JP3967879B2 - Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same - Google Patents

Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same Download PDF

Info

Publication number
JP3967879B2
JP3967879B2 JP2000349060A JP2000349060A JP3967879B2 JP 3967879 B2 JP3967879 B2 JP 3967879B2 JP 2000349060 A JP2000349060 A JP 2000349060A JP 2000349060 A JP2000349060 A JP 2000349060A JP 3967879 B2 JP3967879 B2 JP 3967879B2
Authority
JP
Japan
Prior art keywords
copper
plating solution
plating
copper plating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000349060A
Other languages
Japanese (ja)
Other versions
JP2002155390A (en
Inventor
登志雄 端場
武之 板橋
晴夫 赤星
晋一 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2000349060A priority Critical patent/JP3967879B2/en
Priority to US09/888,642 priority patent/US20020084191A1/en
Publication of JP2002155390A publication Critical patent/JP2002155390A/en
Priority to US10/996,382 priority patent/US20050087447A1/en
Application granted granted Critical
Publication of JP3967879B2 publication Critical patent/JP3967879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method

Description

【0001】
【発明の属する技術分野】
本発明は、銅めっき液、特に絶縁層中の微細な開口部内に電気めっきで銅を埋め込むために使用する電気銅めっき液、及びそれを用いて多層配線を形成した半導体集積回路装置の製造方法に関する。
【0002】
【従来の技術】
従来、半導体装置内の配線として用いられている材料としてはアルミニウムやアルミニウムと銅の合金などがある。LSIの高集積化に伴い配線の微細化が進むと、配線抵抗と容量の増加による信号伝達の遅延やエレクトロマイグレーションによる信頼性の低下が問題となる。この問題を解決する手段としては、金、銀、銅などのより抵抗の低い金属で配線を形成し、配線抵抗を低減させる方法がある。中でも銅はアルミニウムやその合金に代わる材料として期待されている。
【0003】
銅ではアルミニウムとは異なり蒸気圧の高い化合物を作ることができないため、ドライエッチングで微細な配線パターンを形成することは困難である。このため、まず絶縁体層の配線パターンに相当する箇所に溝や穴を形成し、次いでその溝や穴を銅で充填する方法(ダマシン法)が用いられる。一般的には基板の溝や穴部分を含めた表面全体をメタライズした後、化学機械研磨(CMP)により余分な金属を取り除いて配線を形成する。
【0004】
更に具体的には、配線を形成する際には、溝や穴を形成した層間絶縁膜表面に拡散防止層(バリヤー層)及び銅シード層をスパッタ法により形成し、シード層を給電層として電気めっきによって配線金属を埋め込む。バリヤー層としてはタンタル、タングステンなどの高融点金属とその合金や窒化チタン、窒化タンタルなどの窒化物が用いられる。
【0005】
金属による溝や穴の充填方法としてはスパッタなどの物理的気相成長(PVD)法、化学的気相成長(CVD)法、めっき法などがある。PVD法では溝や穴の側壁に対する金属のカバレジ性が悪く、アスペクト比が大きくなる(即ち、溝や穴が微細で深くなる)と充填される金属内に気泡(ボイド)が発生してしまう。CVD法ではカバレジ性は比較的良いが、原料物質のコストが高いという問題がある。これらに比べめっき法はコストが低く、埋め込み性も良いことから注目されている。特に電気めっき法は埋め込み性に優れ、スループットも高く、量産性がよいことから溝や穴の充填方法としては最も有力である。
【0006】
例えば、特開平11−26394号公報では、シード層上によう素被着層を形成した後、電気めっき法により配線溝を充填する方法が開示されている。
【0007】
特開平11−97391号公報では、添加剤を含まないめっき液によってパルス電流を用いた電気めっき法により配線を形成する方法が開示されている。
【0008】
また、特開平11−310896号公報では、支持電解質をほとんど含まないめっき液で配線を形成する方法が開示されている。
【0009】
【発明が解決しようとする課題】
上述したように、電気めっきを用いて微細な溝や穴を金属で充填する方法が種々検討されているが、それぞれ問題点を有する。
【0010】
特開平11−26394号公報に示す方法では、めっきがコンフォーマルに成長するので、シード層表面に凹凸が存在する場合には、めっきが進行して溝や穴の側壁の凸部同士が接触するとボイドが発生してしまう。よう素によってめっき膜の表面が平坦化された場合でも、膜が完全に平坦になることはないため溝や穴の中央にはシームが発生してしまう。
【0011】
特開平11−97391号公報に示す方法では、パルス電流を用いて拡散層を薄くすることで、微細な溝や穴への均一な析出が期待できるが、前述のようにコンフォーマルに析出するだけでは、ボイドやシームが発生する。添加剤を含まないめっき液では、めっき膜は下地であるシード層の凹凸を反映して成長するため、平坦な膜を形成することは困難である。
【0012】
また、特開平11−310896号公報に示す方法では、めっき液中の支持電解質を著しく減少させて微小な溝や穴内への銅の拡散量を増加させている。しかし、十分な量の銅が供給される場合であっても、溝や穴内ではコンフォーマルな析出となり、ボイドやシームが発生する。
【0013】
このように、上に述べた従来の電気めっきではアスペクト比の大きい溝や穴の完全な充填は困難である。ボイド・シームが存在する配線では、配線抵抗の上昇、電気信号の伝達の遅延等の問題が起きることから、このような微細な溝や穴でも完全に充填することが可能な技術が切望されていた。
【0014】
最近、1999年10月13日のADMETA(Advanced Metallization Conference)、P65〜102で「Copper Electrodeposition for IC Interconnect Formation」と題してJ.Reid氏がボトムアップ フィリング技術、即ち溝の底部での銅めっきを促進する技術、によって溝内を銅で埋めることを発表したように、そのメカニズムやそれに適しためっき液に関する研究が盛んに行われてきている。
【0015】
本発明の目的は、かかる高アスペクト比を有する溝や穴内に銅を再現性よく充填するのに適した電気銅めっき液を提供することである。
【0016】
本発明の更に具体的な目的は、かかる高アスペクト比を有する溝や穴内にボイドやシームを発生させずに銅を再現性よく充填するのに適した電気銅めっき液を提供することである。
【0017】
また、本発明の他の目的は、微細な溝や穴内をかかるめっき液を用いて間隙なく(即ち、ボイドもシームも存在させずに)銅で埋め込んだエレクトロマイグレーション耐性が高い配線層を有する配線密度の高い半導体集積回路装置を提供することである。
【0018】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば次の通りである。
【0019】
即ち、本発明におけるめっき液の特徴とするところは、配線基板表面に形成された高アスペクト比の溝や穴等の開口部の底部から銅めっきが優先的に進行するに適した添加剤を電気銅めっき液に加えたことである。
【0020】
そのための本発明の電気銅めっき液は、銅イオン及び電解質を含むめっき液にシアニン染料が添加されていることを特徴としている。
【0021】
具体的な本発明の電気銅めっき液は、銅イオン及び電解質を含むめっき液に添加物として次の化学構造式(1)で表されるシアニン染料のうち少なくとも一種類を含むことを特徴としている。ただし、化学構造式(1)中で、Xは陰イオンであり、nは0、1、2、又は3(以下、n=0〜3と記す)である。
【0022】
【化2】

Figure 0003967879
【0023】
本発明の電気銅めっき液は、例えば、銅イオン及び電解質を含むめっき液にインドリウム化合物(indolium compound)が添加されていることを特徴としている。
【0024】
また好ましくは、上記電気銅めっき液において、めっき液中に含まれる前記シアニン染料又はインドリウム化合物の濃度が1〜15mg/liter(以下mg/Lと記すことがある)であることを特徴としている。
【0025】
更に好ましくは、上記電気銅めっき液にはポリエーテル類、有機硫黄化合物、ハロゲン化物イオンの一つ又は複数が更に添加されている。
【0026】
また本発明に係わる半導体集積回路装置の製造方法は、複数の回路素子領域が形成された半導体ウエハの主表面の上部に開口部を有する絶縁層を設け、開口部内の底部及び側壁表面及び絶縁層の上表面にバリヤ金属層及びシード金属層を堆積し、上記した電気銅めっき液を用いた電気めっきにより開口部内をボイドやシームの存在しない銅で充填することによって配線層を形成することを特徴としているものであり、信頼性の優れた高集積密度のLSIを再現性よく製造することができる。
【0027】
【発明の実施の形態】
前述したように電気めっきによって微細な溝や穴を低抵抗金属で充填する場合、使用可能な金属は金、銀、銅などである。これらの金属は隣接する絶縁体層や半導体層中に拡散して回路素子特性を劣化させるため、前記金属の下にバリヤ層を設けてその拡散を防止する必要がある。バリヤ層として機能する導電体としては窒化チタン、窒化タングステン、窒化タンタル等の金属窒化物、及びタンタル、タングステン等の高融点金属とその合金が挙げられる。また、このバリヤ層は溝や穴の内部だけではなく、溝や穴を形成している絶縁層の表面上にも連続して設けられる。
【0028】
これら金属窒化物や高融点金属とその合金からなるバリヤ層は、比較的抵抗が高く、また表面に安定な酸化物を形成することから、直接電気めっきを施すことは困難である。このため、前記バリヤ層上にPVD法、CVD法、無電解めっき法などを用いて給電層となるシード層(例えば、銅膜)を更に形成する。
【0029】
次に、上記溝や穴の内部も含めてシード層上に電気銅めっきにより本願の対象としている銅の膜を電気めっきして上記溝や穴の内部をその銅の膜で充填するが、この形成された銅膜の特性はシード層の形状や膜厚によって非常に敏感に影響を受ける。
【0030】
例えば、シード層が不連続な場合にはシード層の存在しない場所からのめっき速度は非常に遅いか、またはめっきが析出しないため、ボイドの発生原因となる。また、シード層の厚さが均一でなくその表面に凹凸がある場合には電気銅めっき時に成長する銅膜の均一性がなくなり(即ち、銅膜の厚さが異なり)、溝や穴の内部を埋め込む銅膜中にシーム(所謂、縫い目のような境界線)が形成されてしまう。このようなボイドやシームが存在するとその個所にめっき液成分や空気や水分が閉じ込められた状態となるため、できあがった微細で高密度な配線を有する半導体集積回路装置の信頼性を低下せしめることになる。従って、上記シード層は絶縁体層の表面及び溝や穴内の全表面に均一に形成することが必要であるが、極めて多数の開口部を有するLSIにおいてはそのバラツキは無視できず結局良品率、即ち歩留に影響を与えることになる。
【0031】
更にまた、全面にシード層が形成されても、開口部付近で優先的に電気銅めっきが成長した場合には、開口部がその銅めっき膜でふさがれることとなり開口部の内部ではめっきが進まなくなるため、めっき液が残留したボイドが発生する。また、電気銅めっきがコンフォーマルに成長した場合でも、めっき膜が完全に平坦になることはないため、中央部分にボイドやシームが発生することは避けられない。
【0032】
したがって、溝や穴をボイドやシームのない銅膜で充填するためには、溝や穴の底部から優先的に電気銅めっきを成長させる必要がある。しかも、上述したように、シード層の有する特性バラツキに影響を受けることなく再現性よくそれを実行することが必要である。
【0033】
本発明者等は、上記したように適切な添加剤を用いることによって、底部から優先的にめっきを再現性よく成長させることが可能であることを見いだした。即ち、前記添加剤はめっき反応を抑制し、めっきが進行する際に消耗される物質である。つまり、めっきを開始すると、めっき反応が起こっている表面では添加剤の濃度が減少する。添加剤の拡散速度が反応速度に比べて遅い場合には、その反応は拡散律速となる。よって、添加剤が拡散によって表面へ供給される量に応じて、めっき反応の抑制の程度が決まることになる。このとき、溝や穴の開口部付近と底部付近では拡散による添加剤の供給量に差が生じる。開口部付近では溶液中から添加剤が頻繁に供給され、めっき反応は抑制される。一方、底部付近では添加剤が途中で反応してめっき反応を抑制する効果を持たない物質に変化してしまうため、開口部付近に比べて相対的にめっき反応が抑制されなくなる。つまり、底部ほどめっき反応を抑制する添加剤の供給量は少なくなり、底部から優先的にめっきが進行することになる。
【0034】
添加剤の反応速度が非常に遅い、または拡散速度が非常に速い場合には、溝や穴の底部にも十分に添加剤が供給されるため、開口部との抑制効果の差は少なくなる。また、添加剤の反応速度が非常に速い、または拡散速度が非常に遅い場合には、溝や穴に添加剤の供給がほとんど行われないため、開口部と底部で抑制効果の差は少なくなる。したがって、添加剤は溝や穴の開口部付近と底部付近でその濃度差が発生する適切な範囲に拡散速度と反応速度を持つ分子を有していることが好ましい。結局、このことは上記したシード層の特性バラツキによる電気銅めっきの特性への影響に対する極めて有効な対策となる。
【0035】
そのような添加剤として有効な物質には、2-[(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-methyl]-1,3,3-trimethyl-3H-indolium perchlorate、2-[3-(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1-propenyl]-1,3,3-trimethyl-3H-indolium chloride、2-[5-(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-1,3,3-trimethyl-3H-indolium iodide、2-[7-(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-3H-indolium iodideがある。濃度としては、1〜15mg/liter(以下、mg/Lと記すことがある)程度が好ましい。この範囲外の添加物濃度でも添加物の効果は現れると思われるが、1mg/Lよりも少ない場合には効果が十分ではなく、15mg/Lよりも多い場合には銅層中の不純物濃度が上昇する可能性がある。
【0036】
また、この電気銅めっきの後は絶縁体層表面上の余分な金属層(即ち、電気銅めっき層、シード層及びバリヤ層)をCMPによって除去するが、この際ウエハ面内での膜厚の均一性及び平坦性が要求されるため、前述のシアニン染料の他にポリエーテル類、有機硫黄化合物、ハロゲン化物イオンの一つ又は複数を更に添加して、面内の膜厚分布を向上させることが好ましい。
【0037】
そのようなポリエーテル類としては、平均分子量が1000〜10000のポリエチレングリコール、ポリプロピレングリコール、又はポリオキシプロピレングリコールが望ましい。
【0038】
また、有機硫黄化合物としては、3-mercapto-1-propanesulfonic acid、2-mercapto ethane sulfonic acid、bis (4-sulfobuthyl) disulfide、bis (3-sulfopropyl) disulfide、bis (2-sulfoethyl) disulfide、又はbis(p-sulfophenyl) disulfideが望ましい。
【0039】
本発明の電気銅めっき液は、添加剤の過剰な分解を避けるため、15〜35℃の範囲で操作を行う。好ましい銅イオン濃度は0.2mol/L以上であり、通常0.2〜3.0A/dm2(平方デシメートル)の電流密度範囲で使用する。電気銅めっきの際には、表面への添加剤の供給を一定に保つように、めっき液をポンプ又は空気によって攪拌するか、もしくは基板を回転又は揺動することが好ましい。
【0040】
(実施例1)
最初に、本発明に係わる電気銅めっき液の組成とそれを用いた配線基板構造部への電気銅めっき方法並びにその評価方法について図1の(a)から(c)をもとに説明する。
【0041】
(配線基板構造部の作成)
種々のめっき液における特性をできるだけ正確に測定できるようにするために、ベースとなる試料としての配線基板構造部を次のように共通に作成した。
【0042】
即ち、図1の(a)に示すように、φ200mmのシリコン基板1の平坦な主表面上にSiO2からなる絶縁体層2を1.0μm(ミクロンメータ)の厚さで形成し、そこに通常のドライエッチングによりφ0.25μm(ミクロンメータ)、深さ1μm(ミクロンメータ)の穴3を加工して形成した。
【0043】
次に、スパッタ法により、上部の全表面にバリヤ層4としてタンタルを50nm(ナノメータ)、シード層5として銅を150nm(ナノメータ)堆積させた。銅シード層5は、銅スパッタ用長距離スパッタ装置Ceraus ZX-1000(日本真空技術社製)を用い、200〜400nm/min(ナノメータ/分)の速度で成膜を行った。図1の(b)はバリヤ層4および銅シード層5を形成した後の断面図である。
【0044】
(電気銅めっき方法)
次の表1に示す種々の組成からなるめっき液を調整し、図1の(b)に示した配線構造体の表面に電気銅めっきを行ない、図1の(c)に示すように電気銅めっき膜6を形成した。上記方法によってめっきした基板を電気銅めっき液から取り出し、純水で3分間洗浄した。
【0045】
【表1】
Figure 0003967879
【0046】
なお、表1中の左サイドのめっき液N0の欄に記した実例1〜実例8は本発明に係わる電気銅めっき液を示し、比較例1は比較のために試作実験した本発明とは異なる電気銅めっき液を示している。
【0047】
また、この表1中の「添加剤種類」の欄に記載されている種々の記号は次の化学物質を意味している。
A−1:2-[(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-methyl]-1,3,3-trimethyl-3H-indolium perchlorate
A−2:2-[3-(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1-propenyl]-1,3,3-trimethyl-3H-indolium chloride
A−3:2-[5-(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-1,3,3-trimethyl-3H-indolium iodide
A−4:2-[7-(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-3H-indolium iodide
B−1:ポリエチレングリコール (平均分子量3000)
B−2:ポリエチレングリコール (平均分子量1000)
B−3:ポリプロピレングリコール(平均分子量3000)
B−4:ポリプロピレングリコール(平均分子量1000)
C−1:3-mercapto-1-propanesulfonic acid
C−2:2-mercapto ethane sulfonic acid
C−3:bis (3-sulfopropyl) disulfide
C−4:bis (2-sulfoethyl) disulfide 。
【0048】
電流密度は表1に示す値で膜厚が1.0μm(ミクロンメータ)に相当する電気量が流れる時間めっきを行なった。また、めっき膜の成長過程を観察する場合には、膜厚0.03μm(ミクロンメータ)に相当する電気量が流れる時間めっきを行なった。
【0049】
液温は24℃、液総量は20liter(L)とした。アノード電極としては含リン銅を用い、めっき液はめっき槽外部のポンプにより、濾過フィルターを通して毎分15liter/minで循環させた。
【0050】
(電気銅めっき膜の評価)
めっき膜の断面はめっき終了後の基板(図1の(c))をFIB(Focused Ion Beam)により加工し、100個の穴の断面をSEM(走査型電子顕微鏡)により観察した。めっき膜の成長過程を観察する場合には、図3にその配線構造体の要部断面図を示すように、めっきの途中段階で基板表面部上でのめっき膜の厚さAと穴の底部におけるめっき膜の厚さBを測定し、その比B/Aを計算した。また、銅めっき膜のシート抵抗の面内均一性は四短針抵抗測定により、面内49点の測定値から求めた。更に、エレクトロマイグレーション耐性(EM耐性)の試験は次の方法で行った。即ち、本発明によって作った配線に直流電流を流して、抵抗値の経時変化を測定した。配線抵抗が初期値より30%増加した時点を寿命とし、各条件での比較を行った。銅配線のEM耐性が高いことから、半導体装置自体の耐久性が向上する。これらの結果を次の表2にまとめて示す。
【0051】
【表2】
Figure 0003967879
【0052】
この表2中の「シアニン染料の種類」の欄に記載された記号はそれぞれ表1の記号と同じものを意味しており、判りやすくするために再度記載されている。また、表2中のB/Aは、表面でのめっき膜厚Aに対する溝や穴の底部でのめっき膜厚Bの比を示している。
【0053】
比較例1のめっき液では後述するようにボイドが存在しているのに対し、本発明に係わる実例1〜8のめっき液ではめっき液にシアニン染料が添加されていることにより、図3に示すように穴の底部が優先的にめっきされ、めっき後にはボイドやシームは観察されず、良好な埋め込み特性を得ることができている。更に、配線のEM耐性も向上しており、本発明によって製造した半導体集積回路装置の信頼性が向上することがわかる。
【0054】
また、実例3〜8では、シアニン染料に加えてポリエーテル類、及び有機硫黄化合物、及びハロゲン化物イオンが更に添加されていることで、良好な埋め込み特性に加え、シート抵抗の面内均一性が3〜5%と極めてよいことから基板面内において再現性よく良好な膜厚均一特性を得ていることがわかる。更に、配線のEM耐性も一層向上しており、信頼性の優れた半導体集積回路装置の製造が可能となることがわかった。
【0055】
実例5〜8では、B/A比が4.5〜6.1と大きいことからわかるように、シアニン染料を適切な濃度にすることにより図3に示した底部からの優先的めっきがより一層強化された成長が可能となっている。
【0056】
次に、本発明の効果を更に理解しやすくするために、本実施例1での表1に記載した比較例の銅めっき液と比較して説明する。
【0057】
本発明の特徴である前記した添加剤を用いない場合の例として、表1の下部に記載した比較例1の電気銅めっき液を用いて図1の(a)から(c)の工程を経て銅めっきをしてみた。
【0058】
そのめっきされた基板を前記と同様にFIBにより加工し、それぞれ100個の穴の断面をSEMにより観察した。その結果、図4にその断面図を示すように、穴内の銅膜中にボイドが認められ、穴内部に銅で充填されていない部分ができていることがわかった。また、ボイドが小さくなりシーム状になっているものも確認された。
【0059】
また、めっき膜の成長過程を観察した結果、全ての穴で図5に示すように、穴内部の表面に銅めっきがほぼ均一に成長しており、底部から優先的には進行していないことがわかった。このとき、B/Aを計算すると1.0となった。
【0060】
このことから、めっきが底部から優先的に進行することにより、穴内を完全に銅で充填できるという本発明の優位性が明らかとなった。
【0061】
(実施例2)
次に本発明に係わる電気銅めっき液を用いて多層配線を構成した半導体集積回路装置の製造方法について再び図1を用いて説明する。
【0062】
図1は、内部に複数の半導体回路素子領域(図示省略)が形成された半導体集積回路装置の製造方法を説明するための工程毎の要部断面図であり、高さレベルの異なる複数の配線層の間を接続するための層間接続用の穴の内部を充填する銅めっきに本発明を適用した例を示している。
【0063】
即ち、図1の(a)での基板1は内部に複数の半導体回路素子領域(図示省略)が形成されたφ200mmのシリコンウエハの主表面を被覆する絶縁膜の上に上記半導体回路素子領域に接続された配線層(図示省略)を有しており、その上に厚さ1μm(ミクロンメータ)のSiO2等の層間絶縁層2が堆積され、底部が配線層の表面に達し(即ち、そこで終端し)その表面を露出するようにφ0.25μm(ミクロンメータ)、深さ1μm(ミクロンメータ)の高アスペクト比を有する配線層間接続用の穴3が設けられている。
【0064】
次いで、実施例1でも説明し図1の(b)に示すように、穴3の内部表面及び絶縁層2の上表面に連続的にバリヤ層4が設けられ、更にその上にシード層5が設けられている。ここでは、穴の底部に露出された配線層の表面部分がバリヤ層4で被覆され電気的に接続されている。
【0065】
次いで、図1の(c)に示すように、前記した通り本発明に係わる電気銅めっき液を用いてシード層5の表面上に銅めっき層6を形成し、その銅膜によって穴3の内部を埋め込む。
【0066】
上記めっき方法によってめっきした基板を電気銅めっき液から取り出し、純水で3分間洗浄した。更にFIBにより加工し、100個の穴の断面をSEMにより観察した結果、図1の(c)に示すようにボイド(気泡)やシームは認められず、穴3が銅で完全に充填されていることがわかった。
【0067】
次に、図1の(d)に示すように、基板表面上の電気めっき析出金属6を除去するため、化学機械研磨(CMP)を行う。化学機械研磨には、SpeedFam-IPEC社製CMP装置AVANTI472型化学機械研磨装置で、過酸化水素を1〜2%含むアルミナ分散砥粒とパッド(ロデール社製IC−1000)を用いた。研磨圧力を150g/cm2として、絶縁体層に達する研磨を行った結果、各界面とも剥離は発生せず、化学機械研磨により、絶縁層2の表面上のバリヤ層4、シード層5、電気めっき析出金属層6からなる導体層の除去ができ、埋め込み銅膜9の表面レベルと共通の平坦な主表面レベルを有する層間絶縁層2を得ることができる。
【0068】
次に、銅の拡散を防止するためにかくして得られた共通の平坦な主表面上にSiN等の絶縁層(図示せず)を被着し、更にその上にSiO2等の絶縁膜(図示せず)を堆積する。そして必要に応じて、上記埋め込み銅膜上部の絶縁膜(SiO2膜)や絶縁層(SiN層)をドライエッチングで選択的に除去し図1の(a)に示すような複数の穴を有する配線構造体を形成する。
【0069】
更に、この配線構造体に対して図1の(b)〜(d)までの工程を繰り返すことによって微細なパターンの多層配線構造を有する半導体集積回路装置を作ることができる。
【0070】
なお、このようにして本発明によって作られた半導体集積回路装置においては、微細なパターンの多層配線構造を構成するためのキーとなる穴3内に埋め込まれた銅膜中にはボイドやシームが存在しないので信頼性の高い多層配線構造を持った半導体集積回路装置が再現性よく高歩留まりで得られる。
【0071】
(実施例3)
図2は、内部に複数の半導体回路素子領域(図示省略)が形成された半導体集積回路装置の製造方法を説明するためのものであり、高さレベルの異なる複数の配線層やその間を接続する層間接続部を形成するための溝や穴の内部をそれぞれ銅で充填する際に本発明を適用した例を示している。なお、図2の(a)〜(d)は製造工程毎の要部断面図である。
【0072】
図2の(a)に示されているように、実施例2と同様に内部に複数の半導体回路素子領域(図示省略)が形成されたφ200mmのシリコンウエハの主表面を被覆する絶縁膜の上に上記半導体回路素子領域に接続された第1の配線層(図示省略)を有している基板1の上にそれぞれ厚さ0.5μm(ミクロンメータ)のSiO2等の層間絶縁層8及び2が堆積され、これら絶縁層8及び2にまたがって断面が階段状の、即ち底部が第1配線層の表面に達しその表面を露出するφ0.25μm(ミクロンメータ)、深さ1μm(ミクロンメータ)の穴と絶縁層2の表面で終端する幅又はφが0,25μm(ミクロンメータ)、深さ0.5μm(ミクロンメータ)の溝又は穴とが階段状に結合された、高アスペクト比を有する配線層間接続用の穴3が設けられており、またそこから離れた別の位置で絶縁層2内に絶縁層8に達し細長く絶縁層2の上表面に延在する配線形成用のφ0.25μm(ミクロンメータ)、深さ0.5μm(ミクロンメータ)の高アスペクト比を有する溝7が設けられている。即ち、絶縁層内に配線形成用の細長い溝7が設けられていること、深さが異なる複数の開口部が設けられていること、及びその内の一つが深さの異なる連続した開口部とされていること等が前記した実施例2と異なっている。
【0073】
かかる配線構造体に対して前記実施例2と同様に、バリヤ層4及びシード層5を設け(図2の(b))、更に本発明の電気銅めっき液を用いて銅めっき層6をシード層5上に被着し(図2の(c))、絶縁層2の主表面上の金属層をCMP技術によって除去し開口部3,7内に埋め込まれた銅層11,12と共通の表面レベルを有する平坦な絶縁層表面を形成する(図2の(d))。
【0074】
なお、前記実施例2と同様に図2の(c)の工程終了後のウエーハをサンプルとして抜き出して、FIBにより加工し100個の開口部3の断面と100個の溝(開口部)7の断面をSEMにより観察した結果、これら開口部内の銅層のいずれにもボイドやシームは認められず、銅で完全に充填されていることがわかった。
【0075】
また、めっき時間を短くしてめっき膜の成長過程を観察した結果、全ての開口部で開口部付近に比べて底部での膜厚が厚くなっており、図3で説明したように、めっきが底部から優先的に進行していることがわかった。更に、銅めっき膜6は開口部の最も深い底部から優先的に堆積されていることも確認できた。なお、浅い開口部7の上部及びその近傍には深い開口部3の上部及びその近傍よりも厚い銅層が形成され、配線構造体の全体としてはその表面に多少の起伏(凹凸)が見られたが、それらは図2の(d)のようにCMPによって再現性よく平坦な主表面とされ問題がないことも確認した。
【0076】
以上のことから、図2の(a)に示したように深さの異なる複数の開口部、或いは開口径の異なる複数の開口部、或いは連続した階段状の底部を有する開口部であっても、実施例2と同様にそれら開口部内をボイドやシームを発生させずに銅で再現性よく高い歩留で充填できることが判った。
【0077】
また、大規模集積回路装置(LSI)においては今後ますます多数の複雑な回路機能ブロックを1枚の半導体基板に搭載することが要求されるが、そのようなLSIにおいては回路構成や製造プロセスと関連して本実施例3のように形状や深さの異なる多数の開口部とその中に埋め込まれた銅めっき層によって形成された微細パターンの多層配線構造が必要となるので、本発明を適用することによって信頼性の高いLSIを高歩留まりで大量に製造することができる。
【0078】
【発明の効果】
本発明によれば、開口部の底部から優先的に銅めっきを進行させることによって、開口部内をボイドやシーム等の間隙のない銅で再現性よく充填することができる。また、ボイドやシーム等の間隙を有しない微細な穴や溝を形成可能なため、微細な埋め込み銅配線を有する高密度な半導体集積回路装置の信頼性及びその製造歩留まりを向上することができる。
【図面の簡単な説明】
【図1】本発明の実施例に係わる配線構造体要部の製造工程毎の断面図である。
【図2】本発明の他の実施例に係わる配線構造体要部の製造工程毎の断面図である。
【図3】本発明に係わる銅めっき膜の成長過程を示す配線構造体要部の断面図である。
【図4】本発明の効果を説明するための比較例での配線構造体要部の断面図である。
【図5】本発明の効果を説明するための比較例での銅めっき膜の成長過程を示す配線構造体要部の断面図である。
【符号の説明】
1…シリコンウエーハを含む配線構造体の基板、2…絶縁体層、3…穴、4…バリヤ層、5…シード層、6…電気銅めっき層、7…溝、10…配線層、13…ボイド(気泡)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper plating solution, particularly an electrolytic copper plating solution used for embedding copper in a fine opening in an insulating layer by electroplating, and a method for manufacturing a semiconductor integrated circuit device using the same to form a multilayer wiring About.
[0002]
[Prior art]
Conventionally, materials used for wiring in a semiconductor device include aluminum and an alloy of aluminum and copper. When the miniaturization of wiring advances with the high integration of LSI, signal transmission delay due to increase in wiring resistance and capacitance and deterioration in reliability due to electromigration become problems. As a means for solving this problem, there is a method of reducing the wiring resistance by forming a wiring with a metal having a lower resistance such as gold, silver or copper. In particular, copper is expected as a material to replace aluminum and its alloys.
[0003]
Unlike aluminum, copper cannot form a compound having a high vapor pressure, so it is difficult to form a fine wiring pattern by dry etching. For this reason, a method (damascene method) is used in which grooves and holes are first formed at locations corresponding to the wiring pattern of the insulator layer, and then the grooves and holes are filled with copper. In general, after metallizing the entire surface including the groove and hole portion of the substrate, excess metal is removed by chemical mechanical polishing (CMP) to form wiring.
[0004]
More specifically, when forming the wiring, a diffusion prevention layer (barrier layer) and a copper seed layer are formed by sputtering on the surface of the interlayer insulating film in which grooves and holes are formed, and the seed layer is used as a power feeding layer. The wiring metal is embedded by plating. As the barrier layer, refractory metals such as tantalum and tungsten and alloys thereof, and nitrides such as titanium nitride and tantalum nitride are used.
[0005]
As a method for filling grooves and holes with metal, there are a physical vapor deposition (PVD) method such as sputtering, a chemical vapor deposition (CVD) method, and a plating method. In the PVD method, the metal coverage with respect to the side walls of the grooves and holes is poor, and when the aspect ratio becomes large (that is, the grooves and holes become fine and deep), bubbles are generated in the filled metal. The CVD method has relatively good coverage, but has a problem that the cost of the raw material is high. Compared with these, the plating method is attracting attention because of its low cost and good embedding. In particular, the electroplating method is most effective as a filling method for grooves and holes because it has excellent embeddability, high throughput, and good mass productivity.
[0006]
For example, Japanese Patent Application Laid-Open No. 11-26394 discloses a method of filling a wiring groove by electroplating after forming an iodine deposition layer on a seed layer.
[0007]
Japanese Patent Application Laid-Open No. 11-97391 discloses a method of forming a wiring by an electroplating method using a pulse current with a plating solution containing no additive.
[0008]
Japanese Patent Application Laid-Open No. 11-310896 discloses a method of forming a wiring with a plating solution that hardly contains a supporting electrolyte.
[0009]
[Problems to be solved by the invention]
As described above, various methods for filling fine grooves and holes with metal using electroplating have been studied, but each has its own problems.
[0010]
In the method shown in Japanese Patent Application Laid-Open No. 11-26394, since the plating grows conformally, if the seed layer surface has irregularities, the plating proceeds and the convex portions on the side walls of the grooves and holes come into contact with each other. A void will occur. Even when the surface of the plating film is flattened by iodine, the film is not completely flattened, so that a seam is generated at the center of the groove or hole.
[0011]
In the method disclosed in Japanese Patent Laid-Open No. 11-97391, uniform diffusion into fine grooves and holes can be expected by thinning the diffusion layer using a pulse current. However, as described above, it only deposits conformally. Then, voids and seams occur. In a plating solution that does not contain an additive, the plating film grows reflecting the irregularities of the seed layer that is the base, and thus it is difficult to form a flat film.
[0012]
In the method disclosed in Japanese Patent Application Laid-Open No. 11-310896, the supporting electrolyte in the plating solution is significantly reduced to increase the amount of copper diffused into minute grooves and holes. However, even when a sufficient amount of copper is supplied, conformal precipitation occurs in the grooves and holes, and voids and seams are generated.
[0013]
Thus, it is difficult to completely fill grooves and holes having a large aspect ratio by the conventional electroplating described above. Wiring with voids and seams causes problems such as increased wiring resistance and delays in the transmission of electrical signals. Therefore, a technology that can completely fill even such fine grooves and holes is eagerly desired. It was.
[0014]
Recently, in ADMETA (Advanced Metallization Conference) on October 13, 1999, P65-102, entitled “Copper Electrodeposition for IC Interconnect Formation” As Reid announced that the inside of the groove is filled with copper by bottom-up filling technology, that is, technology that promotes copper plating at the bottom of the groove, research on the mechanism and plating solution suitable for it has been actively conducted. It is coming.
[0015]
An object of the present invention is to provide an electrolytic copper plating solution suitable for filling copper in a groove or hole having such a high aspect ratio with good reproducibility.
[0016]
A more specific object of the present invention is to provide an electrolytic copper plating solution suitable for filling copper with good reproducibility without generating voids and seams in grooves and holes having such a high aspect ratio.
[0017]
Another object of the present invention is a wiring having a wiring layer having high electromigration resistance embedded in copper with no gaps (that is, without voids or seams) using such plating solution in fine grooves and holes. To provide a semiconductor integrated circuit device having a high density.
[0018]
[Means for Solving the Problems]
Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
[0019]
That is, the feature of the plating solution in the present invention is that an additive suitable for preferentially proceeding copper plating from the bottom of an opening such as a high aspect ratio groove or hole formed on the surface of the wiring board is electrically used. It was added to the copper plating solution.
[0020]
For this purpose, the electrolytic copper plating solution of the present invention is characterized in that a cyanine dye is added to a plating solution containing copper ions and an electrolyte.
[0021]
A specific electrolytic copper plating solution of the present invention is characterized in that it contains at least one of the cyanine dyes represented by the following chemical structural formula (1) as an additive in a plating solution containing copper ions and an electrolyte. . However, in the chemical structural formula (1), X - Is an anion, and n is 0, 1, 2, or 3 (hereinafter referred to as n = 0-3).
[0022]
[Chemical 2]
Figure 0003967879
[0023]
The electrolytic copper plating solution of the present invention is characterized in that, for example, an indolium compound is added to a plating solution containing copper ions and an electrolyte.
[0024]
Preferably, the electrolytic copper plating solution is characterized in that the concentration of the cyanine dye or indolium compound contained in the plating solution is 1 to 15 mg / liter (hereinafter sometimes referred to as mg / L). .
[0025]
More preferably, one or more of polyethers, organic sulfur compounds, and halide ions are further added to the electrolytic copper plating solution.
[0026]
According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor integrated circuit device, comprising: providing an insulating layer having an opening on a main surface of a semiconductor wafer on which a plurality of circuit element regions are formed; A wiring metal layer is formed by depositing a barrier metal layer and a seed metal layer on the upper surface, and filling the opening with copper having no voids or seams by electroplating using the above-described electrolytic copper plating solution. Therefore, a highly integrated LSI with excellent reliability can be manufactured with good reproducibility.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
As described above, when filling fine grooves and holes with a low resistance metal by electroplating, usable metals are gold, silver, copper, and the like. Since these metals diffuse into adjacent insulator layers and semiconductor layers and degrade circuit element characteristics, it is necessary to provide a barrier layer under the metal to prevent its diffusion. Examples of the conductor functioning as the barrier layer include metal nitrides such as titanium nitride, tungsten nitride, and tantalum nitride, and refractory metals such as tantalum and tungsten and alloys thereof. Further, this barrier layer is continuously provided not only inside the grooves and holes but also on the surface of the insulating layer forming the grooves and holes.
[0028]
A barrier layer made of these metal nitrides, refractory metals and alloys thereof has a relatively high resistance and forms a stable oxide on the surface, so that it is difficult to perform direct electroplating. For this reason, a seed layer (for example, a copper film) serving as a power feeding layer is further formed on the barrier layer using a PVD method, a CVD method, an electroless plating method, or the like.
[0029]
Next, the copper layer which is the subject of the present application is electroplated on the seed layer including the inside of the groove and hole by electro copper plating, and the inside of the groove and hole is filled with the copper film. The characteristics of the formed copper film are very sensitively influenced by the shape and film thickness of the seed layer.
[0030]
For example, when the seed layer is discontinuous, the plating rate from a place where the seed layer does not exist is very slow, or the plating does not precipitate, which causes generation of voids. Also, if the seed layer thickness is not uniform and the surface is uneven, the uniformity of the copper film grown during electro copper plating is lost (ie, the copper film thickness is different), and the inside of the groove or hole A seam (a so-called boundary line such as a seam) is formed in the copper film in which the material is embedded. If such voids and seams exist, the plating solution component, air, and moisture are confined at those locations, so that the reliability of the semiconductor integrated circuit device having the fine and high-density wirings is reduced. Become. Therefore, it is necessary to form the seed layer uniformly on the surface of the insulator layer and all the surfaces in the grooves and holes. However, in an LSI having an extremely large number of openings, the variation cannot be ignored and the yield rate is high. That is, the yield is affected.
[0031]
Furthermore, even if a seed layer is formed on the entire surface, if electrolytic copper plating grows preferentially in the vicinity of the opening, the opening will be blocked by the copper plating film, and plating will proceed inside the opening. As a result, voids in which the plating solution remains are generated. Further, even when the electrolytic copper plating grows conformally, the plating film is not completely flat, and it is inevitable that a void or seam is generated in the central portion.
[0032]
Therefore, in order to fill the grooves and holes with the copper film without voids and seams, it is necessary to preferentially grow the copper electroplating from the bottom of the grooves and holes. Moreover, as described above, it is necessary to execute it with good reproducibility without being affected by the characteristic variation of the seed layer.
[0033]
The present inventors have found that plating can be preferentially grown from the bottom with good reproducibility by using an appropriate additive as described above. That is, the additive is a substance that suppresses the plating reaction and is consumed when the plating proceeds. That is, when plating is started, the concentration of the additive decreases on the surface where the plating reaction occurs. When the diffusion rate of the additive is slower than the reaction rate, the reaction is diffusion-limited. Therefore, the degree of suppression of the plating reaction is determined according to the amount of the additive supplied to the surface by diffusion. At this time, there is a difference in the amount of additive supplied by diffusion between the vicinity of the opening and the bottom of the groove or hole. In the vicinity of the opening, the additive is frequently supplied from the solution, and the plating reaction is suppressed. On the other hand, since the additive reacts in the vicinity of the bottom and changes to a substance that does not have an effect of suppressing the plating reaction, the plating reaction is not relatively suppressed as compared with the vicinity of the opening. That is, the supply amount of the additive that suppresses the plating reaction is reduced toward the bottom, and plating proceeds preferentially from the bottom.
[0034]
When the reaction rate of the additive is very slow or the diffusion rate is very fast, the additive is sufficiently supplied to the bottoms of the grooves and holes, so that the difference in the suppression effect from the opening is reduced. In addition, when the reaction rate of the additive is very fast or the diffusion rate is very slow, since the additive is hardly supplied to the groove or hole, the difference in the suppression effect between the opening and the bottom is reduced. . Therefore, it is preferable that the additive has molecules having a diffusion rate and a reaction rate in an appropriate range in which a difference in concentration occurs near the opening and the bottom of the groove or hole. After all, this is a very effective measure against the influence on the characteristics of the electrolytic copper plating due to the above-described variation in characteristics of the seed layer.
[0035]
Substances effective as such additives include 2-[(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene) -methyl] -1,3,3-trimethyl- 3H-indolium perchlorate, 2- [3- (1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene) -1-propenyl] -1,3,3-trimethyl-3H-indolium chloride, 2- [5- (1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene) -1,3-pentadienyl] -1,3,3-trimethyl-3H-indolium iodide , 2- [7- (1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene) -1,3,5-heptatrienyl] -1,3,3-trimethyl-3H-indolium There is iodide. The concentration is preferably about 1 to 15 mg / liter (hereinafter sometimes referred to as mg / L). Even if the additive concentration is outside this range, the effect of the additive is likely to appear. However, if the concentration is less than 1 mg / L, the effect is not sufficient. If the concentration is more than 15 mg / L, the impurity concentration in the copper layer is not sufficient. May rise.
[0036]
Further, after this electrolytic copper plating, an excess metal layer on the surface of the insulator layer (that is, an electrolytic copper plating layer, a seed layer and a barrier layer) is removed by CMP. Since uniformity and flatness are required, in addition to the above-mentioned cyanine dye, one or more of polyethers, organic sulfur compounds and halide ions may be added to improve the in-plane film thickness distribution. Is preferred.
[0037]
As such polyethers, polyethylene glycol, polypropylene glycol, or polyoxypropylene glycol having an average molecular weight of 1000 to 10,000 is desirable.
[0038]
Examples of organic sulfur compounds include 3-mercapto-1-propanesulfonic acid, 2-mercapto ethane sulfonic acid, bis (4-sulfobuthyl) disulfide, bis (3-sulfopropyl) disulfide, bis (2-sulfoethyl) disulfide, or bis (p-sulfophenyl) disulfide is preferred.
[0039]
The electrolytic copper plating solution of the present invention is operated in the range of 15 to 35 ° C. in order to avoid excessive decomposition of the additive. A preferable copper ion concentration is 0.2 mol / L or more, usually 0.2 to 3.0 A / dm. 2 Use in a current density range of (square decimeter). In the electrolytic copper plating, it is preferable to stir the plating solution with a pump or air, or rotate or swing the substrate so that the supply of the additive to the surface is kept constant.
[0040]
Example 1
First, the composition of the electrolytic copper plating solution according to the present invention, the electrolytic copper plating method for the wiring board structure using the electrolytic copper plating solution, and the evaluation method thereof will be described with reference to FIGS.
[0041]
(Creation of wiring board structure)
In order to be able to measure the characteristics of various plating solutions as accurately as possible, a wiring board structure as a base sample was created in common as follows.
[0042]
That is, as shown in FIG. 1A, an insulator layer 2 made of SiO 2 is formed with a thickness of 1.0 μm (micron meter) on a flat main surface of a silicon substrate 1 having a diameter of 200 mm. A hole 3 having a diameter of 0.25 μm (micrometer) and a depth of 1 μm (micrometer) was formed by dry etching.
[0043]
Next, 50 nm (nanometer) of tantalum as the barrier layer 4 and 150 nm (nanometer) of copper as the seed layer 5 were deposited on the entire upper surface by sputtering. The copper seed layer 5 was formed at a rate of 200 to 400 nm / min (nanometer / min) using a long-distance sputtering apparatus for copper sputtering, Ceraus ZX-1000 (manufactured by Nippon Vacuum Technology Co., Ltd.). FIG. 1B is a cross-sectional view after the barrier layer 4 and the copper seed layer 5 are formed.
[0044]
(Electro copper plating method)
The plating solutions having various compositions shown in Table 1 below are prepared, and the surface of the wiring structure shown in FIG. 1B is subjected to electrolytic copper plating. As shown in FIG. A plating film 6 was formed. The substrate plated by the above method was taken out of the electrolytic copper plating solution and washed with pure water for 3 minutes.
[0045]
[Table 1]
Figure 0003967879
[0046]
Examples 1 to 8 shown in the column of the plating solution N0 on the left side in Table 1 show the electrolytic copper plating solution according to the present invention, and Comparative Example 1 is different from the present invention experimentally manufactured for comparison. An electrolytic copper plating solution is shown.
[0047]
In addition, various symbols described in the column of “additive type” in Table 1 mean the following chemical substances.
A-1: 2-[(1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene) -methyl] -1,3,3-trimethyl-3H-indolium perchlorate
A-2: 2- [3- (1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene) -1-propenyl] -1,3,3-trimethyl-3H-indolium chloride
A-3: 2- [5- (1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene) -1,3-pentadienyl] -1,3,3-trimethyl-3H- indolium iodide
A-4: 2- [7- (1,3-Dihydro-1,3,3-trimethyl-2H-indol-2-ylidene) -1,3,5-heptatrienyl] -1,3,3-trimethyl- 3H-indolium iodide
B-1: Polyethylene glycol (average molecular weight 3000)
B-2: Polyethylene glycol (average molecular weight 1000)
B-3: Polypropylene glycol (average molecular weight 3000)
B-4: Polypropylene glycol (average molecular weight 1000)
C-1: 3-mercapto-1-propanesulfonic acid
C-2: 2-mercapto ethane sulfonic acid
C-3: bis (3-sulfopropyl) disulfide
C-4: bis (2-sulfoethyl) disulfide.
[0048]
The current density was the value shown in Table 1, and plating was performed for a period of time during which an amount of electricity corresponding to a film thickness of 1.0 μm (micrometer) flows. Further, when observing the growth process of the plating film, plating was performed for a period of time during which an amount of electricity corresponding to a film thickness of 0.03 μm (micrometer) flows.
[0049]
The liquid temperature was 24 ° C., and the total liquid volume was 20 liter (L). Phosphorous copper was used as the anode electrode, and the plating solution was circulated at a rate of 15 liter / min per minute through a filter by a pump outside the plating tank.
[0050]
(Evaluation of electrolytic copper plating film)
As for the cross section of the plating film, the substrate (FIG. 1 (c)) after plating was processed by FIB (Focused Ion Beam), and the cross section of 100 holes was observed by SEM (scanning electron microscope). When observing the growth process of the plating film, as shown in the cross-sectional view of the main part of the wiring structure in FIG. The thickness B of the plating film was measured and the ratio B / A was calculated. Further, the in-plane uniformity of the sheet resistance of the copper plating film was determined from the measured values at 49 points in the plane by measuring the resistance of the four short needles. Further, the electromigration resistance (EM resistance) test was performed by the following method. That is, a direct current was passed through the wiring made according to the present invention, and the change over time in the resistance value was measured. The time when the wiring resistance increased by 30% from the initial value was regarded as the life, and the comparison was made under each condition. Since the EM resistance of the copper wiring is high, the durability of the semiconductor device itself is improved. These results are summarized in Table 2 below.
[0051]
[Table 2]
Figure 0003967879
[0052]
The symbols described in the column of “Types of cyanine dyes” in Table 2 are the same as the symbols in Table 1, and are described again for easy understanding. B / A in Table 2 represents the ratio of the plating film thickness B at the bottom of the groove or hole to the plating film thickness A on the surface.
[0053]
In the plating solution of Comparative Example 1, voids are present as described later, whereas in the plating solutions of Examples 1 to 8 according to the present invention, a cyanine dye is added to the plating solution, which is shown in FIG. In this way, the bottom of the hole is preferentially plated, and voids and seams are not observed after plating, and good embedding characteristics can be obtained. Furthermore, it can be seen that the EM resistance of the wiring is improved, and the reliability of the semiconductor integrated circuit device manufactured according to the present invention is improved.
[0054]
In Examples 3 to 8, in addition to the cyanine dye, polyethers, organic sulfur compounds, and halide ions are further added, so that in-plane uniformity of sheet resistance is achieved in addition to good embedding characteristics. From 3 to 5%, which is very good, it can be seen that good film thickness uniformity characteristics are obtained with good reproducibility within the substrate surface. Further, it has been found that the EM resistance of the wiring is further improved, and it becomes possible to manufacture a highly reliable semiconductor integrated circuit device.
[0055]
In Examples 5 to 8, as can be seen from the large B / A ratio of 4.5 to 6.1, the preferential plating from the bottom shown in FIG. Enhanced growth is possible.
[0056]
Next, in order to make it easier to understand the effects of the present invention, a description will be given in comparison with the copper plating solution of the comparative example described in Table 1 in the present Example 1.
[0057]
As an example of the case where the above-described additive which is a feature of the present invention is not used, the steps (a) to (c) of FIG. 1 are performed using the electrolytic copper plating solution of Comparative Example 1 described in the lower part of Table 1. I tried copper plating.
[0058]
The plated substrate was processed by FIB in the same manner as described above, and cross sections of 100 holes were observed by SEM. As a result, as shown in the cross-sectional view of FIG. 4, it was found that voids were observed in the copper film in the hole, and a portion not filled with copper was formed inside the hole. In addition, it was confirmed that the voids were reduced to have a seam shape.
[0059]
In addition, as a result of observing the growth process of the plating film, as shown in FIG. 5, copper plating grows almost uniformly on the surface inside the hole and does not proceed preferentially from the bottom. I understood. At this time, B / A was calculated to be 1.0.
[0060]
From this, the advantage of the present invention that the inside of the hole can be completely filled with copper by plating proceeding preferentially from the bottom has been clarified.
[0061]
(Example 2)
Next, a method for manufacturing a semiconductor integrated circuit device in which a multilayer wiring is constructed using the electrolytic copper plating solution according to the present invention will be described with reference to FIG.
[0062]
FIG. 1 is a cross-sectional view of an essential part for each step for explaining a method of manufacturing a semiconductor integrated circuit device in which a plurality of semiconductor circuit element regions (not shown) are formed, and a plurality of wirings having different height levels. The example which applied this invention to the copper plating which fills the inside of the hole for interlayer connection for connecting between layers is shown.
[0063]
That is, the substrate 1 in FIG. 1A is formed on the semiconductor circuit element region on the insulating film covering the main surface of a φ200 mm silicon wafer in which a plurality of semiconductor circuit element regions (not shown) are formed. It has a connected wiring layer (not shown), and an interlayer insulating layer 2 such as SiO 2 having a thickness of 1 μm (micrometer) is deposited thereon, and the bottom reaches the surface of the wiring layer (that is, terminates there). A wiring layer connection hole 3 having a high aspect ratio of φ0.25 μm (micron meter) and a depth of 1 μm (micron meter) is provided so as to expose the surface.
[0064]
Next, as described in Example 1 and shown in FIG. 1B, a barrier layer 4 is continuously provided on the inner surface of the hole 3 and the upper surface of the insulating layer 2, and a seed layer 5 is further formed thereon. Is provided. Here, the surface portion of the wiring layer exposed at the bottom of the hole is covered with the barrier layer 4 and electrically connected.
[0065]
Next, as shown in FIG. 1C, as described above, the copper plating layer 6 is formed on the surface of the seed layer 5 using the electrolytic copper plating solution according to the present invention, and the inside of the hole 3 is formed by the copper film. Embed.
[0066]
The substrate plated by the above plating method was taken out from the electrolytic copper plating solution and washed with pure water for 3 minutes. Furthermore, as a result of processing by FIB and observing the cross section of 100 holes by SEM, as shown in FIG. 1 (c), voids (bubbles) and seams were not recognized, and hole 3 was completely filled with copper. I found out.
[0067]
Next, as shown in FIG. 1D, chemical mechanical polishing (CMP) is performed in order to remove the electroplated deposited metal 6 on the substrate surface. For chemical mechanical polishing, alumina dispersed abrasive grains containing 1-2% hydrogen peroxide and pad (IC-1000 manufactured by Rodel) were used in a CMP machine AVANTI472 chemical mechanical polishing apparatus manufactured by SpeedFam-IPEC. Polishing pressure 150g / cm 2 As a result of polishing that reaches the insulator layer, no peeling occurs at each interface, and the barrier layer 4, the seed layer 5, and the electroplating deposited metal layer 6 on the surface of the insulating layer 2 are formed by chemical mechanical polishing. The conductor layer can be removed, and the interlayer insulating layer 2 having a flat main surface level common to the surface level of the buried copper film 9 can be obtained.
[0068]
Next, in order to prevent copper diffusion, an insulating layer (not shown) such as SiN is deposited on the common flat main surface thus obtained, and further an insulating film (not shown) such as SiO 2 is further formed thereon. D). Then, if necessary, the insulating film (SiO2 film) and insulating layer (SiN layer) above the buried copper film are selectively removed by dry etching, and wiring having a plurality of holes as shown in FIG. Form a structure.
[0069]
Further, by repeating the steps (b) to (d) of FIG. 1 for this wiring structure, a semiconductor integrated circuit device having a fine pattern multilayer wiring structure can be manufactured.
[0070]
In the semiconductor integrated circuit device manufactured according to the present invention in this way, voids and seams are formed in the copper film embedded in the hole 3 which is a key for forming a multilayer wiring structure having a fine pattern. Since it does not exist, a semiconductor integrated circuit device having a highly reliable multilayer wiring structure can be obtained with high reproducibility and high yield.
[0071]
(Example 3)
FIG. 2 is a diagram for explaining a method of manufacturing a semiconductor integrated circuit device in which a plurality of semiconductor circuit element regions (not shown) are formed, and a plurality of wiring layers having different height levels and connections between them are connected. An example is shown in which the present invention is applied when the inside of a groove or hole for forming an interlayer connection portion is filled with copper. In addition, (a)-(d) of FIG. 2 is principal part sectional drawing for every manufacturing process.
[0072]
As shown in FIG. 2 (a), an insulating film covering the main surface of a φ200 mm silicon wafer having a plurality of semiconductor circuit element regions (not shown) formed therein as in the second embodiment. On the substrate 1 having a first wiring layer (not shown) connected to the semiconductor circuit element region, interlayer insulating layers 8 and 2 such as SiO 2 having a thickness of 0.5 μm (micrometer) are respectively formed. It is deposited and has a stepped cross section across the insulating layers 8 and 2, that is, the bottom reaches the surface of the first wiring layer and the surface is exposed, φ0.25 μm (micron meter), 1 μm (micron meter) deep A wiring having a high aspect ratio in which a hole and a groove or a hole having a width or φ of 0.25 μm (micron meter) and a depth of 0.5 μm (micron meter) are connected stepwise. Hole 3 for interlayer connection is provided In addition, it reaches the insulating layer 8 in the insulating layer 2 at a position apart from the insulating layer 2 and extends to the upper surface of the insulating layer 2 .phi.0.25 .mu.m (micrometer), depth 0 A groove 7 having a high aspect ratio of .5 μm (micrometer) is provided. That is, a long and narrow groove 7 for wiring formation is provided in the insulating layer, a plurality of openings having different depths are provided, and one of them is a continuous opening having different depths. This is different from the second embodiment described above.
[0073]
Similar to the second embodiment, a barrier layer 4 and a seed layer 5 are provided on the wiring structure (FIG. 2B), and the copper plating layer 6 is seeded using the electrolytic copper plating solution of the present invention. The metal layer on the main surface of the insulating layer 2 is removed by the CMP technique and is common to the copper layers 11 and 12 embedded in the openings 3 and 7 (FIG. 2C). A flat insulating layer surface having a surface level is formed (FIG. 2D).
[0074]
As in Example 2, the wafer after completion of the step (c) in FIG. 2 was extracted as a sample and processed by FIB to obtain a cross section of 100 openings 3 and 100 grooves (openings) 7. As a result of observing the cross section by SEM, it was found that no voids or seams were observed in any of the copper layers in these openings, and the copper layers were completely filled with copper.
[0075]
In addition, as a result of observing the growth process of the plating film by shortening the plating time, the film thickness at the bottom portion is thicker than the vicinity of the opening portion in all the opening portions, and as described in FIG. It turned out that it progressed preferentially from the bottom. It was also confirmed that the copper plating film 6 was preferentially deposited from the deepest bottom of the opening. In addition, a copper layer thicker than the upper part of the deep opening 3 and the vicinity thereof is formed at the upper part of the shallow opening 7 and the vicinity thereof, and the surface of the wiring structure as a whole has some undulations (unevenness). However, as shown in FIG. 2 (d), it was confirmed that there was no problem because the main surface was flat with good reproducibility by CMP.
[0076]
From the above, even with a plurality of openings having different depths, a plurality of openings having different opening diameters, or an opening having a continuous stepped bottom as shown in FIG. As in Example 2, it was found that the openings could be filled with copper with high reproducibility and high yield without generating voids or seams.
[0077]
In addition, in large-scale integrated circuit devices (LSIs), it will be required to mount more and more complex circuit function blocks on a single semiconductor substrate in the future. In connection with this, the present invention is applied to a multilayer wiring structure having a fine pattern formed by a large number of openings having different shapes and depths and a copper plating layer embedded therein as in the third embodiment. As a result, highly reliable LSIs can be manufactured in large quantities with a high yield.
[0078]
【The invention's effect】
According to the present invention, the copper plating is preferentially advanced from the bottom of the opening, whereby the opening can be filled with copper having no gaps such as voids and seams with good reproducibility. Further, since it is possible to form a fine hole or groove having no gap such as a void or a seam, it is possible to improve the reliability of a high-density semiconductor integrated circuit device having a fine embedded copper wiring and its manufacturing yield.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for each manufacturing process of a main part of a wiring structure according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view for each manufacturing process of a main part of a wiring structure according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view of a main part of a wiring structure showing a growth process of a copper plating film according to the present invention.
FIG. 4 is a cross-sectional view of a main part of a wiring structure in a comparative example for explaining the effect of the present invention.
FIG. 5 is a cross-sectional view of a main part of a wiring structure showing a growth process of a copper plating film in a comparative example for explaining the effect of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substrate of wiring structure including silicon wafer, 2 ... Insulator layer, 3 ... Hole, 4 ... Barrier layer, 5 ... Seed layer, 6 ... Electro copper plating layer, 7 ... Groove, 10 ... Wiring layer, 13 ... Void (bubble).

Claims (4)

銅イオン及び電解質を含む溶液に、次の化学構造式(1)(X-は陰イオンであり、nは0,1,2,3のいずれか)で表される化合物のうち少なくとも一つが添加されてなることを特徴とする電気銅めっき液。
Figure 0003967879
At least one of the compounds represented by the following chemical structural formula (1) (X is an anion and n is any of 0, 1, 2, 3) is added to a solution containing copper ions and an electrolyte. An electrolytic copper plating solution characterized by being made.
Figure 0003967879
上記電気銅めっき液にポリエーテル類、有機硫黄化合物、ハロゲン化物イオンのいずれかまたは複数が更に添加されてなることを特徴とする請求項1に記載の電気銅めっき液。  2. The electrolytic copper plating solution according to claim 1, wherein one or more of polyethers, organic sulfur compounds, and halide ions are further added to the electrolytic copper plating solution. 記化学構造式(1)の化合物が1〜15mg/literの濃度で添加されていることを特徴とする請求項1または2に記載の電気銅めっき液。Copper electroplating solution according to claim 1 or 2 above compounds Stories chemical formula (1) is characterized in that it is added at a concentration of 1-15 mg / liter. 複数の回路素子領域が形成された半導体ウエハの主表面の上部に開口部を有する絶縁層を設け、上記開口部内の底部及び側壁表面及び上記絶縁層の上表面にバリヤ金属層及びシード金属層を堆積し、請求項1から3のいずれかに記載の電気銅めっき液を用いた電気めっきにより上記開口部内を銅で充填することを特徴とする半導体集積回路装置の製造方法。  An insulating layer having an opening is provided on the main surface of the semiconductor wafer on which a plurality of circuit element regions are formed. 4. A method of manufacturing a semiconductor integrated circuit device, comprising depositing and filling the opening with copper by electroplating using the copper electroplating solution according to any one of claims 1 to 3.
JP2000349060A 2000-11-16 2000-11-16 Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same Expired - Fee Related JP3967879B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000349060A JP3967879B2 (en) 2000-11-16 2000-11-16 Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same
US09/888,642 US20020084191A1 (en) 2000-11-16 2001-06-26 Electric copper plating liquid and process for manufacturing semiconductor integrated circuit device using same
US10/996,382 US20050087447A1 (en) 2000-11-16 2004-11-26 Electric copper plating liquid and process for manufacturing semiconductor integrated circuit device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000349060A JP3967879B2 (en) 2000-11-16 2000-11-16 Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same

Publications (2)

Publication Number Publication Date
JP2002155390A JP2002155390A (en) 2002-05-31
JP3967879B2 true JP3967879B2 (en) 2007-08-29

Family

ID=18822531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000349060A Expired - Fee Related JP3967879B2 (en) 2000-11-16 2000-11-16 Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same

Country Status (2)

Country Link
US (2) US20020084191A1 (en)
JP (1) JP3967879B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW417249B (en) * 1997-05-14 2001-01-01 Applied Materials Inc Reliability barrier integration for cu application
JP2003183874A (en) * 2001-12-18 2003-07-03 Morita Kagaku Kogyo Kk Electrolytic plating liquid for forming copper thin film
US7316772B2 (en) * 2002-03-05 2008-01-08 Enthone Inc. Defect reduction in electrodeposited copper for semiconductor applications
JP2004342750A (en) 2003-05-14 2004-12-02 Toshiba Corp Method of manufacturing electronic device
US7150820B2 (en) * 2003-09-22 2006-12-19 Semitool, Inc. Thiourea- and cyanide-free bath and process for electrolytic etching of gold
US20050092616A1 (en) * 2003-11-03 2005-05-05 Semitool, Inc. Baths, methods, and tools for superconformal deposition of conductive materials other than copper
JP4644447B2 (en) * 2004-06-25 2011-03-02 株式会社日立製作所 Method for manufacturing printed wiring board
JP4468191B2 (en) * 2005-01-27 2010-05-26 株式会社日立製作所 Metal structure and manufacturing method thereof
JP4665531B2 (en) * 2005-01-27 2011-04-06 日立電線株式会社 Wiring board manufacturing method
US20060191784A1 (en) * 2005-02-28 2006-08-31 Hitachi Global Storage Technologies Methods and systems for electroplating wafers
JP4682285B2 (en) * 2007-08-30 2011-05-11 日立電線株式会社 Method of forming wiring and interlayer connection via
JP2010171170A (en) * 2009-01-22 2010-08-05 Hitachi Cable Ltd Copper circuit wiring board and method for manufacturing the same
US8262894B2 (en) * 2009-04-30 2012-09-11 Moses Lake Industries, Inc. High speed copper plating bath
JP5923735B2 (en) * 2011-12-21 2016-05-25 パナソニックIpマネジメント株式会社 Manufacturing method of solar cell
CN104962960A (en) * 2015-07-21 2015-10-07 深圳市新富华表面技术有限公司 Copper electroplating liquid
CN105244271A (en) * 2015-10-14 2016-01-13 上海华力微电子有限公司 Method for reducing plating defects of thick film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555315A (en) * 1984-05-29 1985-11-26 Omi International Corporation High speed copper electroplating process and bath therefor
US5174886A (en) * 1991-02-22 1992-12-29 Mcgean-Rohco, Inc. High-throw acid copper plating using inert electrolyte
DE69929967T2 (en) * 1998-04-21 2007-05-24 Applied Materials, Inc., Santa Clara ELECTROPLATING SYSTEM AND METHOD FOR ELECTROPLATING ON SUBSTRATES
US6140241A (en) * 1999-03-18 2000-10-31 Taiwan Semiconductor Manufacturing Company Multi-step electrochemical copper deposition process with improved filling capability
US6444110B2 (en) * 1999-05-17 2002-09-03 Shipley Company, L.L.C. Electrolytic copper plating method

Also Published As

Publication number Publication date
US20020084191A1 (en) 2002-07-04
JP2002155390A (en) 2002-05-31
US20050087447A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP3967879B2 (en) Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same
US8698318B2 (en) Superfilled metal contact vias for semiconductor devices
JP5346215B2 (en) Method and composition for direct copper plating and filling to form interconnects in the manufacture of semiconductor devices
JP5743907B2 (en) Process for electrodeposition of chip-to-chip, chip-wafer and wafer-wafer copper interconnects in through-silicon vias (TSV)
US20080264798A1 (en) Copper Plating Bath and Plating Method
US20060252254A1 (en) Filling deep and wide openings with defect-free conductor
JP2006519503A (en) Thin and flat film processing without defects
US20120024713A1 (en) Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv) with heated substrate and cooled electrolyte
JP6474410B2 (en) Copper electrodeposition bath containing electrochemically inert cations
JP2010507263A (en) Copper deposition to embed features in the fabrication of microelectronic devices
KR102206291B1 (en) Electrolyte and process for electroplating copper onto a barrier layer
JP4307408B2 (en) Method for hole-filling plating of base material having fine holes and / or fine grooves
JPH11274157A (en) Minute wiring forming method
JP3694594B2 (en) Method for hole-filling plating of substrate having fine holes and / or fine grooves
US20070141818A1 (en) Method of depositing materials on full face of a wafer
US6797146B2 (en) Seed layer repair
JP5419793B2 (en) Electroplated interconnect structures on integrated circuit chips.
JP2009065207A (en) Electroplated interconnection structure on integrated circuit chip
TWI281211B (en) Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer
KR20020029933A (en) Galvanizing solution for the galvanic deposition of copper
JP4307300B2 (en) Method for hole-filling plating of base material having fine holes and / or fine grooves
KR100572825B1 (en) Method of manufacturing metal layer of semiconductor device
JP4472673B2 (en) Manufacturing method of copper wiring and electrolytic solution for copper plating
US20070151859A1 (en) Method of forming copper interconnections in semiconductor devices
US20080213995A1 (en) Ultrasonic electropolishing of conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees