JP2004256510A - Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same - Google Patents

Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same Download PDF

Info

Publication number
JP2004256510A
JP2004256510A JP2003099749A JP2003099749A JP2004256510A JP 2004256510 A JP2004256510 A JP 2004256510A JP 2003099749 A JP2003099749 A JP 2003099749A JP 2003099749 A JP2003099749 A JP 2003099749A JP 2004256510 A JP2004256510 A JP 2004256510A
Authority
JP
Japan
Prior art keywords
bismuth
solution
thin film
tol
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099749A
Other languages
Japanese (ja)
Inventor
Koichi Furuyama
晃一 古山
Yuzo Tazaki
雄三 田▲崎▼
Koji Yoda
孝次 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYOSHIMA SEISAKUSHO KK
Toshima Manufacturing Co Ltd
Original Assignee
TOYOSHIMA SEISAKUSHO KK
Toshima Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYOSHIMA SEISAKUSHO KK, Toshima Manufacturing Co Ltd filed Critical TOYOSHIMA SEISAKUSHO KK
Priority to JP2003099749A priority Critical patent/JP2004256510A/en
Priority to TW093104324A priority patent/TW200502242A/en
Priority to PCT/IT2004/000084 priority patent/WO2004076712A1/en
Publication of JP2004256510A publication Critical patent/JP2004256510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/94Bismuth compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Abstract

<P>PROBLEM TO BE SOLVED: To provide a source solution for bismuth compound that can reduce the use of the solvent in the formation of bismuth-containing thin film through the chemical vaporization deposition (CVD) process and can give the thin film of good flatness over a wide range of the substrate temperature. <P>SOLUTION: As a solute for the source solution, is selected tri(p-tolyl) bismuth represented by the structural formula. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、化学的気相成長(CVD)法により薄膜作製の際に用いられる原料に関する。詳しくは溶液気化CVD法において、使用する溶媒を少なくすることができ、かつ表面の平坦なビスマス含有薄膜を得ることができるビスマス化合物を用いた溶液気化CVD用原料溶液に関する。
【0002】
【従来の技術】一般にCVD法による薄膜作製における原料蒸気の供給は、GaAs薄膜におけるトリメチルガリウムやSiO薄膜におけるテトラエトキシシランのように原料に常温で液体の材料を用い、それに原料蒸気を成膜室まで同伴させるためのキャリアガスをバブリングさせる方法により行われているが、原料が固体である場合はバブリング法の適用が不可能であり、蒸気供給速度の不安定な昇華法により原料蒸気を発生させなければならなかった。
【0003】そこで、固体原料をテトラヒドロフラン、酢酸ブチル、トルエン、などの有機溶媒に一定濃度で溶解し、それを液体流量計によって流量制御しながら高温の気化器内に送り込み、全量を気化させることによって一定の原料蒸発量を得ることのできる溶液気化CVD法が用いられている。現在、複合酸化物薄膜の作製は特開平07−268634、特開平11−323558等に示されるように溶液気化CVD法が主流になっている。
【0004】現在、強誘電体メモリのキャパシタ膜用として最も研究が進んでいるのはチタン酸ジルコン酸鉛(PZT)であるが、繰り返し電圧をかけることにより、誘電分極値の減少(分極疲労)が起こるという問題がある。そこで、分極疲労の起こりにくいタンタル酸ビスマスストロンチウム(SBT)やチタン酸ビスマスランタン(BLT)のようなビスマス層状ペロブスカイト型の複合酸化物材料をキャパシタ膜に適用することが検討されている。
【0005】SBT薄膜やBLT薄膜のCVD法による成膜においては、使用されている原料のほとんどが固体であるため、溶液気化CVD法が採用されている。これまで、実際に使用が検討されたビスマス化合物としては、トリフェニルビスマス(BiPh)、トリメチルビスマス(BiMe)、トリオルトトリルビスマス(Bi(o−Tol))、トリオルトエチルフェニルビスマス(Bi(o−EtPh))、トリターシャリーペンチルオキシビスマス(Bi(Ot−C11、トリメトキシメチルプロポキシビスマス(Bi(MMP))などが挙げられる。
【0006】
【発明が解決しようとする課題】溶液気化CVD法では各原料の混合比率によって、膜の組成を制御できるが、膜の組成は原料の供給比率とは必ずしも一致せず、また、基板温度の変化などによっても膜組成が変化してしまうという問題がある。その原因としては、各原料の分解の活性化エネルギーが異なることや、原料同士の液相中及び気相中における相互反応などが挙げられる。
【0007】各原料の分解の活性化エネルギーが異なることは、膜表面の平坦性にも悪影響を及ぼす。すなわち、ある基板温度において最も活性化エネルギーが低い原料の分解が気相で起こりやすくなるために、その分解生成物が気相で粒成長し、大きな粒となって基板上に到達し、膜表面の平坦性が失われてしまう。
【0008】このような現象を抑制する方法として、基板温度を低下させることが考えられるが、基板温度が低下すると分解の活性化エネルギーの高い原料から供給される金属が基板に堆積する量が減少し、時には、全く堆積しないこともある。
【0009】これまで、SBT薄膜やBLT薄膜を作製しようとした場合に使用されていたビスマスのCVD原料は、他の金属の原料すなわちSBTの場合ストロンチウムやタンタルのCVD原料、BLTの場合ランタン、チタンのCVD原料と比較して酸化分解の活性化エネルギーの低いものが多く、組成の制御がなされ、かつ優れた平坦性をもつ膜の得られる成膜条件が見つけられないか、非常に限られた範囲でしか存在しないという問題があった。
【0010】また、複数の金属を含む膜を作製する場合に、原料となる金属有機化合物の溶液を別々の液として調製せず、すべての原料を1つの溶液にして使用する方法が成膜装置の簡略化に有効であるが、従来使用されていたビスマス化合物の中には、他の金属有機化合物と混合すると反応が起こり、瞬時にもしくは徐々に沈殿が生成して溶液中の組成が変化してしまうものがあった。
【0011】特許2982929号に示されているBi(o−Tol)は溶液中での他の原料との反応もなく、酸化分解の活性化エネルギーが高く、平坦性に優れたSBT薄膜やBLT薄膜が得られる。しかし、溶媒への溶解度が低いため、溶液気化CVD法に適用すると多量の溶媒が必要となるという問題があった。溶媒の使用量を減らすために溶解度ぎりぎりの原料溶液を調製して使用すると、原料溶液が気化室に導入される直前に溶媒の一部が気化してしまうため、溶けていた原料が析出して配管に詰まりが生じるという問題が発生する。
【0012】従って、本発明は溶液気化CVD法によるビスマス含有薄膜の作製において溶媒への溶解性が高く、かつ分解の活性化エネルギーの高いビスマス化合物を溶質としたCVD原料溶液を提供することを目的とする。
【0013】
【課題を解決するための手段】本発明者らは、これまでCVD原料として使用されてきたアリールビスマス、アルキルビスマス、アルコキシビスマスの中から、さらに広い範囲で探索したところトリパラトリルビスマス(Bi(p−Tol))がBi(o−Tol)よりも酸化分解しにくくかつ溶媒への溶解性も高いビスマス化合物であることを見いだした。
【0014】Bi(p−Tol)がBi(o−Tol)よりも酸化分解しにくいことは示差熱分析(DTA)によって見いだした。すなわち、アルゴンフロー中及び乾燥空気フロー中のDTA測定を行い、その差が生じる温度に着目した。差が生じる温度わかりやすいように、図1および2にBi(p−Tol)とBi(o−Tol)のDTAの微分(dDTA/dT)を示した。
【0015】dDTA/dTを見ると、Bi(o−Tol)の210℃付近から酸化によると思われる発熱が観測された。一方、Bi(p−Tol)では250℃付近から差が生じ始めており、Bi(o−Tol)に比べ約40℃高くなっていることから、酸素に対する安定性がより高いことがわかった。
【0016】また、一般に溶液気化CVD法原料溶液に用いられる溶媒に対する溶解度は、表1に示したようにBi(p−Tol)の方がBi(o−Tol)よりも高くなった。

Figure 2004256510
【0017】さらにBi(p−Tol)の溶液を原料として、実際に溶液気化MOCVD装置を用いて、さまざまなビスマス含有薄膜を作製したところ、Bi(o−Tol)を用いた場合と同様、広い基板温度範囲で表面の平坦な膜が得られたことから、上記目的を達成することが出来た。
【0018】
【発明の実施の形態】本発明における実施の形態を以下に詳細に説明する。まず、Bi(p−Tol)を、有機溶媒に例えば0.05〜1mol/lの濃度で溶解させる。最適な濃度は溶媒の種類と溶液気化CVD装置の気化器の構造や方式により選択される。溶媒には例えばテトラヒドロフラン、酢酸ブチル、トルエンなどのBi(p−Tol)と反応が起こらないものが選択される。
【0019】また、複数の金属を含む膜を作製する場合に、同じ溶液の中にBi(p−Tol)と他の金属のCVD原料を混合し、原料溶液を1つにすることもできる。この時の他の金属のCVD原料にはβ−ジケトン錯体、金属アルコキシド、有機金属などが使用できる。各CVD原料の混合比率は目的膜の組成とは必ずしも同じではなく、成膜条件、装置構造に応じて最適なものが選択される。
【0020】上記のようにして調製したBi(p−Tol)を含む溶液を使用してビスマス含有薄膜を作製するには、例えば図3に示したような溶液気化CVD装置を用いることが出来る。原料容器にBi(p−Tol)を含む原料溶液を充填して溶液気化CVD装置に取り付け、気化器温度を例えば150〜300℃に設定し、原料溶液供給流量を例えば0.1〜1ml/minとして気化器に供給する。原料溶液は供給された全量が気化し、反応室にArなどの不活性ガスをキャリアガスに用いて送り込まれる。酸化ガスとしては、例えば酸素が使用できる。反応室の圧力は0.1〜50torrに保ち、反応室内に設置した基板を400〜850℃に加熱しておくと基板上にビスマス含有薄膜が形成できる。
【0022】
反応室の方式は反応の励起方法により熱CVD、光CVD、プラズマCVDなどが一般に挙げられるが、どの方法でも採用することができる。
【0023】また、本発明に係るビスマス含有薄膜としては、酸化ビスマス、チタン酸ビスマス、チタン酸ビスマスランタン、チタン酸ビスマスネオジム、ビスマス添加イットリウム鉄ガーネット、ビスマスストロンチウムカルシウム銅酸化物、タンタル酸ビスマスストロンチウム、ニオブ酸ビスマスストロンチウム、ケイ酸ビスマス、などが挙げられる。
【0024】
【実施例1】(溶液の調製)Bi(p−Tol)4.82gを酢酸ブチルに、9.65gをトルエンに、14.47gをテトラヒドロフランにそれぞれ溶解して100mlとし、それぞれ0.1mol/l,0.2mol/l,0.3mol/lの溶液とした。また比較例としてBi(o−Tol)4.82gを酢酸ブチルに、9.65gをトルエンに、14.47gをテトラヒドロフランにそれぞれ溶解して100mlとし、それぞれ0.1mol/l,0.2mol/l,0.3mol/lの溶液とした。
【0025】(薄膜の作製)図3に示した溶液気化CVD装置を用い、原料溶液流量0.3ml/min、気化器温度250℃、反応圧力6torr、基板温度700℃、Arキャリアガス流量200ml/min、酸素流量100ml/minの条件で2cm角のSi基板上にBi膜を10分間生成させた。その結果、Bi(p−Tol)の0.1mol/l酢酸ブチル溶液、0.2mol/lトルエン溶液、0.3mol/lテトラヒドロフラン溶液を原料溶液に用いた場合は、膜厚がそれぞれ120nm、230nm、350nmのBi膜が得られた。しかし、Bi(o−Tol)の0.1mol/l酢酸ブチル溶液、0.2mol/lトルエン溶液、0.3mol/lテトラヒドロフラン溶液を原料溶液に用いた場合は、それぞれ4分、5分、2分で気化器につまりが発生して原料溶液が流れなくなり、成膜が不可能となった。
【0026】
【実施例2】(混合溶液の調製)Bi(p−Tol)4.82gとビス[ジピバロイルメタナト]ジイソプロポキシチタン(Ti(O−P(DPM))2.66gをトルエン中に溶解し100mlとした。比較例としてBi(o−Tol)4.82gとTi(O−P(DPM)2.66gをトルエン中に溶解し100mlとしたものを調製した。
【0027】(薄膜の作製)上記のようにして調製した混合溶液を用い、基板温度を400〜700℃の範囲で50℃おきに変化させ、基板に白金を用いた以外は実施例1と同様の条件で成膜した。ビスマス原料にBi(p−Tol)を用いて得られた簿膜はBi(o−Tol)を用いた場合と同様な表面の平坦性を持っていた。図4,5に基板温度550℃の膜の原子間力顕微鏡(AFM)像を示した。またX線回折法により膜の同定を行ったところ、どちらの原料溶液を用いた場合も基板温度550℃以上でチタン酸ビスマス(BiTi12)薄膜が得られた。基板温度が500℃以下の場合は650℃で熱処理することによりBiTi12薄膜となった。
【0028】
【発明の効果】以上のように、溶液気化CVD法によるビスマス含有薄膜作製において、ビスマス原料として本発明のBi(p−Tol)含有溶液を用いれば、溶媒の使用量を減らすことができ、気化器において詰まりが発生しない温度範囲が広くなり、かつ広い基板温度領域で平坦な膜が安定して得られることから、一定の品質を持つビスマス含有薄膜を安価に提供することができる。
【図面の簡単な説明】
【図1】Bi(p−Tol)のアルゴン気流中及び乾燥空気気流中における示差熱分析(DTA)データの微分(dDTA/dT)を示した図である。
【図2】Bi(o−Tol)のアルゴン気流中及び乾燥空気気流中における示差熱分析(DTA)データの微分(dDTA/dT)を示した図である。
【図3】溶液気化CVD装置の一例を示した図である。
【図4】Bi(p−Tol)含有溶液を用いて基板温度550℃で作製したBiTi12膜のAFM像である。
【図5】Bi(o−Tol)含有溶液を用いて基板温度550℃で作製したBiTi12膜のAFM像である。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material used for producing a thin film by a chemical vapor deposition (CVD) method. More specifically, the present invention relates to a solution vapor CVD source material solution using a bismuth compound that can reduce the amount of a solvent used and obtain a bismuth-containing thin film having a flat surface in a solution vaporization CVD method.
[0002]
Supply BACKGROUND OF THE INVENTION material vapor in the general thin film formation by CVD method, a material liquid at room temperature in the raw material as tetraethoxysilane in trimethyl gallium and SiO 2 thin film in GaAs thin film, deposited material vapors It is carried out by bubbling a carrier gas for entrainment to the chamber.However, if the raw material is solid, the bubbling method cannot be applied, and the raw material vapor is generated by the sublimation method with an unstable vapor supply rate. I had to let it.
[0003] Therefore, the solid raw material is dissolved in an organic solvent such as tetrahydrofuran, butyl acetate, and toluene at a constant concentration, and is sent into a high-temperature vaporizer while controlling the flow rate with a liquid flow meter to vaporize the entire amount. A solution vaporization CVD method capable of obtaining a constant raw material evaporation amount is used. At present, the production of composite oxide thin films is mainly performed by the solution vaporization CVD method as shown in JP-A-07-268634 and JP-A-11-323558.
At present, lead zirconate titanate (PZT) has been most studied for use as a capacitor film of a ferroelectric memory, but the dielectric polarization value is reduced (polarization fatigue) by repeatedly applying a voltage. There is a problem that occurs. Therefore, application of a bismuth layered perovskite-type composite oxide material such as bismuth strontium tantalate (SBT) or bismuth lanthanum titanate (BLT), which does not easily cause polarization fatigue, to the capacitor film is being studied.
[0005] In the deposition of SBT thin films and BLT thin films by the CVD method, since most of the raw materials used are solid, a solution vaporization CVD method is employed. Previously, as actually bismuth compound used is considered, triphenyl bismuth (BiPh 3), trimethyl bismuth (Bime 3), trio belt tolyl bismuth (Bi (o-Tol) 3 ), trio belt ethylphenyl bismuth ( Bi (o-EtPh) 3 ), tritertiary pentyloxybismuth (Bi (Ot—C 5 H 11 ) 3 ), trimethoxymethylpropoxybismuth (Bi (MMP) 3 ) and the like.
[0006]
In the solution vaporization CVD method, the composition of the film can be controlled by the mixing ratio of each raw material. However, the composition of the film does not always match the supply ratio of the raw material, and the change in the substrate temperature. There is also a problem that the film composition changes due to such factors. The causes include different activation energies of decomposition of the respective raw materials, and mutual reactions between the raw materials in a liquid phase and a gas phase.
The fact that the activation energies for decomposition of the respective raw materials are different has an adverse effect on the flatness of the film surface. That is, since the decomposition of the raw material having the lowest activation energy tends to occur in the gas phase at a certain substrate temperature, the decomposition product grows in the gas phase and grows into large particles to reach the substrate, and the film surface Loses its flatness.
As a method of suppressing such a phenomenon, it is conceivable to lower the substrate temperature. However, when the substrate temperature is lowered, the amount of metal supplied from a raw material having high activation energy for decomposition is reduced. And sometimes it does not deposit at all.
Hitherto, bismuth CVD raw materials which have been used for producing SBT thin films and BLT thin films are raw materials of other metals, that is, strontium and tantalum for SBT, and lanthanum and titanium for BLT. Many have low activation energy of oxidative decomposition compared to CVD raw materials, and the film formation conditions that can control the composition and obtain a film with excellent flatness cannot be found or are very limited. There was a problem that it exists only in the range.
When a film containing a plurality of metals is formed, a method in which all the raw materials are used as one solution without using a solution of the metal organic compound as a raw material as separate liquids is used. However, some bismuth compounds that have been used in the past have a reaction when mixed with other metal-organic compounds, causing instant or gradual precipitation to change the composition of the solution. There was something that would go wrong.
Bi (o-Tol) 3 disclosed in Japanese Patent No. 2982929 is an SBT thin film or BLT which has no reaction with other raw materials in a solution, has high activation energy for oxidative decomposition, and has excellent flatness. A thin film is obtained. However, since it has low solubility in a solvent, there is a problem that a large amount of solvent is required when applied to a solution vaporization CVD method. When preparing and using a raw material solution at the very limit of solubility in order to reduce the amount of solvent used, part of the solvent is vaporized immediately before the raw material solution is introduced into the vaporization chamber, so that the dissolved raw material precipitates out. There is a problem that the pipe is clogged.
Accordingly, an object of the present invention is to provide a CVD raw material solution using a bismuth compound having a high solubility in a solvent and a high activation energy for decomposition in the production of a bismuth-containing thin film by a solution vaporization CVD method. And
[0013]
DISCLOSURE OF THE INVENTION The present inventors have searched for a wider range of aryl bismuth, alkyl bismuth, and alkoxy bismuth which have been used as CVD raw materials, and found that triparatolyl bismuth (Bi (p -Tol) 3 ) was found to be a bismuth compound that is less susceptible to oxidative degradation than Bi (o-Tol) 3 and has higher solubility in solvents.
It was found by differential thermal analysis (DTA) that Bi (p-Tol) 3 was less susceptible to oxidative degradation than Bi (o-Tol) 3 . That is, DTA measurements were performed in an argon flow and a dry air flow, and attention was paid to the temperature at which the difference occurred. 1 and 2 show the derivative of DTA (dDTA / dT) of Bi (p-Tol) 3 and Bi (o-Tol) 3 so that the temperature at which the difference occurs can be easily understood.
Looking at dDTA / dT, heat generation at about 210 ° C. of Bi (o-Tol) 3 was considered due to oxidation. On the other hand, in Bi (p-Tol) 3 , a difference began to occur around 250 ° C., which was about 40 ° C. higher than Bi (o-Tol) 3 , indicating that the stability to oxygen was higher. .
As shown in Table 1, the solubility of Bi (p-Tol) 3 in Bi (p-Tol) 3 was higher than that of Bi (o-Tol) 3 , as shown in Table 1.
Figure 2004256510
Further, using a solution of Bi (p-Tol) 3 as a raw material, various bismuth-containing thin films were actually produced using a solution vaporized MOCVD apparatus, and the same as in the case of using Bi (o-Tol) 3 The above object was achieved because a film having a flat surface was obtained over a wide substrate temperature range.
[0018]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail below. First, Bi (p-Tol) 3 is dissolved in an organic solvent at a concentration of, for example, 0.05 to 1 mol / l. The optimum concentration is selected depending on the type of the solvent and the structure and method of the vaporizer of the solution vaporization CVD apparatus. As the solvent, for example, a solvent that does not react with Bi (p-Tol) 3 such as tetrahydrofuran, butyl acetate, and toluene is selected.
When preparing a film containing a plurality of metals, Bi (p-Tol) 3 and another metal CVD material may be mixed in the same solution to make one material solution. . At this time, a β-diketone complex, a metal alkoxide, an organic metal, or the like can be used as a CVD raw material of another metal. The mixing ratio of each CVD raw material is not always the same as the composition of the target film, and an optimum one is selected according to the film forming conditions and the structure of the apparatus.
In order to prepare a bismuth-containing thin film using the solution containing Bi (p-Tol) 3 prepared as described above, for example, a solution vaporization CVD apparatus as shown in FIG. 3 can be used. . A raw material container is filled with a raw material solution containing Bi (p-Tol) 3 and attached to a solution vaporization CVD apparatus, a vaporizer temperature is set to, for example, 150 to 300 ° C., and a raw material solution supply flow rate is, for example, 0.1 to 1 ml /. Min is supplied to the vaporizer. The entire supplied amount of the raw material solution is vaporized, and is sent into the reaction chamber using an inert gas such as Ar as a carrier gas. As the oxidizing gas, for example, oxygen can be used. When the pressure in the reaction chamber is maintained at 0.1 to 50 torr and the substrate placed in the reaction chamber is heated to 400 to 850 ° C., a bismuth-containing thin film can be formed on the substrate.
[0022]
The method of the reaction chamber generally includes thermal CVD, optical CVD, plasma CVD and the like depending on the method of exciting the reaction, but any method can be adopted.
The bismuth-containing thin film according to the present invention includes bismuth oxide, bismuth titanate, bismuth lanthanum titanate, bismuth neodymium titanate, bismuth-added yttrium iron garnet, bismuth strontium calcium copper oxide, bismuth strontium tantalate, Bismuth strontium niobate, bismuth silicate, and the like.
[0024]
Example 1 (Preparation of solution) 4.82 g of Bi (p-Tol) 3 was dissolved in butyl acetate, 9.65 g in toluene, and 14.47 g in tetrahydrofuran to make 100 ml, and 0.1 mol / mol each. 1, 0.2 mol / l and 0.3 mol / l solutions. As a comparative example, 4.82 g of Bi (o-Tol) 3 was dissolved in butyl acetate, 9.65 g was dissolved in toluene, and 14.47 g was dissolved in tetrahydrofuran to make 100 ml, each of which was 0.1 mol / l and 0.2 mol / l. 1, 0.3 mol / l solution.
(Preparation of Thin Film) Using a solution vaporization CVD apparatus shown in FIG. 3, a raw material solution flow rate of 0.3 ml / min, a vaporizer temperature of 250 ° C., a reaction pressure of 6 torr, a substrate temperature of 700 ° C., and an Ar carrier gas flow rate of 200 ml / min. A Bi 2 O 3 film was formed on a 2 cm square Si substrate for 10 minutes under the conditions of min and an oxygen flow rate of 100 ml / min. As a result, when a 0.1 mol / l butyl acetate solution, a 0.2 mol / l toluene solution, and a 0.3 mol / l tetrahydrofuran solution of Bi (p-Tol) 3 were used as a raw material solution, the film thickness was 120 nm, respectively. 230 nm and 350 nm Bi 2 O 3 films were obtained. However, when a 0.1 mol / l butyl acetate solution, a 0.2 mol / l toluene solution, and a 0.3 mol / l tetrahydrofuran solution of Bi (o-Tol) 3 were used for the raw material solution, 4 minutes, 5 minutes, In 2 minutes, clogging occurred in the vaporizer, the raw material solution stopped flowing, and film formation was impossible.
[0026]
Example 2 (mixed solution of Preparation) Bi (p-Tol) 3 4.82g and bis [dipivaloylmethanate] diisopropoxytitanium (Ti (O i -P r) 2 (DPM) 2) 2 .66 g was dissolved in toluene to make up to 100 ml. The Bi (o-Tol) 3 4.82g and Ti (O i -P r) 2 (DPM) 2 2.66g as a comparative example was prepared which was 100ml was dissolved in toluene.
(Preparation of Thin Film) Same as Example 1 except that the mixed solution prepared as described above was used, and the substrate temperature was changed in the range of 400 to 700 ° C. every 50 ° C., and platinum was used for the substrate. The film was formed under the following conditions. The thin film obtained by using Bi (p-Tol) 3 as the bismuth raw material had the same surface flatness as when Bi (o-Tol) 3 was used. 4 and 5 show an atomic force microscope (AFM) image of the film at a substrate temperature of 550 ° C. When the films were identified by the X-ray diffraction method, a bismuth titanate (Bi 4 Ti 3 O 12 ) thin film was obtained at a substrate temperature of 550 ° C. or higher in both cases using the raw material solutions. When the substrate temperature was 500 ° C. or lower, a heat treatment was performed at 650 ° C. to form a Bi 4 Ti 3 O 12 thin film.
[0028]
As described above, the use of the Bi (p-Tol) 3 -containing solution of the present invention as a bismuth raw material in the production of a bismuth-containing thin film by the solution vaporization CVD method can reduce the amount of the solvent used. Since the temperature range in which clogging does not occur in the vaporizer is widened and a flat film is stably obtained in a wide substrate temperature range, a bismuth-containing thin film having a constant quality can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing the differential (dDTA / dT) of differential thermal analysis (DTA) data of Bi (p-Tol) 3 in an argon gas stream and a dry air stream.
FIG. 2 is a diagram showing the differential (dDTA / dT) of differential thermal analysis (DTA) data of Bi (o-Tol) 3 in an argon stream and a dry air stream.
FIG. 3 is a diagram illustrating an example of a solution vaporization CVD apparatus.
FIG. 4 is an AFM image of a Bi 4 Ti 3 O 12 film formed at a substrate temperature of 550 ° C. using a Bi (p-Tol) 3 containing solution.
FIG. 5 is an AFM image of a Bi 4 Ti 3 O 12 film formed at a substrate temperature of 550 ° C. using a Bi (o-Tol) 3 containing solution.

Claims (2)

溶液気化CVD法によるビスマス含有薄膜作製に用いられる原料
溶液であり、溶質として下記
【化1】の構造式で示されるトリパラトリルビスマスを用いることを特徴とするビスマス化合物溶液
Figure 2004256510
Bismuth compound solution characterized by using triparatolyl bismuth represented by the following structural formula as a solute, which is a raw material solution used for producing a bismuth-containing thin film by a solution vaporization CVD method.
Figure 2004256510
請求項1記載のビスマス化合物溶液を溶液気化CVD法の原料溶液として用いることを特徴とするビスマス含有薄膜の製造方法A method for producing a bismuth-containing thin film, comprising using the bismuth compound solution according to claim 1 as a raw material solution for a solution vaporization CVD method.
JP2003099749A 2003-02-26 2003-02-26 Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same Pending JP2004256510A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003099749A JP2004256510A (en) 2003-02-26 2003-02-26 Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same
TW093104324A TW200502242A (en) 2003-02-26 2004-02-20 Bismuth precursor solution used for the CVD method and preparation method of a bismuth containing thin film using thereof
PCT/IT2004/000084 WO2004076712A1 (en) 2003-02-26 2004-02-24 Bismuth precursor solution for use in a cvd process and deposition process of a bismuth containing thin film using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099749A JP2004256510A (en) 2003-02-26 2003-02-26 Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same

Publications (1)

Publication Number Publication Date
JP2004256510A true JP2004256510A (en) 2004-09-16

Family

ID=32923693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099749A Pending JP2004256510A (en) 2003-02-26 2003-02-26 Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same

Country Status (3)

Country Link
JP (1) JP2004256510A (en)
TW (1) TW200502242A (en)
WO (1) WO2004076712A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108230A (en) * 2004-10-01 2006-04-20 Utec:Kk Gasifier for cvd, solution vaporizing cvd apparatus and vaporization method for cvd
JP2008311643A (en) * 2007-06-13 2008-12-25 Samsung Electronics Co Ltd Field effect transistor and logic circuit utilizing ambipolar material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059237A2 (en) * 2007-10-31 2009-05-07 Advanced Technology Materials, Inc. Novel bismuth precursors for cvd/ald of thin films
US8330136B2 (en) 2008-12-05 2012-12-11 Advanced Technology Materials, Inc. High concentration nitrogen-containing germanium telluride based memory devices and processes of making
TW201132787A (en) 2010-03-26 2011-10-01 Advanced Tech Materials Germanium antimony telluride materials and devices incorporating same
US9190609B2 (en) 2010-05-21 2015-11-17 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313097A (en) * 1997-05-13 1998-11-24 Sharp Corp Ferroelectric thin film, manufacture thereof, and device provided therewith
US6120846A (en) * 1997-12-23 2000-09-19 Advanced Technology Materials, Inc. Method for the selective deposition of bismuth based ferroelectric thin films by chemical vapor deposition
WO2000034550A2 (en) * 1998-12-09 2000-06-15 Infineon Technologies Ag Cvd processes using bi aryl

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108230A (en) * 2004-10-01 2006-04-20 Utec:Kk Gasifier for cvd, solution vaporizing cvd apparatus and vaporization method for cvd
JP2008311643A (en) * 2007-06-13 2008-12-25 Samsung Electronics Co Ltd Field effect transistor and logic circuit utilizing ambipolar material

Also Published As

Publication number Publication date
WO2004076712A1 (en) 2004-09-10
TW200502242A (en) 2005-01-16

Similar Documents

Publication Publication Date Title
TWI393803B (en) Method and apparatus for using solution based precursors for atomic layer deposition
KR100343822B1 (en) Tantalum and niobium reagents useful in chemical vapor deposition processes, and process for depositing coatings using the same
US6238734B1 (en) Liquid precursor mixtures for deposition of multicomponent metal containing materials
TWI398543B (en) Atomic layer deposition systems and methods including metal beta-diketiminate compounds
KR100468847B1 (en) Chemical vapor deposition method using alcohols for forming metal-oxide thin film
JP4861550B2 (en) Alkane / polyamine solvent composition for liquid fed CVD
KR100295870B1 (en) Manufacturing method of BI layer structure ferroelectric thin film
US6214105B1 (en) Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition
US6444264B2 (en) Method for liquid delivery CVD utilizing alkane and polyamine solvent compositions
JP2004256510A (en) Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same
JP3488007B2 (en) Thin film forming method, semiconductor device and manufacturing method thereof
JPH08124798A (en) Zirconium(zr)organic metal precursor and preparation thereof
US5952047A (en) CVD precursors and film preparation method using the same
JP2009040707A (en) Raw material for forming thin film and method for producing thin film
JP4595356B2 (en) Raw material vaporizer for metalorganic chemical vapor deposition equipment
JP3793118B2 (en) Lanthanum complex and method for producing BLT film using the same
JPH10324970A (en) Raw material for cvd and film-forming method using the same
JP4451050B2 (en) Zirconium raw material for CVD and method for producing lead zirconate titanate thin film using the same
EP1734151A1 (en) A method and system for metalorganic chemical vapour deposition (MOCVD) and annealing of lead germanite (PGO) thin films films
JP2004026763A (en) Organotitanium compound, solution raw material containing the same and titanium-containing dielectric thin film prepared therefrom
KR100480501B1 (en) Process for the formation of pzt thin film by metal-organic chemical vapor deposition
KR100399606B1 (en) Method for the preparation of a pzt thin layer by a metal organic chemical vapor deposition
JP3106988B2 (en) Thin film forming solution and thin film forming method
JP2747442B2 (en) Lead-based organometallic precursor and method for producing the same
KR20040014266A (en) Organozirconium Composite and Method of Synthesizing the Same, Raw Material Solution Containing the Same, and Method of Forming Lead Zirconate Titanate Thin Film