vaporized and supplied as a solution. The latter is more suitable for mass production.
[0003]
Pb supply in which the film composition becomes autonomous with Pb / (Zr + Ti) = 1 in the former type of CVD in which the respective compounds of Pb (dpm) 2 , Zr (OtBu) 4 , and Ti (OiPr) 4 are vaporized and supplied as they are. The process window opens widely. Aratani et al, Jpn. J. et al. Appl. Phys. Vol. 40, 4126 (2001). Here, the process window refers to a region of a raw material supply rate and a ratio thereof where the film composition Pb / (Zr + Ti) = 1.0. For example, it refers to the range of the supply ratio in which the film composition Pb / (Zr + Ti) = 1.0 is maintained even if the supply ratio of the Pb raw material to the (Zr + Ti) raw material changes. If Pb / (Zr + Ti) deviates from 1.0, the ferroelectric properties are deteriorated. Therefore, it is difficult to adopt as a mass production process unless the process window is wide open.
However, it has been found that the solution vaporization method has a problem that the CVD rate is lowered and there is almost no process window because a large amount of solvent is present during CVD.
[0004]
Regarding this problem, Ozeki et al., Proceedings of the 49th Japan Society of Applied Physics, p511 (2002.3), Pb (dpm) 2 / octane (0.1 mol / l), Zr (OtBu) 4 / octane (0 0.1 mol / l), Ti (OiPr) 4 / octane (0.1 mol / l) solution vaporization method, and the result of CVD at 500 and 600 ° C. As a result, the deposition amount is reduced and there is no process window Has been reported.
M.M. Miyake et al, Jpn. J. et al. Appl. Phys. Vol. 41,241 (2002), Pb (dpm) 2 /THF(0.05mol/l),Zr(dibm) 4 /THF(0.1mol/l),Ti(OiPr) 2 (dpm) 2 / THF ( In the solution vaporization method using 0.1 mol / l), CVD was performed at 20 Torr and 550 ° C., but the presence of a process window is not described.
Otani et al., The 49th JSAP Meeting Proceedings p511 (2002. 2 ), [Pb (methd) 2 + Zr (methd) 4 + Ti (mpd) (methd) 2 ] / ethylcyclohexane (0.049,0 As a result of performing CVD at 3 Torr and 550 ° C. substrate temperature with a solution vaporization method using 0.03 mol / l), the Pb composition of the film was sensitively influenced by the Pb concentration of the solution, and the process window did not open I have announced that. Here, methodd is [1- (2-methoxy) ethoxy-2,2,6,6-tetramethyl-3,5-heptanedionate], and mpd is [2-methyl-2,4-pentanedioxy]. To express.
Y. -S. Park, Integrated Ferroelectrics, Vol. 39,231 (2001) is Pb (dpm) 2 / heptane (0.05 mol / l), Zr (OiPr) 2 (dpm) 2 / heptane (0.05 mol / l), Ti (OiPr) 2 (dpm) It discloses that the process window did not open as a result of CVD at 480 to 570 ° C. in a solution vaporization method using 2 / heptane (0.05 mol / l).
[0005]
As described above, there is still no report that a process window has been opened in a method of manufacturing a PZT film by CVD using a solution vaporization method.
[0006]
Zr raw materials used in the solution vaporization method are Zr (dpm) 4 , Zr (OiPr) 2 (dpm) 2 , Zr (OiPr) (dpm) 3 , Zr (divm) 4 , Zr (methd) 4, etc. However, it has been found that there is a problem that incorporation of Zr into the film by CVD is unstable. The Zr / Ti ratio of the PZT film needs to be controlled to a predetermined value because it determines the crystal type of the PZT film and the ferroelectric characteristics.
If the Zr uptake is unstable, the Zr / Ti ratio is affected, which is a problem.
[0007]
A method of manufacturing a thin film at a substrate temperature of 500 ° C. or lower, preferably 450 ° C. or lower, since a highly integrated and multi-layered semiconductor device can be obtained by making a PZT nonvolatile memory at a temperature lower than the Al wiring can withstand. Is disclosed in Japanese Patent Laid-Open No. 2000-58526. However, this embodiment is not a solution vaporization method but a method using no solvent at all.
[0008]
The liquid raw material of Zr (OtBu) 4 or Ti (OiPr) 4 is preferable for mass production because it can send a large amount of gas by supplying it with a liquid mass flow controller and a vaporizer rather than bubbling. A method of vaporizing and supplying raw liquid alkoxide with a liquid mass flow controller and a vaporizer is industrialized with Si (OEt) 4 and Ta (OEt) 5 . However, in order to maintain the ratio of Zr (OtBu) 4 and Ti (OiPr) 4 at a predetermined value with high accuracy, it is necessary to control their supply amounts with high accuracy with the respective liquid mass flow controllers. Is not easy. Instead of using two liquid mass flow controllers, Zr (OtBu) 4 and Ti (OiPr) 4 may be mixed at a predetermined ratio in one raw material container. This method cannot be used because a precipitate is formed.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a raw material system and a supply system that can facilitate the mass production of a PZT film because a method using a liquid mass flow controller and a vaporizer is preferable. Another object of the present invention is to provide a method in which the amount of solvent is reduced as much as possible so that the process window can be easily opened, the Zr / Ti ratio can be maintained at a predetermined value, and a film can be formed even at a low temperature of 500 ° C.
[0010]
[Means for Solving the Problems]
The present inventor uses only Pb (dpm) 2 as a solution, and other Zr and Ti raw materials use raw volatile alkoxides, and Ti (OtBu) 4 which does not react with Zr (OtBu) 4 as a Ti source. 4 is used, a mixed solution having a predetermined Zr / Ti ratio can be formed in one raw material container, a Pb (dpm) 2 solution is vaporized by the vaporizer 1, and a mixed solution of Zr (OtBu) 4 and Ti (OtBu) 4 is used. When the gas was vaporized in the vaporizer 2 and then combined with gas, it was found that CVD can be performed without causing an unfavorable reaction and a process window is opened, and the present invention has been completed.
[0011]
The present invention relates to a method for producing a PZT thin film by chemical vapor deposition, in which a bis (β-diketonate) lead solution is vaporized by a vaporizer 1 and Zr (OtBu) 4 and Ti ( OtBu) 4 is mixed in a predetermined ratio with the vaporizer 2, the gas from the two vaporizers and the oxidant are mixed, led to the CVD chamber, and the substrate temperature is 400 to 500 ° C. This is a method for producing a PZT thin film characterized by forming a film.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Examples of bis (β-diketonato) lead used in the present invention include Pb (dpm) 2 , [bis (2,2,6,6-tetramethyl-3,5-octanedionate) lead], bis (2, 2,6-trimethyl-3,5-heptanedionate) lead, bis (6-ethyl-2,2-dimethyl-3,5-octanedionate) lead, Pb (methd) 2 , and the like. Pb (dpm) 2 that is easily available and has the highest thermal stability is preferable.
[0013]
In order to minimize the amount of solvent entering the CVD chamber, the solvent of the bis (β-diketonate) lead solution used in the present invention has a high solubility, such as Zr (OtBu) 4 or Ti (OtBu) 4 . It must be difficult to react.
Examples that meet these requirements include THF, toluene, butyl acetate, cyclohexane, methylcyclohexane, and ethylcyclohexane. Table 1 shows the mass (unit: g) of Pb (dpm) 2 dissolved in 1 L of various solvents at room temperature.
[0014]
[Table 1]
Figure 0003969206
[0015]
In order to reduce the amount of the solvent as much as possible, it is desirable to use a solvent having high Pb (dpm) 2 solubility, lower the vaporizer pressure as much as possible, and raise the vaporizer temperature as much as possible. However, considering the low vapor pressure and thermal stability of Pb (dpm) 2 , the range is approximately 200 to 250 ° C.
[0016]
The saturated vapor pressure of Pb (dpm) 2 is expressed by the following Clausius-Clapeyron equation as a result of measurement by the present inventors at 130 to 170 ° C. by the gas saturation method.
Log 10 P = −4480 / T + 9.94 P: Torr, T: K)
Further, when the boiling point of Pb (dpm) 2 at Ar 1 atmosphere was examined by TG-DTA, it was 350 to 359 ° C. Since this agrees well with the value 361 ° C. obtained from the extrapolation of the vapor pressure equation, the extrapolation of the equation is reliable. Accordingly, when the saturated vapor pressure of Pb (dpm) 2 is determined from the above equation, they are 3.0 Torr / 200 ° C. and 24 Torr / 250 ° C.
[0017]
If the gas temperature in the vaporizer is completely equal to the vaporizer temperature, when the vaporizer pressure is 10 Torr at 200 ° C., if there is a solvent for (10−3.0 =) 7.0 Torr, in principle The whole amount can be gaseous. That is, the minimum required amount of solvent is (7.0 / 3.0 =) 2.4 times the mol amount of Pb (dpm) 2 . Since the molecular weight of the solvent in Table 1 is between 72 in THF and 116 in butyl acetate, it is represented by a molecular weight of 100 and a density of 0.8 g / cm 3 for simplicity. The volume of the mixture of 1 mol of Pb (dpm) 2 and 2.4 mol of solvent is approximately Pb (dpm) 2 minutes + solvent content = (574 / 1.52) + (240 / 0.8) = 378 + 300 = 678 ml
It is. That is, the Pb (dpm) 2 concentration is 1 / 0.678 = 1.47 mol / l. This is an equilibrium case and is not achieved in practice, so more solvent and higher vaporizer temperatures are required.
[0018]
From the above, it is considered that the Pb (dpm) 2 1 mol / l solution can be vaporized at a vaporizer pressure of 10 Torr and a vaporizer temperature of about 250 ° C. If inert gases such as He, Ar, and N 2 coexist, vaporization can be performed at a lower vaporizer temperature. If the vaporizer pressure is as low as 5 Torr, vaporization can be performed at a lower vaporizer temperature. Of course, the structure and usage of the vaporizer must be devised to prevent clogging and solvent jumping.
The THF, toluene, n-butyl acetate, cyclohexane, and methylcyclohexane shown in Table 1 are convenient because a solution of about 0.5 mol / l Pb (dpm) 2 can be obtained.
[0019]
Ti (OtBu) 4 is a liquid compound at room temperature with a melting point of 4 ° C., and its physical properties are very similar to Zr (OtBu) 4 . Each physical property is shown in Table 2.
[0020]
[Table 2]
Figure 0003969206
[0021]
Both are monomers, and when mixed, they only mix and do not associate. Since the physical properties are similar, a completely uniform mixture can be obtained. There is no problem at all even if it is mixed in the pipe immediately before the vaporizer or mixed in the raw material container. If there is no moisture or oxygen, thermal decomposition will not occur even at a vaporizer temperature of 150 ° C.
[0022]
Zr (OtBu) 4 and Ti (OtBu) 4 are preferably mixed in a predetermined ratio in one raw material container. If it does so, there exists an advantage that the mixing uniformity of Zr and Ti is good, one mass flow controller may be sufficient, and the precision of the flow control may be a little low.
The mixing ratio of Zr (OtBu) 4 and Ti (OtBu) 4 is influenced by the film composition, the film forming temperature, the coexistence of Pb (dpm) 2 , and so forth, and may be obtained beforehand through experiments.
[0023]
When forming a PZT film after forming an underlayer of PbTiO 3 , a raw material container A containing a mixture of Zr (OtBu) 4 and Ti (OtBu) 4 and a raw material containing Ti (OtBu) 4 It is better to set and use the container B. In this case, the number of mass flow controllers may be one, and the accuracy may be a little lower when B is used or when A is used.
However, when the raw material container C containing Zr (OtBu) 4 and the raw material container B containing Ti (OtBu) 4 are set, the two mass flow controllers are required to have high accuracy during the PZT film formation. This should be avoided industrially.
[0024]
In the present invention, the substrate temperature for PZT film formation can be set to 400 to 500 ° C. Since the Pb, Zr, and Ti sources are both compounds that can be deposited at a low temperature, a film showing good ferroelectricity can be obtained even at such a low temperature.
[0025]
The pressure in the CVD chamber is 0.001 to 10 Torr. Preferably, it is 0.01 to 3 Torr. If the pressure is higher than 3 Torr, the vaporizer pressure must be increased to about 10 Torr. As a result, Pb (dpm) 2 is less likely to be vaporized, so the concentration must be lowered, a large amount of solvent, a large amount of carrier gas, or a higher temperature must be used. In the presence of a high concentration of solvent, the process window of Pb / (Zr + Ti) = 1 is narrowed. In order to eliminate these drawbacks, a low pressure is preferable as much as possible. However, if the pressure is too low, the film formation rate decreases.
[0026]
As the oxidizing gas, O 2 , O 3 , N 2 O, NO 2 or the like can be used. For lowering the temperature, it is better to select these types and use an assist method such as plasma.
[0027]
The same applies to PLZT. As the La raw material, La (dpm) 3 , La (divm) 3 [Tris (diisobutyrylmethanate) lanthanum] and the like can be used. The latter is preferred for lowering the temperature. Further, since the latter is more soluble in various solvents, it can be supplied and vaporized with less solvent. If these La compounds and Pb (dpm) 2 are mixed in a predetermined ratio and supplied from one raw material container, the composition accuracy and uniformity are good, and the mass flow controller can send two raw materials in one unit. There are advantages.
[0028]
【Example】
Manufacture of PZT thin film A cyclohexane solution of Pb (dpm) 2 (concentration 0.5 mol / l) is sent from the raw material container 1 to the vaporizer 1 at 240 ° C. through the mass flow controller 1 and evaporated together with 300 sccm of preheated Ar gas. It was sent to the mixing section. A raw mixture 0.10 ml / min of Zr (OtBu) 4 and Ti (OtBu) 4 in a molar ratio of 0.35 / 0.65 is sent from the raw material container 2 to the vaporizer 2 at 140 ° C. through the mass flow controller 2. Then, it was evaporated together with a preheated Ar gas of 70 sccm and sent to the gas mixing section. The pressure in the two vaporizers was 5-7 Torr on the way. Pb, Zr, Ti compound gas from the mixing section and 400 sccm of preheated O 2 gas were introduced into the shower head in the CVD chamber and led onto the Pt / SiO 2 / Si substrate. The CVD chamber pressure was 1.0 Torr and the substrate temperature was 480 ° C. The film was formed for 20 minutes, and a film having a thickness of 200 to 250 nm was obtained. From XRD analysis, the film was tetragonal perovskite. A part of the film was dissolved, and composition analysis was performed by ICP emission spectroscopy. Table 3 shows the relationship with the supply rate of the Pb (dpm) 2 solution.
[0029]
[Table 3]
Figure 0003969206
[0030]
From this result, it can be seen that the film composition Pb / (Zr + Ti) = 1.00 to 1.01 was achieved between the Pb (dpm) 2 supply rate of 0.50 to 0.60 ml / min, and the process window was opened. . It can also be seen that Zr / Ti can be kept constant at 0.38 to 0.39.
[0031]
【The invention's effect】
When a PZT film is formed by a raw material supply method using a liquid mass flow controller and a vaporizer, a process window in which the film composition Pb / (Zr + Ti) = 1 is opened, and Zr / Ti can be made constant. This is effective for mass production of PZT and PLZT films.

Claims (1)

化学気相成長法によりPZT薄膜を製造する方法において、ビス(β−ジケトナート)鉛溶液を気化器1で気化させ、1つの原料容器中にあるZr(OtBu)In a method for producing a PZT thin film by chemical vapor deposition, a bis (β-diketonato) lead solution is vaporized by a vaporizer 1 and Zr (OtBu) contained in one raw material container. 4 とTi(OtBu)And Ti (OtBu) 4 との所定比率の混合液を気化器2で気化させ、これら2つの気化器からのガスと酸化剤を混合し、CVD室に導き、基板温度が400〜500℃である基板上に成膜することを特徴とするPZT薄膜の製法。The gas mixture from the two vaporizers and the oxidant are mixed, led to the CVD chamber, and formed on a substrate having a substrate temperature of 400 to 500 ° C. A process for producing a PZT thin film characterized by the above.
JP2002182207A 2002-05-20 2002-05-20 Production of PZT thin films by chemical vapor deposition Expired - Fee Related JP3969206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182207A JP3969206B2 (en) 2002-05-20 2002-05-20 Production of PZT thin films by chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182207A JP3969206B2 (en) 2002-05-20 2002-05-20 Production of PZT thin films by chemical vapor deposition

Publications (2)

Publication Number Publication Date
JP2003342730A JP2003342730A (en) 2003-12-03
JP3969206B2 true JP3969206B2 (en) 2007-09-05

Family

ID=29774082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182207A Expired - Fee Related JP3969206B2 (en) 2002-05-20 2002-05-20 Production of PZT thin films by chemical vapor deposition

Country Status (1)

Country Link
JP (1) JP3969206B2 (en)

Also Published As

Publication number Publication date
JP2003342730A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
US6869638B2 (en) Source reagent compositions for CVD formation of gate dielectric thin films using amide precursors and method of using same
Jones et al. Some recent developments in the chemical vapour deposition of electroceramic oxides
US5656329A (en) Chemical vapor deposition of metal oxide films through ester elimination reactions
KR101138130B1 (en) Metal compound, material for forming thin film and method for preparing thin film
US6787186B1 (en) Method of controlled chemical vapor deposition of a metal oxide ceramic layer
JP4212774B2 (en) Low temperature CVD method for forming a ferroelectric film using Bi alkoxide
JP3499804B2 (en) Method for growing metal oxide thin film on substrate
WO2010123531A1 (en) Zirconium precursors useful in atomic layer deposition of zirconium-containing films
JP4007573B2 (en) Deposition of MOCVD ferroelectrics and dielectric thin films using mixed solvents
KR101372162B1 (en) Method for making oriented tantalum pentoxide films
US5688979A (en) Organometallic zirconium precursor, in-situ synthesis thereof, lead-titanium based thin film using the same, and preparation method therefor
JP3969206B2 (en) Production of PZT thin films by chemical vapor deposition
EP0963458B1 (en) Process for low temperature cvd using bi-carboxylates
US5952047A (en) CVD precursors and film preparation method using the same
JP2004256510A (en) Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same
JP3793118B2 (en) Lanthanum complex and method for producing BLT film using the same
JPH0967197A (en) Production of thin ferroelectric film of bismuth titanate
JP4451050B2 (en) Zirconium raw material for CVD and method for producing lead zirconate titanate thin film using the same
KR100399606B1 (en) Method for the preparation of a pzt thin layer by a metal organic chemical vapor deposition
JP4120321B2 (en) Titanium complex for chemical vapor deposition and method for producing PZT thin film using the same
EP1734151A1 (en) A method and system for metalorganic chemical vapour deposition (MOCVD) and annealing of lead germanite (PGO) thin films films
KR100480501B1 (en) Process for the formation of pzt thin film by metal-organic chemical vapor deposition
JP2747442B2 (en) Lead-based organometallic precursor and method for producing the same
JP3503790B2 (en) Method for producing Bi layer structure ferroelectric thin film
KR100297668B1 (en) Method for forming metal oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees