JP3967016B2 - Underground water level detector - Google Patents

Underground water level detector Download PDF

Info

Publication number
JP3967016B2
JP3967016B2 JP27846998A JP27846998A JP3967016B2 JP 3967016 B2 JP3967016 B2 JP 3967016B2 JP 27846998 A JP27846998 A JP 27846998A JP 27846998 A JP27846998 A JP 27846998A JP 3967016 B2 JP3967016 B2 JP 3967016B2
Authority
JP
Japan
Prior art keywords
water level
ground
underground
level detection
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27846998A
Other languages
Japanese (ja)
Other versions
JP2000111389A (en
Inventor
栄太郎 田保
孝 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP27846998A priority Critical patent/JP3967016B2/en
Priority to KR10-1999-0005096A priority patent/KR100380861B1/en
Priority to DE69931406T priority patent/DE69931406T2/en
Priority to EP03017139A priority patent/EP1359555B1/en
Priority to DE69925396T priority patent/DE69925396T2/en
Priority to EP99102943A priority patent/EP0936589B1/en
Priority to US09/251,241 priority patent/US6119535A/en
Publication of JP2000111389A publication Critical patent/JP2000111389A/en
Priority to US09/605,350 priority patent/US6530284B1/en
Priority to KR10-2002-0085320A priority patent/KR100416197B1/en
Application granted granted Critical
Publication of JP3967016B2 publication Critical patent/JP3967016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中に存する水位をリアルタイムで計測可能な地中水位検出装置に関する。
【0002】
【従来の技術】
従来、例えば山間部や傾斜地での降雨の浸透水位を計測したり、地中での水脈の位置と水脈からの浸透状況を計測する地中水位検出装置としては、図10に示すような構成のものがある。
【0003】
図10において、21は地面に打込まれた基礎コンクリートで、この基礎コンクリート21には地表側から地中に抜ける貫通穴が設けられている。また、22は基礎コンクリート1の貫通穴を通して地中に埋設される筒体で、この筒体22は地中への埋設深さに応じて適宜長さの筒部を複数本連結したもので、その軸方向に沿って筒体内外を貫通する複数の穴が設けられている。
【0004】
また、23は基礎コンクリート21上に筒体22を中央部にして設置されたケースで、このケース23内の上段部にはフロート駆動装置24が設置されている。このフロート駆動装置24は、先端にフロート25が取付けられたワイヤ26を筒体22内を通して鉛直方向に移動可能に支持し、筒体22内の下部に溜まる水位に応じてフロート25が上下動することによりワイヤ26を巻上げ又は巻下げるものである。
【0005】
さらに、ケース23内の下段部にはフロート駆動装置24により巻上げ又は巻下げられるワイヤ26の移動量から筒体22内の底部に溜まった水位を計測する計測器27と、この計測器26で計測されたデータを地中に埋設された出力ケーブル28を通して図示しない基地局に伝送する送信機29が設置されている。
【0006】
このような構成の地中水位検出装置において、降雨などで地表に降り注いだ雨水などが地中に浸透すると、この水は筒体22の軸方向に有する穴を通して筒体22内の底部に溜まる。この筒体22内の底部に溜まった水位は、計測器27によりフロート25の上下動に応じて巻上げ又は巻下げられるワイヤ26の移動量から計測される。
【0007】
【発明が解決しようとする課題】
しかし、このような地中水位検出装置では、筒体22の底部に溜まった水しか計測できず、どの地層からどのくらいの水が出ているかを判別することができないという問題があった。
【0008】
特に傾斜地などの地滑地帯では、降雨等で地表に降り注いだ雨などがどの程度地中に浸透し、且つ地滑りを起り易い地層まで雨水が浸透しているかどうかを計測できることが重要であるが、従来のフロート方式による水位検出装置ではこれらの計測をすることができず、地滑りに対して事前に有効な予測ができないのが現状である。
【0009】
また、フロート方式による水位検出装置では、フロート25が挿入されている筒体22に変形が生じ、フロート25が筒体22の内壁と接触すると、フロート25の上下動が阻害されて水位の計測が困難になるという問題もある。
【0010】
さらに、設置時にはフロート25が内壁に接触しないように鉛直方向に精度良くボーリングする必要があるが、深さが数十mにも達するときは困難なことが場合が多かった。
【0011】
本発明は上記のような問題点を解消するためになされたもので、地中の高含水地層の位置とその大きさを高精度に計測することができる地中水位検出装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記の目的を達成するため、次のような構成の地中水位検出装置を構成するものである。
【0013】
請求項1に対応する発明は、地中に埋設される筒体の周面部に地中の高含水層より浸透する水が貯溜する複数の空間部を軸方向に適宜の間隔を存してそれぞれ設け、これら各空間部に貯溜する水を電気信号として検出する水位センサをそれぞれ設けたものである。
【0014】
請求項2に対応する発明は、地中に埋設される筒体を内筒と多孔質の外筒とからなる2重構造とし、これら内筒と外筒との間に軸方向に適宜の間隔を存して設けられた複数の仕切板により小部屋をそれぞれ形成し、且つこれら各小部屋に地中の高含水層より前記外筒を通して前記小部屋に浸透する水を電気信号として検出する水位センサをそれぞれ設けたものである。
【0015】
請求項3に対応する発明は、地中に埋設される肉厚の筒体に軸方向に適宜の間隔を存し、且つ同一周面上に複数の穴をそれぞれ設け、これら各穴に地中の高含水層より浸入する水を電気信号として検出する水位センサをそれぞれ設けたものである。
【0016】
請求項4に対応する発明は、請求項1乃至請求項3のいずれか1つの項に対応する発明の地中水位検出装置において、地中に埋設される筒体の地上側端部に、前記各水位センサから出力される電気信号を演算処理して水分の有無を判定し、地中の高含水地層の位置と範囲を求める演算装置を備えたものである。
【0017】
請求項5に対応する発明は、請求項4に対応する発明の地中水位検出装置において、演算装置で求められた地中の水位検出情報を自己の位置情報と共に基地局へ伝送する通信装置を備えたものである。
【0018】
従って、上記請求項1乃至請求項5に対応する発明の地中水位検出装置にあっては、地中の高含水地層の位置とその範囲を高精度に計測することができる。
【0019】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
【0020】
図1は本発明による地中水位検出装置の実施の形態の一例を示す全体の構成図である。図1において、1は地中に埋設される内筒1a及び外筒1bからなる2重構造の筒体で、この筒体1は地中への埋設深さに応じて適宜長さの筒部を複数本連結して用いられる。
【0021】
この筒体1は図2に示すように内筒1aは鉄製で構成され、外筒1bは例えばパンチングメタルのような多孔質材で構成され、これら内筒1aと外筒1bとの間に軸方向に適宜の間隔(例えば2cm間隔)を存して設けられた複数の円環状の仕切板2により小部屋がそれぞれ形成されている。この場合、各仕切板2は内筒側が高く、外筒側が低い傾斜面に形成されている。
【0022】
なお、各小部屋の適宜箇所に浸透水の出入りを円滑にするための気抜き穴を設けてもよい。
【0023】
また、筒体1の各小部屋に対応する内筒1aの外周面には、小部屋の浸透水を検出する複数個の水位センサ3がそれぞれ取付けられ、これら水位センサ3の出力端子は内筒1aの中空部内に配線された図示しないリード線にそれぞれ接続される。この場合、各水位センサ3は小部屋に浸透水が溜まると例えば電気抵抗が変化するものが使用されている。
【0024】
ここで、一つの小部屋に対応させて設けられる複数の水位センサ3として、例えば図3(a)に示すように180度異なる位置にそれぞれ1対ずつ計2対設けられているとすれば、これら各対の水位センサ3の出力端子は図3(b)に示すように並列に接続する場合と、同図(c)に示すように直列に接続する場合がある。
【0025】
一方、図1において、4は地上側の筒体1の端部に取付けられたケースで、このケース4内の上段部に電源5及び通信装置6が設置され、また下段部には演算装置7が設置されている。
【0026】
ここで、上記電源5は各水位センサ3、演算装置6及び通信装置6を駆動する電気エネルギを供給するものであり、演算装置6は各水位センサ3の番号とオン、オフの状態を判別する機能と、この機能により判別されたオン状態の水位センサ3の番号に基づいて地表面からの距離と領域(幅)を求める演算機能とを有している。
【0027】
また、通信装置6は演算装置7で求められた水位検出情報を図示しない基地局へ自局番号とともに伝送するものである。
【0028】
次に上記のように構成された地中水位検出装置の作用を述べる。
【0029】
いま、図2に示すように地中に埋設された筒体1の高含水地層に対応する部分の各小部屋に多孔質の外筒1bより浸透水が流入しているものとする。
【0030】
このような状態にあるとき、図4に示すように各水位センサ3で検出された水位検出信号はターミナル7aを介して演算装置7に取込まれる。この演算装置7ではステップS7−1でセンサ番号とセンサのオン、オフの状態を確認する。ここでは、図2の高含水地層に対応する位置の水位センサ3はオン、それ以外の地中及び低含水地層に対応する位置の水位センサ3はオフ状態にある。
【0031】
この場合、同一軸線上にそれぞれ設けられている各水位センサ3が図3(b)に示すように並列に接続されている場合には、センサが単点のみオンで、その上下3〜4点がオフ状態にあるときは誤検出とし、これとは逆にセンサが単点のみオフで、その上下3〜4点がオン状態にあるときは連続として判定する。
【0032】
また、同一軸線上にそれぞれ設けられているセンサを複数点毎に図3(c)に示すよう直列に接続されている場合には、1点でもオフ状態にあれば誤検出とし、各点全てがオン状態にあれば、連続として判定する。
【0033】
このステップS7−1で確認されたオン状態にある水位センサの番号をステップS7−2に受渡し、ここでオン状態にあるセンサ番号とセンサ間隔距離からセンサ番号1からの距離を求める。
【0034】
ステップS7−3ではステップS7−2で求められたセンサ番号1からの距離に、地表面の基準センサ番号からの距離を加算又は減算することにより、ステップS7−4によりオン状態にあるセンサの地表面からの距離を算出する。
【0035】
他のセンサについても同様に実施した後、ステップS7−5によりセンサオンの領域(幅)と地表面からの距離を算出する。
【0036】
従って、このような演算を演算装置7で実行することにより、地中の高含水地層の位置と大きさ(範囲)を測定することとができる。
【0037】
ここで、他の計測例について図5及び図6により簡単に述べる。
【0038】
図5は降雨による地表からの浸透状態を示すもので、図示黒印部の水位センサにより浸透水位を計測して演算装置7で前述同様の演算を実行ことにより、降雨の浸透状況と粘土層(すべり面)までの距離を把握することができる。
【0039】
図6は地中での水脈の位置と水脈からの浸透状態を示すもので、図示黒印部の水位センサがオンとなる浸透水位を計測して演算装置7で前述同様の演算を実行することにより、粘土層(すべり面)までの距離を把握することができる。
【0040】
このように本実施の形態では、筒体1を構成する鉄製の内筒1aと多孔質材の外筒1bとの間に軸方向に適宜の間隔を存して設けられる複数の円環状の仕切板2により小部屋を形成し、これら各小部屋に対応する内筒1aの外周面に水位センサ3をそれぞれ設け、小部屋の浸透水を水位センサ3により検出して演算装置7により各小部屋毎の水分の有無と箇所を判定して、地中の高含水地層の位置と大きさを測定するようにしたので、次のような効果を得ることができる。
(a)高含水地層の地表からの位置と大きさを特定することができる。
(b)2重円筒構造で、且つ外筒が多孔質材で構成されているので、地中の土砂がセンサー取付部に侵入しにくく、目詰まりによる誤動作が少ない。
(c)地中の地層が動いて筒体が多少撓んでも水位センサが破壊されない限り計測が可能であり、超寿命化を図ることができる。
(d)可動部分がないため、故障が少なく、メンテナンスフリー化を図ることができる。
(e)水位計を設置する場合、設置のためのボーリング穴が完全に垂直状態になくても、位置、計測が可能なため、設置にかかる時間、費用を軽減することができる。
【0041】
なお、上記実施の形態では筒体1を構成する鉄製の内筒1aと多孔質材の外筒1bとの間に軸方向に適宜の間隔を存して設けられる複数の円環状の仕切板2により小部屋を形成し、この小部屋に水位センサ3を設けるようにしたが、図7に示すように例えば鉄製又はプラスチック材からなる肉厚の筒体10に軸方向に適宜の間隔を存し且つ同一円周上に複数の穴10aをそれぞれ設け、これら各穴10aの底面側に水位センサ3をそれぞれ設け、これを図1と同様の構成として地中に埋設するようにしてもよい。
【0042】
このような構成の地中水位検出装置としても、前述同様の作用効果を得ることができる。
【0043】
ここで、上記のような構成の地中水位検出装置を用いて地滑りを監視する場合の一例を述べる。
【0044】
図8に示すように例えばNO.1〜NO.3の地中水位検出装置が傾斜地に適宜の間隔を存して埋設された状態にあるものとする。
【0045】
このような状態において、各地中水位検出装置は雨水がいわゆる浸透層に達するとこの浸透層に至るまでのセンサがオンとなり、また雨水が脆弱地層に達するとこの脆弱地層に至るまでのセンサがオンとなる。さらに地滑りが発生する可能性の高い警報地層面に達するとこの地層面に至るまでのセンサがオンとなる。
【0046】
そして、NO.1〜NO.3の各地中水位検出装置においては、図4に示すような演算処理によりオン状態にあるセンサ番号の領域と地表面からの距離を算出し、その情報は通信装置により基地局に伝送される。
【0047】
基地局では、これらの情報を収集して情報処理を行い、その結果例えばNO.1とNO.3の地中水位検出装置のみの情報が警報地層面に至るまで水が浸透していると判定された場合には要注意とし、NO.1乃至NO.3の全ての地中水位検出装置の情報が警報地層面に至るまで水が浸透していると判定された場合には地滑りが発生する可能性が大として警報指令を発することにより、傾斜地などの地滑り発生地帯の災害の発生を事前に予知することができる。
【0048】
次に、上記のような構成の地中水位検出装置を用いて堤防決壊を監視する場合の一例を述べる。
【0049】
図9(a),(b)に示すように例えばNO.1〜NO.4の地中水位検出装置が堤防90に適宜の距離を存して埋設された状態にあるものとする。
【0050】
このような状態にあるとき、護岸91の一部が破損又は劣化してこの部分より堤防内に河川92の水が侵入すると、この水は徐々に河川92とは反対方向に浸透して行き、さらにその浸透状態が進むと堤防90の一部から土砂が流出して亀裂が生じ、やがて堤防が破壊されると水害へと進展して行く可能性がある。
【0051】
そこで、前述したように堤防90に埋設された地中水位検出装置により、護岸91の破損又は劣化部より堤防内に水が浸透して行く過程で堤防内の水を検出して、その旨を監視所に伝送することにより堤防が決壊する前に災害の発生を事前に予知することができる。
【0052】
【発明の効果】
以上述べたように本発明によれば、地中の高含水地層の位置とその大きさを高精度に計測することができる地中水位検出装置を提供できる。
【図面の簡単な説明】
【図1】本発明による地中水位検出装置の実施の形態を示す全体の構成図。
【図2】同実施の形態の筒体の詳細な構成を示す断面図。
【図3】同実施の形態において、筒体内に形成された小部屋に設けられる水位センサの接続例を示す図。
【図4】同実施の形態において、各水位センサからの検出信号に基づく演算処理を説明するためのフローチャート。
【図5】同実施の形態において、降雨による地表からの浸透状態にあるときの作用を説明するための図。
【図6】同実施の形態において、地中での水脈からの浸透状態にあるときの作用を説明するための図。
【図7】本発明による地中水位検出装置の他の実施の形態における筒体の一部を示す断面図。
【図8】本発明による地中水位検出装置を用いて地滑りを監視する場合の一例を説明するための図。
【図9】本発明による地中水位検出装置を用いて堤防決壊を監視する場合の一例を説明するための図。
【図10】従来の地中水位検出装置を示す構成説明図。
【符号の説明】
1……筒体
1a……内筒
1b……外筒
2……仕切板
3……水位センサ
4……ケース
5……電源
6……通信装置
7……演算装置
10……筒体
10a……穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underground water level detection apparatus capable of measuring a water level existing in the ground in real time.
[0002]
[Prior art]
Conventionally, as an underground water level detection device for measuring, for example, the infiltration water level of rainfall in a mountainous area or sloping ground, or measuring the position of the water vein in the ground and the infiltration state from the water vein, the configuration as shown in FIG. There is something.
[0003]
In FIG. 10, reference numeral 21 denotes foundation concrete that has been driven into the ground, and the foundation concrete 21 is provided with a through hole that extends from the ground surface side into the ground. Moreover, 22 is a cylinder embedded in the ground through the through-hole of the foundation concrete 1, and this cylinder 22 is formed by connecting a plurality of cylinders having an appropriate length according to the depth of the underground embedded, A plurality of holes penetrating the inside and outside of the cylinder are provided along the axial direction.
[0004]
Reference numeral 23 denotes a case installed on the foundation concrete 21 with the cylindrical body 22 at the center, and a float driving device 24 is installed at the upper stage in the case 23. The float driving device 24 supports a wire 26 having a float 25 attached to the tip so as to be movable in the vertical direction through the cylindrical body 22, and the float 25 moves up and down according to the water level accumulated in the lower part of the cylindrical body 22. Thus, the wire 26 is wound up or down.
[0005]
Further, a measuring instrument 27 that measures the water level accumulated at the bottom of the cylindrical body 22 based on the amount of movement of the wire 26 that is wound up or down by the float driving device 24 is measured at the lower stage in the case 23, and is measured by this measuring instrument 26. A transmitter 29 for transmitting the received data to a base station (not shown) through an output cable 28 buried in the ground is installed.
[0006]
In the underground water level detection device having such a configuration, when rainwater or the like poured on the ground surface due to rain or the like penetrates into the ground, the water accumulates at the bottom of the cylinder 22 through a hole in the axial direction of the cylinder 22. The water level accumulated at the bottom of the cylindrical body 22 is measured from the amount of movement of the wire 26 that is wound up or down by the measuring device 27 according to the vertical movement of the float 25.
[0007]
[Problems to be solved by the invention]
However, such an underground water level detection device has a problem that only water accumulated at the bottom of the cylindrical body 22 can be measured, and it cannot be determined how much water is discharged from which stratum.
[0008]
Especially in landslide areas such as slopes, it is important to be able to measure how much rain, etc. that has fallen on the surface due to rain, etc. penetrates into the ground and whether rainwater penetrates to the strata that are prone to landslides. A conventional float-level water level detection device cannot perform these measurements, and cannot effectively predict landslides in advance.
[0009]
Further, in the float type water level detection device, deformation occurs in the cylinder 22 in which the float 25 is inserted, and when the float 25 comes into contact with the inner wall of the cylinder 22, the vertical movement of the float 25 is hindered and the water level is measured. There is also the problem that it becomes difficult.
[0010]
Furthermore, it is necessary to perform boring with high accuracy in the vertical direction so that the float 25 does not contact the inner wall at the time of installation, but it is often difficult when the depth reaches several tens of meters.
[0011]
The present invention was made to solve the above-described problems, and provides an underground water level detection device capable of measuring the position and size of a highly hydrous formation in the ground with high accuracy. Objective.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention constitutes an underground water level detection device having the following configuration.
[0013]
In the invention corresponding to claim 1, a plurality of space portions in which water that permeates from the high moisture content layer in the underground is stored in the peripheral surface portion of the cylindrical body buried in the ground with appropriate intervals in the axial direction. Provided are water level sensors for detecting water stored in each space as an electrical signal.
[0014]
In the invention corresponding to claim 2, the cylinder embedded in the ground has a double structure composed of an inner cylinder and a porous outer cylinder, and an appropriate interval in the axial direction is provided between the inner cylinder and the outer cylinder. A water level that forms small chambers by a plurality of partition plates provided in the presence of each other, and detects water penetrating into the small chambers through the outer cylinder from the high water content layer in each small chamber as an electric signal. Each sensor is provided.
[0015]
In the invention corresponding to claim 3, a thick cylindrical body embedded in the ground has an appropriate interval in the axial direction, and a plurality of holes are provided on the same circumferential surface, and each of these holes is underground. The water level sensor which detects the water which infiltrates from the high water content layer of this as an electrical signal is provided, respectively.
[0016]
The invention corresponding to claim 4 is the underground water level detection device of the invention corresponding to any one of claims 1 to 3, wherein the ground side end of the cylindrical body embedded in the ground is An arithmetic device is provided for calculating the position and range of the deep water-containing formation in the ground by calculating the presence or absence of moisture by calculating the electrical signals output from each water level sensor.
[0017]
According to a fifth aspect of the present invention, there is provided a communication apparatus for transmitting the ground level detection information obtained by the arithmetic unit to the base station together with its own position information in the ground level detection apparatus of the invention corresponding to the fourth aspect. It is provided.
[0018]
Therefore, in the underground water level detection device of the invention corresponding to the first to fifth aspects of the present invention, the position and range of the underground hydrous formation can be measured with high accuracy.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
FIG. 1 is an overall configuration diagram showing an example of an embodiment of an underground water level detection apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes a double-structured cylinder composed of an inner cylinder 1a and an outer cylinder 1b embedded in the ground. The cylinder 1 has a cylindrical portion having an appropriate length according to the depth of the underground. A plurality of these are connected and used.
[0021]
As shown in FIG. 2, the inner cylinder 1a is made of iron, and the outer cylinder 1b is made of a porous material such as punching metal, and a shaft is interposed between the inner cylinder 1a and the outer cylinder 1b. Small chambers are respectively formed by a plurality of annular partition plates 2 provided with appropriate intervals (for example, intervals of 2 cm) in the direction. In this case, each partition plate 2 is formed on an inclined surface having a high inner cylinder side and a low outer cylinder side.
[0022]
In addition, you may provide the vent hole for smoothing in / out of permeated water in the appropriate location of each small room.
[0023]
A plurality of water level sensors 3 for detecting permeated water in the small rooms are respectively attached to the outer peripheral surface of the inner cylinder 1a corresponding to each small room of the cylindrical body 1, and the output terminals of these water level sensors 3 are the inner cylinders. The lead wires (not shown) wired in the hollow portion 1a are respectively connected. In this case, each water level sensor 3 is used, for example, whose electric resistance changes when permeated water accumulates in a small room.
[0024]
Here, as a plurality of water level sensors 3 provided corresponding to one small room, for example, as shown in FIG. The output terminals of each pair of water level sensors 3 may be connected in parallel as shown in FIG. 3B, or may be connected in series as shown in FIG.
[0025]
On the other hand, in FIG. 1, reference numeral 4 denotes a case attached to the end portion of the cylinder 1 on the ground side. The power source 5 and the communication device 6 are installed in the upper part of the case 4, and the arithmetic unit 7 is provided in the lower part. Is installed.
[0026]
Here, the power source 5 supplies electric energy for driving the water level sensors 3, the arithmetic device 6 and the communication device 6. The arithmetic device 6 determines the number of each water level sensor 3 and the on / off state. And a calculation function for obtaining a distance and a region (width) from the ground surface based on the number of the water level sensor 3 in the ON state determined by this function.
[0027]
The communication device 6 transmits the water level detection information obtained by the computing device 7 to a base station (not shown) together with its own station number.
[0028]
Next, the operation of the underground water level detection apparatus configured as described above will be described.
[0029]
Now, as shown in FIG. 2, it is assumed that the permeated water flows from the porous outer cylinder 1b into each small chamber of the portion corresponding to the high water content layer of the cylinder 1 embedded in the ground.
[0030]
In such a state, as shown in FIG. 4, the water level detection signal detected by each water level sensor 3 is taken into the arithmetic unit 7 via the terminal 7a. In this arithmetic unit 7, the sensor number and the on / off state of the sensor are confirmed in step S7-1. Here, the water level sensor 3 at the position corresponding to the high water content stratum in FIG. 2 is on, and the water level sensors 3 at the positions corresponding to the other underground and low water content strata are in the off state.
[0031]
In this case, when the water level sensors 3 provided on the same axis are connected in parallel as shown in FIG. 3B, only one point is on, and 3 to 4 points above and below the sensor. When the sensor is in the off state, it is determined as false detection. Conversely, when the sensor is off at only one point, and when the upper and lower three to four points are in the on state, it is determined as continuous.
[0032]
In addition, when sensors provided on the same axis are connected in series as shown in FIG. 3 (c) for each of a plurality of points, a false detection is detected if even one point is in an off state. If is in the ON state, it is determined as continuous.
[0033]
The number of the water level sensor in the on state confirmed in step S7-1 is delivered to step S7-2, and the distance from sensor number 1 is obtained from the sensor number in the on state and the sensor interval distance.
[0034]
In step S7-3, by adding or subtracting the distance from the reference sensor number on the ground surface to the distance from sensor number 1 obtained in step S7-2, the ground of the sensor in the on state in step S7-4 is obtained. Calculate the distance from the surface.
[0035]
After the other sensors are similarly implemented, the sensor-on area (width) and the distance from the ground surface are calculated in step S7-5.
[0036]
Therefore, by executing such calculation by the calculation device 7, the position and size (range) of the underground high water content formation can be measured.
[0037]
Here, another measurement example will be briefly described with reference to FIGS.
[0038]
FIG. 5 shows the infiltration state from the ground surface due to rainfall. By measuring the infiltration water level with the water level sensor indicated by the black mark in the figure and executing the same calculation by the arithmetic unit 7 as described above, the infiltration state of the rain and the clay layer ( The distance to the (slip surface) can be grasped.
[0039]
FIG. 6 shows the position of the water vein in the ground and the state of seepage from the water vein. The penetrating water level at which the water level sensor indicated by the black mark in the figure is turned on is measured and the calculation device 7 performs the same calculation as described above. Thus, the distance to the clay layer (slip surface) can be grasped.
[0040]
As described above, in the present embodiment, a plurality of annular partitions provided with an appropriate interval in the axial direction between the iron inner cylinder 1a and the porous outer cylinder 1b constituting the cylinder 1. A small room is formed by the plate 2, a water level sensor 3 is provided on the outer peripheral surface of the inner cylinder 1 a corresponding to each small room, and the permeated water in the small room is detected by the water level sensor 3. Since the presence and location and the location of moisture for each are determined and the position and size of the underground high water content formation are measured, the following effects can be obtained.
(A) It is possible to specify the position and size of the highly hydrous stratum from the ground surface.
(B) Since the outer cylinder is made of a porous material with a double cylinder structure, the earth and sand in the ground are unlikely to enter the sensor mounting portion, and there are few malfunctions due to clogging.
(C) Even if the underground layer moves and the cylinder is slightly bent, measurement is possible as long as the water level sensor is not destroyed, and the life span can be extended.
(D) Since there are no movable parts, there are few failures and maintenance-free operation can be achieved.
(E) When installing a water level gauge, the position and measurement can be performed even if the borehole for installation is not completely vertical, so that the time and cost required for installation can be reduced.
[0041]
In the above-described embodiment, a plurality of annular partition plates 2 provided at appropriate intervals in the axial direction between the iron inner cylinder 1a and the porous outer cylinder 1b constituting the cylindrical body 1. A small chamber is formed by this, and the water level sensor 3 is provided in this small chamber. However, as shown in FIG. 7, a thick cylinder 10 made of, for example, iron or plastic has an appropriate interval in the axial direction. In addition, a plurality of holes 10a may be provided on the same circumference, and the water level sensor 3 may be provided on the bottom surface side of each of the holes 10a, and this may be embedded in the ground as the same configuration as in FIG.
[0042]
Also in the underground water level detection device having such a configuration, the same effect as described above can be obtained.
[0043]
Here, an example in the case of monitoring a landslide using the underground water level detection apparatus of the above structures is described.
[0044]
As shown in FIG. 1-NO. It is assumed that the underground water level detection device 3 is embedded in an inclined ground with an appropriate interval.
[0045]
In such a state, the water level detection device in each location turns on the sensor to reach the penetration layer when rainwater reaches the soaking layer, and turns on the sensor to reach the vulnerable layer when rainwater reaches the vulnerable layer. It becomes. Further, when reaching the warning stratum surface where landslide is likely to occur, the sensor to reach this stratum surface is turned on.
[0046]
And NO. 1-NO. In the water level detecting device 3 in each location, the distance from the sensor number region in the ON state and the ground surface is calculated by the arithmetic processing as shown in FIG. 4, and the information is transmitted to the base station by the communication device.
[0047]
The base station collects this information and performs information processing. As a result, for example, NO. 1 and NO. If it is determined that the information of only the underground water level detection device of No. 3 has permeated the alarm stratum surface, it should be noted that NO. 1 to NO. If it is determined that all the underground water level detection devices in 3 have penetrated the water until they reach the alarm stratum surface, the possibility of a landslide is high, and an alarm command is issued. The occurrence of disasters in landslide areas can be predicted in advance.
[0048]
Next, an example in the case of monitoring a levee break using the underground water level detection apparatus having the above configuration will be described.
[0049]
As shown in FIGS. 9A and 9B, for example, NO. 1-NO. It is assumed that 4 underground water level detection devices are embedded in the dike 90 with an appropriate distance.
[0050]
In such a state, when a part of the revetment 91 is damaged or deteriorated and the water of the river 92 enters the bank from this part, the water gradually permeates in the opposite direction to the river 92, Furthermore, when the infiltration state progresses, the earth and sand flows out from a part of the dyke 90 and cracks occur, and when the levee is destroyed, there is a possibility of progressing to flood damage.
[0051]
Therefore, as described above, the underground water level detection device embedded in the dike 90 detects the water in the dike in the process of water penetrating into the dike from the damaged or deteriorated part of the revetment 91, By transmitting to the monitoring station, it is possible to predict the occurrence of a disaster before the levee breaks down.
[0052]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an underground water level detection device capable of measuring the position and size of a highly hydrous formation in the ground with high accuracy.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an embodiment of an underground water level detection apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing a detailed configuration of a cylindrical body according to the embodiment.
FIG. 3 is a diagram showing a connection example of a water level sensor provided in a small room formed in a cylinder in the embodiment.
FIG. 4 is a flowchart for explaining calculation processing based on detection signals from each water level sensor in the embodiment;
FIG. 5 is a diagram for explaining the operation when the infiltration state from the ground surface is caused by rainfall in the embodiment;
FIG. 6 is a diagram for explaining the operation when the infiltration state from the water vein in the ground in the embodiment.
FIG. 7 is a sectional view showing a part of a cylinder in another embodiment of the underground water level detection device according to the present invention.
FIG. 8 is a diagram for explaining an example when landslide is monitored using the underground water level detection device according to the present invention.
FIG. 9 is a diagram for explaining an example in the case of monitoring a bank break using the underground water level detection device according to the present invention.
FIG. 10 is a configuration explanatory view showing a conventional underground water level detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Tube 1a ... Inner tube 1b ... Outer tube 2 ... Partition plate 3 ... Water level sensor 4 ... Case 5 ... Power source 6 ... Communication device 7 ... Arithmetic device 10 ... Tube 10a ... …hole

Claims (5)

地中に埋設される筒体の周面部に地中の高含水層より浸透する水が貯溜する複数の空間部を軸方向に適宜の間隔を存してそれぞれ設け、これら各空間部に貯溜する水を電気信号として検出する水位センサをそれぞれ設けたことを特徴とする地中水位検出装置。A plurality of space portions for storing water penetrating from the underground high water content layer are provided at appropriate intervals in the axial direction on the peripheral surface portion of the cylindrical body embedded in the ground, and stored in each of these space portions. An underground water level detecting device provided with a water level sensor for detecting water as an electrical signal. 地中に埋設される筒体を内筒と多孔質の外筒とからなる2重構造とし、これら内筒と外筒との間に軸方向に適宜の間隔を存して設けられた複数の仕切板により小部屋をそれぞれ形成し、且つこれら各小部屋に地中の高含水層より前記外筒を通して前記小部屋に浸透する水を電気信号として検出する水位センサをそれぞれ設けたことを特徴とする地中水位検出装置。The cylinder embedded in the ground has a double structure consisting of an inner cylinder and a porous outer cylinder, and a plurality of cylinders provided with appropriate intervals in the axial direction between the inner cylinder and the outer cylinder. Each of the small rooms is formed by a partition plate, and each of the small rooms is provided with a water level sensor that detects water penetrating into the small room through the outer cylinder from an underground high water content layer as an electric signal. Underground water level detection device. 地中に埋設される肉厚の筒体に軸方向に適宜の間隔を存し、且つ同一周面上に複数の穴をそれぞれ設け、これら各穴に地中の高含水層より浸入する水を電気信号として検出する水位センサをそれぞれ設けたことを特徴とする地中水位検出装置。Thick cylinders embedded in the ground have appropriate intervals in the axial direction, and a plurality of holes are provided on the same circumferential surface, respectively, and water that infiltrates from these highly water-containing layers into these holes. An underground water level detection device provided with a water level sensor for detecting an electrical signal. 請求項1乃至請求項3のいずれか1つの項に記載の地中水位検出装置において、地中に埋設される筒体の地上側端部に、前記各水位センサから出力される電気信号を演算処理して水分の有無を判定し、地中の高含水地層の位置と範囲を求める演算装置を備えたことを特徴とする地中水位検出装置。The underground water level detection device according to any one of claims 1 to 3, wherein an electrical signal output from each of the water level sensors is calculated at a ground-side end portion of a cylindrical body embedded in the ground. An underground water level detection device comprising an arithmetic device that performs processing to determine the presence or absence of moisture and obtains the position and range of a highly hydrous formation in the ground. 請求項4に記載の地中水位検出装置において、演算装置で求められた地中の水位検出情報を自己の位置情報と共に基地局へ伝送する通信装置を備えたことを特徴とする地中水位検出装置5. The underground water level detection device according to claim 4, further comprising a communication device that transmits the underground water level detection information obtained by the arithmetic unit to the base station together with its own location information. apparatus
JP27846998A 1998-02-17 1998-09-30 Underground water level detector Expired - Fee Related JP3967016B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP27846998A JP3967016B2 (en) 1998-09-30 1998-09-30 Underground water level detector
KR10-1999-0005096A KR100380861B1 (en) 1998-02-17 1999-02-12 Geographical displacement sensing unit and monitoring apparatus using the same
EP03017139A EP1359555B1 (en) 1998-02-17 1999-02-13 Underground water level sensing unit
DE69925396T DE69925396T2 (en) 1998-02-17 1999-02-13 Geographic motion scanner
DE69931406T DE69931406T2 (en) 1998-02-17 1999-02-13 Under water-level detection unit
EP99102943A EP0936589B1 (en) 1998-02-17 1999-02-13 Geographical displacement sensing unit
US09/251,241 US6119535A (en) 1998-02-17 1999-02-16 Underground water level sensing unit and ground monitoring system using the same
US09/605,350 US6530284B1 (en) 1998-02-17 2000-06-28 Geographical displacement sensing unit and monitoring apparatus using the same
KR10-2002-0085320A KR100416197B1 (en) 1998-02-17 2002-12-27 Geographical displacement sensing unit and monitoring apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27846998A JP3967016B2 (en) 1998-09-30 1998-09-30 Underground water level detector

Publications (2)

Publication Number Publication Date
JP2000111389A JP2000111389A (en) 2000-04-18
JP3967016B2 true JP3967016B2 (en) 2007-08-29

Family

ID=17597774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27846998A Expired - Fee Related JP3967016B2 (en) 1998-02-17 1998-09-30 Underground water level detector

Country Status (1)

Country Link
JP (1) JP3967016B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047847A (en) * 2009-08-28 2011-03-10 Sanwacon Co Ltd Ground water level detector
DE102010015154A1 (en) 2010-04-16 2011-10-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for storing a working fluid for a motor vehicle
JP6691492B2 (en) * 2017-02-13 2020-04-28 中日本建設コンサルタント株式会社 Structure and method for checking the filling status of underground caverns
CN108168645B (en) * 2018-03-23 2024-01-23 中国矿业大学(北京) Multi-layer section simultaneous-measurement casing pipe and observation well

Also Published As

Publication number Publication date
JP2000111389A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
KR102322975B1 (en) Reinforcing method for slope
US6530284B1 (en) Geographical displacement sensing unit and monitoring apparatus using the same
JP5473760B2 (en) Pore water pressure measuring device, soft ground improvement method using it, ground dynamics grasping method for underground buried objects, and ground dynamics grasping method for embankment structures
US20110012728A1 (en) Sensor and System to Detect Bridge Scour
US20070251326A1 (en) Pressure sensitive cable device for monitoring rock and soil displacement
CN103234490B (en) A kind of water seal underground oil storage cave depot water seal effect measure and control device
JP3894494B2 (en) Sediment disaster prediction system, regional information provision system, and sediment disaster prediction method
AU2018101029A4 (en) Method and apparatus for monitoring elevation
KR100812389B1 (en) Measurement method for observation of landslide
US7832274B1 (en) System and method for pneumatic scour detection
CN203822381U (en) Drilling and embedding layered electromagnetic-acoustic monitoring device for underground water disasters
KR20190009869A (en) Sensor for landslide detection and landslide detecting system includng the same
KR20190123616A (en) Moisture content measuring device which can prevent disturbance of soil ground
JP3967016B2 (en) Underground water level detector
JP4331285B2 (en) Ground monitoring device
CN111928784B (en) Slope displacement monitoring device
KR102237268B1 (en) Detecting system of flow variation
JPS6160208B2 (en)
CN113931697A (en) Tunnel water seepage early warning device and tunnel water seepage monitoring and processing method
JP6993296B2 (en) Cutting edge penetration width measuring device and caisson subsidence method
JP2004285668A (en) Detector for underground water level and water pressure
Wanare et al. Recent advances in early warning systems for landslide forecasting
CN215448010U (en) Device capable of synchronously detecting integrity of pile body and underground water level
KR102486262B1 (en) leakage monitoring system
CN212052682U (en) Simple automatic alarm device for monitoring water level change and deformation around foundation pit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees