JPS6160208B2 - - Google Patents

Info

Publication number
JPS6160208B2
JPS6160208B2 JP9907982A JP9907982A JPS6160208B2 JP S6160208 B2 JPS6160208 B2 JP S6160208B2 JP 9907982 A JP9907982 A JP 9907982A JP 9907982 A JP9907982 A JP 9907982A JP S6160208 B2 JPS6160208 B2 JP S6160208B2
Authority
JP
Japan
Prior art keywords
slope
anchor rod
detection mechanism
displacement
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9907982A
Other languages
Japanese (ja)
Other versions
JPS58218520A (en
Inventor
Minoru Abe
Yoichi Ootake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9907982A priority Critical patent/JPS58218520A/en
Publication of JPS58218520A publication Critical patent/JPS58218520A/en
Publication of JPS6160208B2 publication Critical patent/JPS6160208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

【発明の詳細な説明】 本発明は斜面崩壊現象、すなわち、自然にある
いは人工的に堆積した土砂等の斜面が雨水その他
の原因により崩壊する現象を事前に予知しあるい
は斜面崩壊の突発的発生を迅速に検知することを
可能ならしめる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of predicting in advance a slope failure phenomenon, that is, a phenomenon in which a slope of naturally or artificially deposited earth and sand collapses due to rainwater or other causes, or to prevent the sudden occurrence of a slope failure. The present invention relates to a device that enables rapid detection.

土砂等の斜面の崩壊は一般に前兆現象が明確で
はなく、従来から土中ひずみ計、傾斜計あるいは
水位計などを用いる方式や、間隙水圧、地表面移
動あるいは破壊音を観測ないし検知する方式など
の諸策が試みられているが、いずれも精密測定が
困難で、データの収集作業が容易でなく、さらに
膨大な長期間のデータを分析して異常を判定する
必要があり、事後の原因分析等には役立つもの
の、崩壊現象の予知を適確に行えるまでには到つ
ていないのが実状である。
In general, there are no clear precursors to the collapse of slopes due to soil and sand, and conventional methods include methods that use soil strain meters, inclinometers, or water level meters, and methods that observe or detect pore water pressure, ground surface movement, or failure sounds. Various measures have been tried, but all of them are difficult to measure accurately, data collection is not easy, and it is necessary to analyze huge amounts of long-term data to determine abnormalities, and it is difficult to analyze the cause after the fact. However, the reality is that we have not yet reached the point where we can accurately predict collapse phenomena.

従来方式のうち、地表面の移動だけは、長期に
観測すれば累積変動量から崩壊の時期予測が可能
となる場合があるが、計測方法として提案されて
いるものは、亀裂部分を挾んだ両側地盤に杭を打
ち、杭間にワイヤを張架してその伸縮を伸縮計に
より測定するというものであり、構造的な面から
設置数が制限され、複数のデータから斜面の面状
の崩壊を予知するためには、データが不足するか
あるいはデータの解析が複雑なものとなつて予知
の確度を落さざるを得なくなる。
Among the conventional methods, if only the movement of the ground surface is observed over a long period of time, it may be possible to predict the time of collapse from the cumulative amount of change, but the proposed measurement method Piles are driven into the ground on both sides, wire is stretched between the piles, and the expansion and contraction is measured using an extensometer.The number of installations is limited due to structural reasons, and multiple data can be used to determine whether the slope is planarly collapsing. In order to make predictions, either there is a lack of data or the analysis of the data becomes complicated, making predictions less accurate.

そこで本発明は従来技術の持つ欠点を除去し
て、構造が簡単で斜面へ複数面状に配設すること
が容易に可能であり、しかも斜面の崩壊に一義的
に対応する物理量を捉えることにより限界値との
比較が容易に行えるような斜面崩壊予知・検知装
置を提供するこを目的とする。
Therefore, the present invention eliminates the drawbacks of the prior art, has a simple structure, can be easily installed on multiple surfaces on a slope, and moreover, by capturing the physical quantity that uniquely corresponds to slope failure. The purpose is to provide a slope failure prediction/detection device that allows easy comparison with limit values.

この目的は、本発明によれば、一端が固定地盤
に固定され他端が斜面に沿つて配設された保護基
材等の受圧部材を貫通してなるアンカーロツド
と、このアンカーロツドと前記受圧部材との相対
的変位を検出する変位検知機構とを、斜面の複数
個所に設けることによつて達成される。
According to the present invention, an anchor rod having one end fixed to a fixed ground and the other end penetrating a pressure receiving member such as a protective base material disposed along a slope; This is achieved by providing displacement detection mechanisms at multiple locations on the slope.

アンカーロツドと受圧部材との相対的変位を検
出する変位検知機構としては、変位そのものを長
さの変化として検知するタイプのもの(たとえば
固定部と可動部とに設けられた複数の光電素子の
位置ずれを検出するようなもの)や、長さの変化
を電気抵抗の変化に置き換えるタイプのもの、な
いしは変位を圧力の変化として検知するタイプの
ものなどが用いられ得るが、設置環境から要求さ
れる構造的堅牢性と信頼性という観点から、圧力
検知素子ないし機構を用いるのが最良の実施態様
といえよう。
Displacement detection mechanisms that detect the relative displacement between the anchor rod and the pressure-receiving member are of the type that detects the displacement itself as a change in length (for example, a displacement detection mechanism that detects the relative displacement of the anchor rod and the pressure-receiving member). A type that detects a change in electrical resistance), a type that replaces a change in length with a change in electrical resistance, or a type that detects displacement as a change in pressure can be used, but depending on the structure required by the installation environment. From the standpoint of physical robustness and reliability, the best implementation would be to use a pressure sensing element or mechanism.

そこで以下に変位検知機構として圧力検知機構
を用いた実施例について図面に基づいて説明す
る。
Therefore, an embodiment using a pressure detection mechanism as the displacement detection mechanism will be described below based on the drawings.

第1図は本発明を適用したシステムの概略を示
すもので、土砂等からなる斜面1にコンクリート
ブロツクなどから成る斜面保護枠2が設けられて
いる場合に、その保護枠2に後述する圧力検知機
構3,3,…を複数個配置し、各圧力検知機構か
らの出力導線4,4,…を電柱などに取り付けら
れた制御箱5に導き、公知のモデム(変復調装
置)6を介して電力線ないし電話線7を通じて図
示しない道路管理事務所等の集中監視盤に信号を
伝送するようになつている。さらに斜面の近傍に
は点滅ないしブザー等による警報装置8が設置さ
れ、制御箱5ないしは道路管理事務所からの斜面
崩壊予知信号に基づいて斜面近傍通過車両、歩行
者ないしは近傍居住者に対して警報を発するよう
になされている。制御箱5への給電のために太陽
電池9や図示しないバツテリを備えるのが好都合
である。第1図に示すシステムはあくまでも一例
であつて、環境に応じた変形が可能である。
FIG. 1 shows an outline of a system to which the present invention is applied. When a slope protection frame 2 made of concrete blocks or the like is provided on a slope 1 made of earth and sand, pressure detection is performed on the protection frame 2 as described below. A plurality of mechanisms 3, 3, ... are arranged, and the output conductors 4, 4, ... from each pressure detection mechanism are led to a control box 5 attached to a utility pole, etc., and connected to a power line via a known modem (modulator/demodulator) 6. Alternatively, the signal is transmitted through the telephone line 7 to a centralized monitoring board at a road management office or the like (not shown). Further, a warning device 8 with flashing or buzzing is installed near the slope, and based on the slope failure prediction signal from the control box 5 or the road management office, it alerts vehicles passing near the slope, pedestrians, or nearby residents. It is designed to emit. It is convenient to provide a solar cell 9 or a battery (not shown) to supply power to the control box 5. The system shown in FIG. 1 is just an example, and can be modified according to the environment.

さて、第2図は本発明の実施例を示すもので、
斜面11に設けられる斜面保護枠12の一部に貫
通するようにアンカーロツド13を固定地盤14
に到達するまで埋め込む。必要に応じてモルタル
15等を予め注入しておき、アンカーロツド13
の位置ずれが生じないようにしておくのがよい。
斜面保護枠12から突き出たアンカーロツド13
の端部には、斜面保護枠12との間に圧力検知機
構16を介挿する形でストツパないしボルト17
が設けられる。
Now, FIG. 2 shows an embodiment of the present invention.
The anchor rod 13 is fixed to the ground 14 so as to penetrate a part of the slope protection frame 12 provided on the slope 11.
Embed until you reach . If necessary, pour mortar 15 or the like in advance and attach the anchor rod 13.
It is best to make sure that no misalignment occurs.
Anchor rod 13 protruding from slope protection frame 12
A stopper or bolt 17 is installed at the end of the slope protection frame 12 with a pressure detection mechanism 16 inserted therebetween.
will be provided.

第3図は圧力検知機構16の部分を更に拡大し
て示すもので、第2図と同一の符号は同一の部材
を示す。
FIG. 3 shows a further enlarged view of the pressure detection mechanism 16, and the same reference numerals as in FIG. 2 indicate the same members.

圧力検知機構16は剛性のケース18とこのケ
ース18にねじ止めされる蓋19とを持つ。ケー
ス18内にはアンカーロツド13の端部20がケ
ース内壁を摺動し得るように配設され、端部20
の内面ケース18の斜面保護枠12側の内面21
との間にばね22が介装される。さらにケース1
8の内面21にはスイツチ23が設けられ、この
スイツチから導線24がケース18の外部に引き
出されている。アンカーロツド13は斜面保護枠
12に穿設された孔24内を間隙をもつて貫通し
ているが、場合によつてはこの間隙内にアンカー
ロツド13との滑動の良好なリングを挿入しても
よい。
The pressure detection mechanism 16 has a rigid case 18 and a lid 19 screwed to the case 18. An end portion 20 of the anchor rod 13 is disposed within the case 18 so as to be able to slide on the inner wall of the case.
The inner surface 21 of the inner surface case 18 on the side of the slope protection frame 12
A spring 22 is interposed between the two. Furthermore, case 1
A switch 23 is provided on the inner surface 21 of the case 8, and a conductive wire 24 is drawn out from the switch to the outside of the case 18. The anchor rod 13 passes through a hole 24 drilled in the slope protection frame 12 with a gap, but depending on the case, a ring that can easily slide with the anchor rod 13 may be inserted into this gap. .

かかる圧力検知機構を斜面保護枠12に配設す
る際には、予め固定地盤内にモルタル15をパイ
プ等を介して打ち込んでおき、ばね22を内装し
たケース18を斜面保護枠12に固定した状態で
アンカーロツド13を押し込み最後に蓋19をケ
ース18の外周に切つたねじにねじ込めばよい。
When installing such a pressure detection mechanism in the slope protection frame 12, mortar 15 is driven into the fixed ground through a pipe or the like in advance, and the case 18 containing the spring 22 is fixed to the slope protection frame 12. Push in the anchor rod 13 and finally screw the lid 19 onto the screw cut on the outer periphery of the case 18.

かかる構成において、モルタル15が十分に固
化した状態ではアンカーロツド13の端部20は
固定地盤に対して不動の位置を保つ。しかして斜
面を構成する土壌がたとえば集中豪雨等で多量に
水を含んで斜面保護枠に過大な土圧が加わると、
斜面保護枠12はまず外方に膨出ししかるのち決
壊して斜面崩壊を惹き起すが、決壊前の外方に膨
出した状態において斜面保護枠上のケース18も
アンカーロツド13に対し相対的に外方に変位す
る結果、スイツチ23のアクチユエータがアンカ
ーロツド13の端部20の内面に当接してスイツ
チ23が動作するに到る。
In such a configuration, when the mortar 15 is sufficiently hardened, the end 20 of the anchor rod 13 remains in an immovable position relative to the fixed ground. However, if the soil that makes up the slope contains a large amount of water due to, for example, torrential rain, excessive earth pressure is applied to the slope protection frame.
The slope protection frame 12 first bulges outward and then collapses, causing a slope failure. However, in the outward bulge state before collapse, the case 18 on the slope protection frame also bulges outward relative to the anchor rod 13. As a result of this displacement, the actuator of the switch 23 comes into contact with the inner surface of the end 20 of the anchor rod 13, and the switch 23 is operated.

したがつて第1図に示すごとくかかる圧力検知
機構を複数個直列に接続する場合には、上記スイ
ツチ23として動作時に開路するものを用いれ
ば、常時導通状態にある信号線が非導通状態とな
ることをもつて圧力検知機構動作と判断できるこ
とになり、逆に複数の圧力検知機構を並列接続す
る場合には、スイツチ23として動作時に閉路す
るものを用いれば信号線の非導通状態から導通状
態への変化をもつて圧力検知機構の動作を把握す
ることが可能となる。
Therefore, when a plurality of such pressure detection mechanisms are connected in series as shown in FIG. 1, if the switch 23 is one that opens during operation, the signal line that is always in a conductive state becomes non-conductive. This means that it can be determined that the pressure detection mechanism is operating.On the other hand, if multiple pressure detection mechanisms are connected in parallel, using a switch 23 that closes during operation will change the signal line from a non-conducting state to a conducting state. It is possible to understand the operation of the pressure detection mechanism based on the change in .

本発明による圧力検知機構は固定地盤に対する
斜面保護枠の相対的な変位を直接検知するもので
あるから、スイツチ23が動作するに到るストロ
ークを斜面保護枠の物理的崩壊限界直前の値に設
定することが可能となり、したがつて従来装置よ
り精度のよい予知が可能となる。
Since the pressure detection mechanism according to the present invention directly detects the relative displacement of the slope protection frame with respect to the fixed ground, the stroke that causes the switch 23 to operate is set to a value immediately before the physical collapse limit of the slope protection frame. Therefore, more accurate prediction than conventional devices is possible.

なお、本発明の実施に当つては次のような変形
例が多数考えられる。
It should be noted that in carrying out the present invention, many modifications such as the following can be considered.

まず変位検知機構は第3図図示のものに限られ
ないことはいうまでもない。要はアンカーロツド
と斜面保護枠との相対的変位を検出できるもので
あればよい。
First, it goes without saying that the displacement detection mechanism is not limited to that shown in FIG. In short, any device that can detect the relative displacement between the anchor rod and the slope protection frame is sufficient.

また、変位検知機構を設置する部材は斜面保護
枠そのものでなくともよく、要は土圧を検知する
ことのできる受圧部材として構成されたものであ
ればよい。
Further, the member on which the displacement detection mechanism is installed does not have to be the slope protection frame itself, but may be any member configured as a pressure receiving member capable of detecting earth pressure.

さらに、変位検知機構の出力処理も、単一の変
位検知機構動作をもつて崩壊予知を行なわずに、
複数個の変位検知機構の動作によりはじめて崩壊
予知信号を出すように構成してもよい。これは各
変位検知機構から個々の信号線を制御箱内に導く
ことにより周知の論理回路を用いて要易に実現可
能である。
Furthermore, the output processing of the displacement detection mechanism does not involve prediction of collapse by the operation of a single displacement detection mechanism.
The collapse prediction signal may be outputted only by the operation of a plurality of displacement detection mechanisms. This can be easily realized using a well-known logic circuit by leading individual signal lines from each displacement detection mechanism into the control box.

変位検知機構の出力を2段階として、一つを受
圧部材の破壊直前の値に、他の一つを破壊値に設
定することも目的に叶つている。第3図の例でい
えば異なるストロークで動作する二つのリミツト
スイツチを用いればこの目的は達成される。短い
ストロークで動作するリミツトスイツチが更に続
くストロークにより破壊されることがあつても実
質上問題はない。なんとなればこの種の装置の性
格上、斜面崩壊後の再利用は期待できないからで
ある。
It is also possible to set the output of the displacement detection mechanism in two stages, with one set at the value immediately before the pressure-receiving member breaks, and the other set at the breaking value. In the example of FIG. 3, this objective is achieved by using two limit switches operating with different strokes. There is virtually no problem even if a limit switch that operates with a short stroke is destroyed by further strokes. This is because, due to the nature of this type of equipment, it cannot be expected to be reused after a slope failure.

以上述べたように、本発明は固定地盤に固定さ
れたアンカーロツドと斜面に沿つて配設された受
圧部材との相対的変位を検出することにより、構
造的にも簡単で斜面に複数個設置することがで
き、かつ動作が臨界的に設定できる装置を提供す
ることが可能となり、人災等の防止に貢献すると
ころ大である。
As described above, the present invention is structurally simple and allows multiple installations on a slope by detecting the relative displacement between the anchor rod fixed to the fixed ground and the pressure receiving member arranged along the slope. This makes it possible to provide a device that can perform critical operations and set its operation at critical levels, which greatly contributes to the prevention of man-made disasters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したシステムの略示図、
第2図は本発明の実施例の概念図、第3図は本発
明の実施例の部分断面図である。 1,11……斜面、2,12……斜面保護枠、
3,16……圧力検知機構、4,24……出力導
線(信号線)、5……制御箱、13……アンカー
ロツド、14……固定地盤、22…ばね、23…
…スイツチ。
FIG. 1 is a schematic diagram of a system to which the present invention is applied;
FIG. 2 is a conceptual diagram of an embodiment of the present invention, and FIG. 3 is a partial sectional view of the embodiment of the present invention. 1, 11... Slope, 2, 12... Slope protection frame,
3, 16...Pressure detection mechanism, 4, 24...Output conductor (signal line), 5...Control box, 13...Anchor rod, 14...Fixed ground, 22...Spring, 23...
...Switch.

Claims (1)

【特許請求の範囲】 1 一端が固定地盤に固定され他端が斜面に沿つ
て配設された保護基材等の受圧部材を貫通してな
るアンカーロツドと、アンカーロツドと前記受圧
部材との相対的変位を検出する変位検知機構と
を、斜面の複数個所に設けることを特徴とする斜
面崩壊予知・検知装置。 2 特許請求の範囲第1項記載の装置において、
変位検知機構が受圧部材の表面とアンカーロツド
の他端との間に配置された圧力検知機構であるこ
とを特徴とする斜面崩壊予知・検知装置。
[Claims] 1. An anchor rod having one end fixed to a fixed ground and the other end penetrating a pressure receiving member such as a protective base material disposed along a slope, and relative displacement between the anchor rod and the pressure receiving member. A slope failure prediction/detection device characterized in that displacement detection mechanisms for detecting displacement are provided at multiple locations on a slope. 2. In the device according to claim 1,
A slope failure prediction/detection device characterized in that the displacement detection mechanism is a pressure detection mechanism disposed between the surface of the pressure receiving member and the other end of the anchor rod.
JP9907982A 1982-06-09 1982-06-09 Predicting and detecting device for degradation of slope Granted JPS58218520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9907982A JPS58218520A (en) 1982-06-09 1982-06-09 Predicting and detecting device for degradation of slope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9907982A JPS58218520A (en) 1982-06-09 1982-06-09 Predicting and detecting device for degradation of slope

Publications (2)

Publication Number Publication Date
JPS58218520A JPS58218520A (en) 1983-12-19
JPS6160208B2 true JPS6160208B2 (en) 1986-12-19

Family

ID=14237905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9907982A Granted JPS58218520A (en) 1982-06-09 1982-06-09 Predicting and detecting device for degradation of slope

Country Status (1)

Country Link
JP (1) JPS58218520A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4331285B2 (en) * 1998-07-16 2009-09-16 東芝プラントシステム株式会社 Ground monitoring device
KR100719176B1 (en) 2005-12-15 2007-05-17 (주) 종합건축사사무소 동일건축 Watch apparatus for monitoring displacement of earth anchor
JP4892304B2 (en) * 2006-09-01 2012-03-07 古野電気株式会社 Observation device and land displacement monitoring system
JP5500374B2 (en) * 2010-08-02 2014-05-21 公益財団法人ヒューマンサイエンス振興財団 Penetration pipe strain gauge
JP6731682B1 (en) * 2019-10-17 2020-07-29 国土防災技術株式会社 Lock bolt displacement detector and slope stabilization method using the displacement detector
CN110924408B (en) * 2019-12-11 2021-06-04 胡小青 Highway side slope landslide prevention device
JP6823329B1 (en) * 2020-04-14 2021-02-03 国土防災技術株式会社 Slope stabilization method using rock bolt displacement detector and its displacement detector

Also Published As

Publication number Publication date
JPS58218520A (en) 1983-12-19

Similar Documents

Publication Publication Date Title
Uchimura et al. Precaution and early warning of surface failure of slopes using tilt sensors
KR102322975B1 (en) Reinforcing method for slope
JP3894494B2 (en) Sediment disaster prediction system, regional information provision system, and sediment disaster prediction method
US20070251326A1 (en) Pressure sensitive cable device for monitoring rock and soil displacement
CN103257644A (en) Tailing pond safety state online monitoring method
US3382493A (en) Underground pipe insulation liquid-detector
US20120303276A1 (en) Scour monitoring system
US5532687A (en) Modular magnetic scour monitoring device and method for using the same
US7832274B1 (en) System and method for pneumatic scour detection
KR100812389B1 (en) Measurement method for observation of landslide
JPS6160208B2 (en)
RU2393290C2 (en) Method for monitoring safety of earth dam and device for its implementation
Sakuradani et al. Development of a slope disaster monitoring system for expressway operation and maintenance control
CN101858987B (en) Collapse monitoring device based on omnibearing tilt sensor
US7669481B2 (en) System for monitoring level variations in a soil subjected to erosive and sedimentary agents, and monitoring method and element
JP2000046597A (en) River bank wide area remote monitoring system and river wide area remote total monitoring system
KR20160004100A (en) Land slide alarming apparatus
CN113990041A (en) Low-power consumption landslide monitoring alarm device
JP2000111389A (en) Detecting device for underground water level
CN213543719U (en) Rainfall started debris flow mud level measuring equipment
JPS59102116A (en) Device for predicting and detecting collapse of slant surface
CN111928766B (en) Slope displacement monitoring device
KR102555456B1 (en) Ground deformation prediction detection device
Inaudi et al. Reinforced concrete corrosion wireless monitoring system
KR102505569B1 (en) A device that predicts and detects ground deformation remotely in real time