JP3960408B2 - Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same - Google Patents

Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same Download PDF

Info

Publication number
JP3960408B2
JP3960408B2 JP2000378580A JP2000378580A JP3960408B2 JP 3960408 B2 JP3960408 B2 JP 3960408B2 JP 2000378580 A JP2000378580 A JP 2000378580A JP 2000378580 A JP2000378580 A JP 2000378580A JP 3960408 B2 JP3960408 B2 JP 3960408B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
filter
monomer
group
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000378580A
Other languages
Japanese (ja)
Other versions
JP2002177716A (en
Inventor
収功 武田
邦夫 藤原
万理 勝峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000378580A priority Critical patent/JP3960408B2/en
Publication of JP2002177716A publication Critical patent/JP2002177716A/en
Application granted granted Critical
Publication of JP3960408B2 publication Critical patent/JP3960408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、硫化水素除去材に係り、特に空気中に存在する極微量の硫化水素を除去することができる硫化水素除去材とその製造方法及びそれを用いたフィルタに関するものである。
【0002】
【従来の技術】
硫化水素は、極微量でも悪臭が強いので、一般家庭のみならず公共の場においても、硫化水素除去に対する関心が強い。また、半導体産業等の精密産業では、空気中の硫黄成分が半導体の性能や歩留まりに影響を与えており、製造環境の硫化水素濃度を極低濃度にする必要がある。
半導体業界向けのケミカルフィルタは、空気中のアンモニア、二酸化硫黄、ホウ素などに対し、良好な除去性能を示すが、硫化水素に対するものでは、除去性能で満足なフィルタはなかった。
イオン交換体ケミカルフィルタでは、4級アンモニウム基を有する強塩基性アニオン交換体が、硫化水素に対する除去性能があるが、しかし、空気中には、炭酸ガスが300ppm以上存在するので、短時間のうちに炭酸ガスが吸着し、イオン交換基が飽和する。その状態では、さらに弱い酸である硫化水素の除去が十分でない。さらに、硫化水素を吸着した吸着材から、強い硫化水素臭が発生するといった問題、また空気中の湿度が低い場合(50%以下)に、除去率が低下するという問題点があった。従って、空気中の低濃度硫化水素に対する効率の良い除去材が待望されていた。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解消し、空気中に存在する極微量の硫化水素のみを効率良く除去し、硫化水素臭の発生、除去率の低下等のない硫化水素除去材とその製造方法及びそれを用いた硫化水素除去フィルタを提供することを課題とする。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明では、銀型のカチオン交換基及び/又はキレート基を有する側鎖が、繊維径30μm以下のポリオレフィン系繊維、その集合体である織布又は不織布に、化学的に導入されていることを特徴とする硫化水素除去材としたものである。
前記硫化水素除去材において、側鎖の化学的な導入は、放射線グラフト重合法で行うことができる。
また、本発明では、繊維径30μm以下のポリオレフィン系繊維、その集合体である織布又は不織布に、200kGy以下の放射線を照射した後、カチオン交換基を有するモノマー、カチオン交換基に転換可能なモノマー、キレート基を有するモノマー及びキレート基に転換可能なモノマーより選ばれた一種以上のモノマーをグラフト重合し、次いで銀イオンを担持させることを特徴とする硫化水素除去材の製造方法としたものである。
さらに、本発明では、前記の硫化水素除去材において、前記織布又は不織布の目付が25g/m2以上であり、通気度30ml/cm2・秒以上であることを特徴とする硫化水素除去フィルタとしたものである。
前記硫化水素除去フィルタは、フィルタの寿命を予測するための上流側と下流側との色調比較をする手段を具備することができる。
【0005】
【発明の実施の形態】
本発明は、次のような知見に基づいてなされたものである。
銀イオンは、硫化水素と極めて反応しやすく硫化銀を生成する。従って、吸着材に高密度に銀イオンを固定化すれば、硫化水素に対して優れた吸着能を示す材料ができる。
グラフト側鎖は、特にイオン交換基やキレート基が導入された状態でモビリティが大きいので、銀型への変換効率、銀型へ調整後の硫化水素除去性能が大きい。カチオン交換基やキレート基を官能基として有する繊維は、硝酸銀などの水溶液に接触させることにより、容易に銀イオンを繊維に化学吸着させることができる。
繊維などの高分子材料を製造する際、硝酸銀等を練り込むことにより、銀イオンを含有する繊維を製造可能であるが、銀イオンの密度が小さいことや硫化水素の繊維内部への溶解拡散速度が小さいため除去性能が悪い。架橋構造を有するイオン交換繊維は、銀型への変換効率や硫化水素の繊維内部への拡散速度が小さく、除去性能が十分ではない。
反応生成物である硫化銀は、繊維内部に保持されるので、外に微粒子となって放出されることはない。
【0006】
次に、本発明の構成について説明する。
本発明で側鎖を導入する基材は、直径30μm以下の単繊維、繊維の集合体である織布や不織布、さらにそれらの加工品であり、それらは成形加工が容易であり、本発明の用途への使用形態であるフィルタ状にも、容易に加工できるばかりでなく、表面積が大きいので、低濃度の硫化水素の除去性能が大である。直径30μmを超えると、圧力損失が小さくなるが、除去性能が悪くなる。
また、ポリオレフィン系の繊維は、耐薬品性が大きく、また不織布化の段階で熱融着しやすい等の利点があるばかりでなく、後述の放射線グラフト重合しやすい材料であるため、本発明に最適の素材である。
本発明で側鎖として導入するカチオン交換基としては、スルホン酸基、カルボキシル基、りん酸基、などが一般的であり、いずれも本発明に利用できるが、この範囲に限定される訳ではない。キレート基としては、イミノジ酢酸基、アミドキシム基、アミノりん酸基などいずれも利用できるが、この範囲に限定される訳ではない。イオン交換基やキレート基は、いずれも強い親水基であるため、周囲に水を吸着している。これらが有効に働くので、空気中の湿度が低い場合にも、硫化水素の除去性能に大きく影響与えることは少ない。
【0007】
次に、本発明で用いる放射線グラフト重合法について説明する。
グラフト鎖は、架橋構造がないので、カチオン交換基やキレート基等の電荷を有する官能基を導入させた場合、同電荷の反発及び吸着した水により、膨潤する。放射線グラフト重合は、複雑な形状の繊維にも均一に内部までラジカルを生成でき、グラフト鎖を導入できる。放射線グラフト重合法には、照射方法によって前照射グラフト重合法と同時照射グラフト重合法がある。前者は、予め高分子基材に放射線を照射した後、モノマー(重合性単量体)と接触させる方法であり、後者は、高分子基材とモノマーが両方存在するところで、放射線を照射する方法であるが、どちらの方法も利用できる。
また、モノマーと高分子基材との接触方法によって、液相グラフト、気相グラフト、含浸気相グラフトなどがある。本発明の効果を最も発揮する繊維状基材の場合、含浸気相グラフト重合がモノマーの利用効率が大きく、且つ均一にグラフト重合できるので好ましい。
【0008】
放射線グラフト重合に利用する放射線は、ガンマ線、α線、β線、電子線、紫外線などがあるが、実用的には、ガンマ線、電子線、紫外線などが適している。吸収線量としては、200kGy以下が好ましい。本発明の硫化水素除去材は、繊維表面が主な反応の場となるので、繊維の表面付近にグラフト側鎖を高密度に導入できればよい。したがって、エネルギーの小さな紫外線も利用できる。
放射線グラフト重合に使用できるモノマーには、カチオン交換基を有するものとしてアクリル酸、メタクリル酸、スチレンスルホン酸ナトリウム、ビニルスルホン酸ナトリウムなどがあり、いずれも使用可能であるが、この範囲に限定される訳ではない。カチオン交換基に変換できるモノマーとしては、メタクリル酸グリシジル、スチレン、アクリロニトリルなどがあるが、この範囲に限定される訳ではない。これらをグラフト重合した後、公知の方法で2次処理を行ない、カチオン交換基を導入できる。例えば、メタクリル酸グリシジルをグラフト重合した後、亜硫酸ナトリウム水溶液でスルホン化することが可能である。
カルボキシル基を有するアクリル酸やメタクリル酸は、単独で容易にグラフトでき、低グラフト率で交換容量が大きく、銀型で除去率が高く、コストも低いなどの利点があり、本発明に好適である。
【0009】
また、これらのモノマーを複数併用することも可能である。例えば、スチレンスルホン酸ナトリウムは、ポリオレフィン系繊維に単独でグラフト重合することが難しいので、アクリル酸やメタクリル酸と併用することもできる。
キレート基を導入するには、メタクリル酸グリシジルやクロロメチルスチレンなどをグラフト重合した後、イミノジ酢酸ナトリウム水溶液などで処理するなど、公知の方法でイミノジ酢酸基を導入できる。アミドキシム基は、アクリロニトリルをグラフト重合した後、塩酸ヒドロキシルアミン水溶液などにより、アミドキシム化を行ない導入できる。
銀型への変換は、カルボキシル基を有する場合、ナトリウム型へ変換後、硝酸銀水溶液に接触させることによって、容易に変換できる。スルホン酸基の場合は、ナトリウム型に変換することなく、H型のままで硝酸銀水溶液に接触させても良い。ここで、ハロゲンイオンが存在すると、ハロゲン化銀が生成し、光によって黒変するなど品質の劣化があるので、特に塩素イオンなどは水から除去しておく必要がある。
【0010】
次に、硫化水素除去フィルタについて説明する。
繊維の集合体である織布や不織布は、フィルタヘの成形加工が容易であり、本発明に好適である。また、目付が25g/m2以上でないと、フィルタ全体での銀イオンの担持量が小さくなり、十分な寿命が得られない。25g/m2以下の場合、放射線グラフト重合やその後の2次処理での物理的・化学的にハードな環境で十分な強度を保持し得ないし、プリーツ型への成形も難しい。また、通気度30ml/cm2・秒以上でないと、フィルタ加工した場合の圧力損失が大きくなりすぎ、流量が所定量に達しないという場合もある。
銀イオンが硫化水素と接触すると、黒色の硫化銀が生成する。接触する前は薄茶色であるため、上流側から下流側に黒色の変色域が拡大する。フィルタの下流側全体に黒色が移行する前に交換すれば、所定濃度以上の硫化水素が下流側に流出することはない。
このように、前記フィルタの上流側と下流側との色調比較をすることにより、フィルタの寿命を予測できる。
また、硫化水素フィルタは、使用環境やフィルタ稼動状況などにより、色調の変化はまちまちと思われるので、使用前と使用後の色見本を作成しておけば、便利である。
【0011】
次に、本発明の硫化水素除去フィルタの設置例を図面を用いて説明する。
図1〜図3に、本発明のフィルタを設置した断面の概略構成図を示す。
本発明のフィルタは、図に示すように、クリーンルーム1の外気取入口2、循環系3、3’、半導体製造装置、ファンフィルタユニット5又はウエハ搬送用などに使われるクリーンボックス6のファン7の出口8に取りつけ、各製造環境中の硫化水素を低減できる。図3で、10はウエハ収納枠である。
図4に、本発明のフィルタを組込んだ有害ガス除去用のフィルタ9の構成図を示す。該フィルタ9は、粗塵フィルタ9a、本発明フィルタ9b、アンモニア除去用フィルタ9c、HEPAフィルタ9dよりなり、このように、本発明に付加して微粒子除去用のフィルタ素材や他のガス成分を除去できる素材を一つのフィルタ構造の中に積層し、複数の機能を有するフィルタ構造に適用することもできる。
【0012】
【実施例】
以下、本発明を実施例により具体的に説明する。
実施例1
(a)銀型不織布の調整
繊維径17μmのポリエチレン(鞘)/ポリププロピレン(芯)の複合繊維よりなる目付55g/m2、厚み0.35mmの熱融着不織布に、窒素雰囲気で電子線を150kGy照射した。
この照射済不織布に、アクリル酸を重量で基材の約50%となるよう浸漬し、真空容器に入れ、40℃で3時間反応させた。取出した不織布を、水酸化ナトリウム5%水溶液に浸漬し、50℃で1時間処理し、ホモポリマーを除去した。この不織布は、イオン交換容量が4.4meq/gであった。次に、硝酸銀1%水溶液にこの不織布を入れ、30分撹拌し、銀型に調整した。
【0013】
(b)硫化水素除去試験
不織布(再生型)を5cmΦの塩ビ製のカラムに装着し、図5に示す評価装置で硫化水素ガス除去試験を行なった。図5において、11はカラム、12は不織布試料、13は入口濃度測定用サンプリング口、14は出口濃度測定用サンプリング口、15はポンプ、16はパーミエータ、17はフィルタホルダーである。
入口硫化水素ガス濃度は、1ppmとなるようパーミエータ16を調整し、風量15L/minで通ガスした。上流側の不織布表面の色は、徐々に黒化し下流側に移行した。不織布の下流側(裏側)の色がやや濃くなった時点で、硫化水素濃度を測定したところ0.1ppmであった。それまでの通ガス時間は、7時間であった。
【0014】
実施例2
(a)銀型不織布の調整
実施例1と同様の熱融着不織布にガンマ線を160kGy照射した。この照射済不織布に、メタクリル酸グリシジルを基材の155%となるよう浸漬した。この不織布を真空容器に入れ、真空ポンプで減圧にした後、50℃で3時間反応させた。取出した不織布は乾燥していた。ジメチルホルムアミド溶液に入れ70℃で3時間処理し、ホモポリマー除去した。しかし、重量減少は0.2%であり、ほぼ完全にグラフト重合してしていた。
この不織布を、亜硫酸ナトリウム/イソプロピルアルコール/水=15/10/75の溶液に浸漬し、80℃で9時間反応を行なってスルホン化した。取出した不織布を十分洗浄した後、中性塩分解容量を測定したところ、2.65meq/gの強酸性カチオン交換不織布が得られた。この不織布を硝酸銀1%水溶液に1時間浸漬し、30分撹拌して銀型に調整した。
【0015】
(b)硫化水素除去試験
この不織布を5cmΦの塩ビ製のカラム11に装着し、図5に示す評価装置で硫化水素ガス除去試験を行なった。入口硫化水素ガス濃度は、1ppmとなるようパーミエータ16を調整し、風量15L/minで通ガスした。上流側の不織布表面の色は徐々に黒化し下流側に移行した。不織布の下流側(裏側)の色がやや濃くなった時点で、硫化水素濃度をガス検知管出口で測定したところ、0.1ppmであった。それまでの通ガス時間は4.5時間であった。
【0016】
実施例3
(a)銀型不織布の調整
実施例2のメタクリル酸グリシジルグラフト不織布を、イミノジ酢酸ナトリウム/イソプロピルアルコール/水=10/10/80の溶液に浸漬し、80℃で5時間反応を行なって取出した。取出した不織布を十分洗浄した後、重量増加よりイミノジ酢酸ナトリウム基の導入量を測定したところ、2.45mmol/gであった。中性塩分解容量を測定したところ、2.65meq/gの強酸性カチオン交換不織布が得られた。この不織布を硝酸銀1%水溶液に1時間浸漬し、30分撹拌して銀型に調整した。
【0017】
(b)硫化水素除去試験
この不織布を5cmΦの塩ビ製のカラム11に装着し、図5に示す評価装置で硫化水素ガス除去試験を行なった。入口硫化水素ガス濃度は0.1ppmとなるようパーミエータ16を調整し、風量15L/minで通ガスした。上流側の不織布表面の色は、徐々に黒化し下流側に移行した。不織布の下流側(裏側)の色がやや濃くなった時点で、硫化水素濃度をガスクロで測定したところ、0.02ppmであった。それまでの通ガス時間は、78時間であった。
【0018】
実施例4
(a)銀型不織布の調整
繊維径10μmのポリエチレン単独繊維よりなり、スポット融着(エンボス加工)により不織布にした目付40g/m2、厚み0.28mmの熱融着不織布に、ガンマ線で150kGy照射した。
この照射済不織布に、スチレンスルホン酸/アクリル酸/水=25/25/50を重量で基材の約130%となるよう浸漬し、真空容器に入れ40℃で3時間反応させた。取出した不織布を水酸化ナトリウム5%水溶液に浸漬し、50℃で1時間処理し、ホモポリマーを除去した。この不織布は、イオン交換容量が中性塩分解容量2.35meq/gであった。次に、硝酸銀1%水溶液にこの不織布を入れ、30分撹拌し、銀型に調整した。
【0019】
(b)硫化水素除去試験
不織布(再生型)を5cmΦの塩ビ製のカラム11に装着し、図5に示す評価装置で硫化水素ガス除去試験を行なった。入口硫化水素ガス濃度は、1ppmとなるようパーミエータ16を調整し、風量15L/minで通ガスした。上流側の不織布表面の色は、徐々に黒化し下流側に移行した。不織布の下流側(裏側)の色がやや濃くなった時点で、硫化水素濃度を測定したところ、0.1ppmであった。それまでの通ガス時間は、7時間であった。
【0020】
【発明の効果】
本発明によれば、空気中に存在する極微量の硫化水素を効率よく除去すると共に、硫化水素臭の発生がなく、得られたフィルタの寿命を容易に予測できる硫化水素除去材とそれを用いたフィルタを提供することができた。
【図面の簡単な説明】
【図1】本発明のフィルタを設置したクリーンルームの断面の概略構成図。
【図2】本発明のフィルタを設置したフィルタユニットの断面の概略構成図。
【図3】本発明のフィルタを設置したクリーンボックスの断面の概略構成図。
【図4】本発明のフィルタを組込んだ有害ガス除去用フィルタの構成図。
【図5】本発明の実施例の硫化水素除去試験に用いた評価装置の概略構成図。
【符号の説明】
1:クリーンルーム、2:外気取入口フィルタ、3、3’:循環系フィルタ、4:半導体製造装置フィルタ、5:ファンフィルタユニット、6:クリーンボックス、7:ファン、8:出口フィルタ、9:有害ガス除去フィルタ、9a:粗塵フィルタ、9b:本発明のフィルタ、9c:アンモニア除去用フィルタ、9d:HEPAフィルタ、10:ウエハ収納枠、11:カラム、12:不織布試料、13:入口濃度測定用サンプリング口、14:出口濃度測定用サンプリング口、15:ポンプ、16:パーミエータ、17:フィルタホルダー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen sulfide removing material, and more particularly to a hydrogen sulfide removing material capable of removing a trace amount of hydrogen sulfide present in the air, a method for producing the same, and a filter using the same.
[0002]
[Prior art]
Since hydrogen sulfide has a strong odor even in a very small amount, there is a strong interest in removing hydrogen sulfide not only in ordinary households but also in public places. In the precision industry such as the semiconductor industry, sulfur components in the air affect the performance and yield of the semiconductor, and it is necessary to make the hydrogen sulfide concentration in the manufacturing environment extremely low.
Chemical filters for the semiconductor industry show good removal performance with respect to ammonia, sulfur dioxide, boron, etc. in the air, but there are no filters with satisfactory removal performance with respect to hydrogen sulfide.
In an ion exchanger chemical filter, a strongly basic anion exchanger having a quaternary ammonium group has a removal performance against hydrogen sulfide. However, since carbon dioxide is present in the air in an amount of 300 ppm or more, it is within a short time. Carbon dioxide gas is adsorbed on the ion exchange groups and the ion exchange groups are saturated. In that state, removal of hydrogen sulfide, which is a weaker acid, is not sufficient. Further, there is a problem that a strong hydrogen sulfide odor is generated from the adsorbent adsorbing hydrogen sulfide, and a problem that the removal rate is lowered when the humidity in the air is low (50% or less). Therefore, an efficient removal material for low-concentration hydrogen sulfide in the air has been desired.
[0003]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, efficiently removes only a very small amount of hydrogen sulfide present in the air, and a hydrogen sulfide removing material that does not cause generation of hydrogen sulfide odor, decrease in removal rate, and the like. It is an object to provide a manufacturing method and a hydrogen sulfide removal filter using the same.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention, the side chain having a silver-type cation-exchange groups and / or chelating groups are, fiber diameter 30μm or less of the polyolefin fiber, in woven or non-woven fabric which is a collection The hydrogen sulfide removing material is characterized by being chemically introduced.
In the hydrogen sulfide removing material, chemical introduction of the side chain can be performed by a radiation graft polymerization method.
In the present invention, the fiber diameter 30μm or less of the polyolefin fiber, in woven or non-woven fabric which is a collection, after irradiation with less radiation 200 kGy, a monomer having a cation-exchange group, convertible into cation exchange groups A method for producing a hydrogen sulfide removing material, characterized by graft polymerization of at least one monomer selected from a monomer having a chelate group, a monomer having a chelate group, and a monomer capable of being converted to a chelate group, and then supporting silver ions It is.
Furthermore, in the present invention, in the hydrogen sulfide removing material, the basis weight of the woven or non-woven fabric is 25 g / m 2 or more, and the air permeability is 30 ml / cm 2 · sec or more. It is what.
The hydrogen sulfide removal filter may include means for comparing the color tone between the upstream side and the downstream side for predicting the life of the filter.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has been made based on the following findings.
Silver ions are extremely reactive with hydrogen sulfide and produce silver sulfide. Therefore, if silver ions are immobilized on the adsorbent at a high density, a material exhibiting an excellent adsorption ability for hydrogen sulfide can be obtained.
Since the graft side chain has a large mobility particularly in a state where an ion exchange group or a chelate group is introduced, the conversion efficiency to the silver type and the hydrogen sulfide removal performance after the adjustment to the silver type are great. A fiber having a cation exchange group or a chelate group as a functional group can easily chemically adsorb silver ions to the fiber by contacting the fiber with an aqueous solution such as silver nitrate.
When manufacturing polymer materials such as fibers, fibers containing silver ions can be manufactured by kneading silver nitrate, etc., but the density of silver ions is low and the rate of dissolution and diffusion of hydrogen sulfide into the fiber The removal performance is poor due to its small size. The ion exchange fiber having a cross-linked structure has a low conversion efficiency to silver type and a diffusion rate of hydrogen sulfide into the fiber, and the removal performance is not sufficient.
Since the silver sulfide as a reaction product is retained inside the fiber, it is not released as fine particles outside.
[0006]
Next, the configuration of the present invention will be described.
The base material into which the side chain is introduced in the present invention is a single fiber having a diameter of 30 μm or less, a woven fabric or a non-woven fabric that is an assembly of fibers, and a processed product thereof. The filter shape which is the usage form for the application is not only easily processed but also has a large surface area, and therefore has a high ability to remove low-concentration hydrogen sulfide. When the diameter exceeds 30 μm, the pressure loss decreases, but the removal performance deteriorates.
Polyolefin fibers are not only suitable for the present invention because they have high chemical resistance, and are not only advantageous in that they are easily heat-sealed at the stage of making a non-woven fabric, but also are easy to undergo radiation graft polymerization, which will be described later. It is a material.
As the cation exchange group to be introduced as a side chain in the present invention, a sulfonic acid group, a carboxyl group, a phosphoric acid group, etc. are common, and any of them can be used in the present invention, but is not limited to this range. . As the chelating group, any of iminodiacetic acid group, amidoxime group, aminophosphoric acid group and the like can be used, but it is not limited to this range. Since both ion exchange groups and chelate groups are strong hydrophilic groups, they adsorb water around them. Since these work effectively, even when the humidity in the air is low, there is little influence on the hydrogen sulfide removal performance.
[0007]
Next, the radiation graft polymerization method used in the present invention will be described.
Since the graft chain does not have a cross-linked structure, when a functional group having a charge such as a cation exchange group or a chelate group is introduced, the graft chain is swollen by repulsion of the same charge and adsorbed water. Radiation graft polymerization can generate radicals uniformly even inside fibers having a complicated shape and introduce graft chains. The radiation graft polymerization method includes a pre-irradiation graft polymerization method and a simultaneous irradiation graft polymerization method depending on the irradiation method. The former is a method in which a polymer substrate is irradiated with radiation in advance and then brought into contact with a monomer (polymerizable monomer). The latter is a method in which radiation is applied where both the polymer substrate and the monomer are present. However, either method can be used.
In addition, there are liquid phase grafting, gas phase grafting, impregnation gas phase grafting and the like depending on the contact method between the monomer and the polymer substrate. In the case of a fibrous base material that exhibits the effects of the present invention, impregnated gas phase graft polymerization is preferable because the use efficiency of the monomer is large and the graft polymerization can be performed uniformly.
[0008]
The radiation used for the radiation graft polymerization includes gamma rays, α rays, β rays, electron beams, ultraviolet rays, etc., but in practice, gamma rays, electron rays, ultraviolet rays, etc. are suitable. The absorbed dose is preferably 200 kGy or less. In the hydrogen sulfide removing material of the present invention, the fiber surface serves as a main reaction site, so it is sufficient that graft side chains can be introduced at high density near the fiber surface. Therefore, ultraviolet rays with small energy can be used.
Monomers that can be used in radiation graft polymerization include acrylic acid, methacrylic acid, sodium styrene sulfonate, sodium vinyl sulfonate, and the like as those having a cation exchange group. Not a translation. Monomers that can be converted into cation exchange groups include, but are not limited to, glycidyl methacrylate, styrene, acrylonitrile, and the like. After graft polymerization of these, a secondary treatment can be performed by a known method to introduce a cation exchange group. For example, glycidyl methacrylate can be grafted and then sulfonated with an aqueous sodium sulfite solution.
Acrylic acid and methacrylic acid having a carboxyl group can be easily grafted independently, and have advantages such as low graft ratio, large exchange capacity, silver mold, high removal rate, and low cost, which are suitable for the present invention. .
[0009]
It is also possible to use a plurality of these monomers in combination. For example, sodium styrene sulfonate can be used in combination with acrylic acid or methacrylic acid because it is difficult to graft-polymerize the polyolefin fiber alone.
In order to introduce a chelate group, an iminodiacetic acid group can be introduced by a known method such as graft polymerization of glycidyl methacrylate or chloromethylstyrene and then treatment with an aqueous solution of sodium iminodiacetate. The amidoxime group can be introduced by graft polymerization of acrylonitrile and then amidoximation with a hydroxylamine hydrochloride aqueous solution or the like.
Conversion to the silver type can be easily carried out by contacting with a silver nitrate aqueous solution after conversion to the sodium type when having a carboxyl group. In the case of a sulfonic acid group, it may be brought into contact with the aqueous silver nitrate solution while remaining in the H form without being converted to the sodium form. Here, when halogen ions are present, silver halide is generated and the quality deteriorates such as blackening by light. In particular, chlorine ions and the like need to be removed from water.
[0010]
Next, the hydrogen sulfide removal filter will be described.
A woven fabric or non-woven fabric, which is an aggregate of fibers, is easy to form into a filter and is suitable for the present invention. On the other hand, if the basis weight is not more than 25 g / m 2 , the amount of silver ions supported by the entire filter becomes small, and a sufficient lifetime cannot be obtained. In the case of 25 g / m 2 or less, sufficient strength cannot be maintained in a physically and chemically hard environment in radiation graft polymerization or subsequent secondary treatment, and molding into a pleated mold is difficult. Further, if the air permeability is not 30 ml / cm 2 · sec or more, there is a case where the pressure loss is too large when the filter is processed, and the flow rate does not reach a predetermined amount.
When silver ions come into contact with hydrogen sulfide, black silver sulfide is produced. Since it is light brown before contact, the black discoloration region expands from the upstream side to the downstream side. If the black color is replaced before the entire downstream side of the filter, hydrogen sulfide having a predetermined concentration or more will not flow downstream.
In this way, the life of the filter can be predicted by comparing the color tone between the upstream side and the downstream side of the filter.
In addition, since the color change of the hydrogen sulfide filter seems to vary depending on the usage environment, filter operating conditions, etc., it is convenient to prepare color samples before and after use.
[0011]
Next, an installation example of the hydrogen sulfide removal filter of the present invention will be described with reference to the drawings.
1 to 3 show schematic configuration diagrams of a cross section in which the filter of the present invention is installed.
As shown in the figure, the filter according to the present invention includes an outside air inlet 2 of a clean room 1, a circulation system 3, 3 ', a semiconductor manufacturing apparatus, a fan filter unit 5 or a fan 7 of a clean box 6 used for wafer transfer. It can be attached to the outlet 8 to reduce hydrogen sulfide in each production environment. In FIG. 3, reference numeral 10 denotes a wafer storage frame.
FIG. 4 shows a configuration diagram of a harmful gas removing filter 9 incorporating the filter of the present invention. The filter 9 comprises a coarse dust filter 9a, a filter 9b of the present invention, a filter 9c for removing ammonia, and a filter 9d for HEPA. Thus, in addition to the present invention, a filter material for removing particulates and other gas components are removed. It is also possible to apply a material having a plurality of functions by stacking possible materials in one filter structure.
[0012]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
(A) Adjustment of silver nonwoven fabric An electron beam is applied to a thermal fusion nonwoven fabric having a basis weight of 55 g / m 2 and a thickness of 0.35 mm made of a composite fiber of polyethylene (sheath) / polypropylene (core) having a diameter of 17 μm in a nitrogen atmosphere. Irradiated with 150 kGy.
Acrylic acid was immersed in this irradiated nonwoven fabric so as to be about 50% of the substrate by weight, placed in a vacuum container, and reacted at 40 ° C. for 3 hours. The taken-out non-woven fabric was immersed in a 5% aqueous solution of sodium hydroxide and treated at 50 ° C. for 1 hour to remove the homopolymer. This nonwoven fabric had an ion exchange capacity of 4.4 meq / g. Next, this non-woven fabric was placed in a 1% silver nitrate aqueous solution and stirred for 30 minutes to prepare a silver mold.
[0013]
(B) Hydrogen sulfide removal test A non-woven fabric (regeneration type) was mounted on a 5 cmφ polyvinyl chloride column, and a hydrogen sulfide gas removal test was performed using the evaluation apparatus shown in FIG. In FIG. 5, 11 is a column, 12 is a nonwoven fabric sample, 13 is a sampling port for measuring the inlet concentration, 14 is a sampling port for measuring the outlet concentration, 15 is a pump, 16 is a permeator, and 17 is a filter holder.
The permeator 16 was adjusted so that the inlet hydrogen sulfide gas concentration was 1 ppm, and gas was passed at an air flow rate of 15 L / min. The color of the upstream nonwoven fabric surface gradually became black and shifted to the downstream side. When the color of the downstream side (back side) of the nonwoven fabric became slightly dark, the hydrogen sulfide concentration was measured and found to be 0.1 ppm. Until that time, the gas passing time was 7 hours.
[0014]
Example 2
(A) Preparation of silver-type non-woven fabric The heat-sealed non-woven fabric as in Example 1 was irradiated with 160 kGy of gamma rays. In this irradiated nonwoven fabric, glycidyl methacrylate was immersed so as to be 155% of the base material. This nonwoven fabric was put into a vacuum container, and the pressure was reduced with a vacuum pump, followed by reaction at 50 ° C. for 3 hours. The removed nonwoven fabric was dry. The mixture was placed in a dimethylformamide solution and treated at 70 ° C. for 3 hours to remove the homopolymer. However, the weight loss was 0.2%, and the graft polymerization was almost complete.
This nonwoven fabric was immersed in a solution of sodium sulfite / isopropyl alcohol / water = 15/10/75, and reacted at 80 ° C. for 9 hours for sulfonation. After the washed nonwoven fabric was sufficiently washed, the neutral salt decomposition capacity was measured. As a result, a strongly acidic cation exchange nonwoven fabric of 2.65 meq / g was obtained. This nonwoven fabric was immersed in a 1% aqueous solution of silver nitrate for 1 hour and stirred for 30 minutes to prepare a silver mold.
[0015]
(B) Hydrogen sulfide removal test This nonwoven fabric was mounted on a column 11 made of vinyl chloride having a diameter of 5 cm and a hydrogen sulfide gas removal test was performed using the evaluation apparatus shown in FIG. The permeator 16 was adjusted so that the inlet hydrogen sulfide gas concentration was 1 ppm, and gas was passed at an air flow rate of 15 L / min. The color of the upstream nonwoven fabric surface gradually became black and shifted to the downstream side. When the color of the downstream side (back side) of the nonwoven fabric became slightly darker, the hydrogen sulfide concentration was measured at the gas detector tube outlet and found to be 0.1 ppm. Until that time, the gas passing time was 4.5 hours.
[0016]
Example 3
(A) Preparation of silver-type nonwoven fabric The glycidyl methacrylate graft nonwoven fabric of Example 2 was immersed in a solution of sodium iminodiacetate / isopropyl alcohol / water = 10/10/80, and reacted at 80 ° C. for 5 hours to be taken out. . After thoroughly removing the taken-out nonwoven fabric, the amount of sodium iminodiacetate introduced was measured from the weight increase and found to be 2.45 mmol / g. When the neutral salt decomposition capacity was measured, a strongly acidic cation exchange nonwoven fabric of 2.65 meq / g was obtained. This nonwoven fabric was immersed in a 1% aqueous solution of silver nitrate for 1 hour and stirred for 30 minutes to prepare a silver mold.
[0017]
(B) Hydrogen sulfide removal test This nonwoven fabric was mounted on a column 11 made of vinyl chloride having a diameter of 5 cm and a hydrogen sulfide gas removal test was performed using the evaluation apparatus shown in FIG. The permeator 16 was adjusted so that the inlet hydrogen sulfide gas concentration was 0.1 ppm, and gas was passed at an air volume of 15 L / min. The color of the upstream nonwoven fabric surface gradually became black and shifted to the downstream side. When the color of the downstream side (back side) of the nonwoven fabric became slightly dark, the hydrogen sulfide concentration was measured by gas chromatography and found to be 0.02 ppm. Until that time, the gas passing time was 78 hours.
[0018]
Example 4
(A) Adjustment of silver type non-woven fabric A heat-bonded non-woven fabric having a basis weight of 40 g / m 2 and a thickness of 0.28 mm made of a single fiber of polyethylene having a diameter of 10 μm and spot-bonded (embossed) is irradiated with 150 kGy with gamma rays. did.
In this irradiated non-woven fabric, styrene sulfonic acid / acrylic acid / water = 25/25/50 was immersed so as to be about 130% of the base material by weight, and placed in a vacuum vessel and reacted at 40 ° C. for 3 hours. The removed nonwoven fabric was immersed in a 5% aqueous solution of sodium hydroxide and treated at 50 ° C. for 1 hour to remove the homopolymer. This nonwoven fabric had a neutral salt decomposition capacity of 2.35 meq / g. Next, this non-woven fabric was placed in a 1% silver nitrate aqueous solution and stirred for 30 minutes to prepare a silver mold.
[0019]
(B) Hydrogen sulfide removal test A non-woven fabric (regeneration type) was mounted on a column 11 made of polyvinyl chloride having a diameter of 5 cm and a hydrogen sulfide gas removal test was performed using the evaluation apparatus shown in FIG. The permeator 16 was adjusted so that the inlet hydrogen sulfide gas concentration was 1 ppm, and gas was passed at an air flow rate of 15 L / min. The color of the upstream nonwoven fabric surface gradually became black and shifted to the downstream side. When the color of the downstream side (back side) of the nonwoven fabric became slightly darker, the hydrogen sulfide concentration was measured and found to be 0.1 ppm. Until that time, the gas passing time was 7 hours.
[0020]
【The invention's effect】
According to the present invention, a hydrogen sulfide removing material capable of efficiently removing a very small amount of hydrogen sulfide present in the air, generating no hydrogen sulfide odor, and easily predicting the life of the obtained filter is used. Could provide a filter.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a cross section of a clean room in which a filter of the present invention is installed.
FIG. 2 is a schematic configuration diagram of a cross section of a filter unit provided with a filter of the present invention.
FIG. 3 is a schematic configuration diagram of a cross section of a clean box provided with a filter of the present invention.
FIG. 4 is a configuration diagram of a harmful gas removal filter incorporating the filter of the present invention.
FIG. 5 is a schematic configuration diagram of an evaluation apparatus used in a hydrogen sulfide removal test of an example of the present invention.
[Explanation of symbols]
1: Clean room, 2: Outside air inlet filter, 3, 3 ': Circulating system filter, 4: Semiconductor manufacturing equipment filter, 5: Fan filter unit, 6: Clean box, 7: Fan, 8: Outlet filter, 9: Harmful Gas removal filter, 9a: coarse dust filter, 9b: filter of the present invention, 9c: ammonia removal filter, 9d: HEPA filter, 10: wafer storage frame, 11: column, 12: nonwoven fabric sample, 13: inlet concentration measurement Sampling port, 14: Sampling port for outlet concentration measurement, 15: Pump, 16: Permeator, 17: Filter holder

Claims (5)

銀型のカチオン交換基及び/又はキレート基を有する側鎖が、繊維径30μm以下のポリオレフィン系繊維、その集合体である織布又は不織布に、化学的に導入されていることを特徴とする硫化水素除去材。Side chain with a silver-type cation-exchange groups and / or chelating groups are, and characterized in that the fiber diameter 30μm or less of the polyolefin fiber, in woven or non-woven fabric which is a collection, which is chemically introduced To remove hydrogen sulfide. 前記側鎖の化学的な導入は、放射線グラフト重合法で行うことを特徴とする請求項1記載の硫化水素除去材。The hydrogen sulfide removing material according to claim 1, wherein the chemical introduction of the side chain is performed by a radiation graft polymerization method. 繊維径30μm以下のポリオレフィン系繊維、その集合体である織布又は不織布に、200kGy以下の放射線を照射した後、カチオン交換基を有するモノマー、カチオン交換基に転換可能なモノマー、キレート基を有するモノマー及びキレート基に転換可能なモノマーより選ばれた一種以上のモノマーをグラフト重合し、次いで銀イオンを担持させることを特徴とする硫化水素除去材の製造方法。Fiber diameter 30μm or less of the polyolefin fiber, in woven or non-woven fabric which is a collection, after irradiation with less radiation 200 kGy, a monomer having a cation-exchange group, a monomer convertible to cation exchange groups, a chelating group A method for producing a hydrogen sulfide removing material, comprising graft-polymerizing one or more monomers selected from a monomer having a monomer and a monomer that can be converted into a chelate group, and then supporting silver ions. 請求項1又は2記載の硫化水素除去材において、前記織布又は不織布の目付が25g/m2以上であり、通気度30ml/cm2・秒以上であることを特徴とする硫化水素除去フィルタ。3. The hydrogen sulfide removing filter according to claim 1, wherein the basis weight of the woven fabric or the nonwoven fabric is 25 g / m 2 or more and the air permeability is 30 ml / cm 2 · sec or more. 前記フィルタは、フィルタの寿命を予測するための上流側と下流側との色調比較をする手段を具備したことを特徴とする請求項4記載の硫化水素除去フィルタ。5. The hydrogen sulfide removal filter according to claim 4, wherein the filter includes means for comparing the color tone of the upstream side and the downstream side for predicting the lifetime of the filter.
JP2000378580A 2000-12-13 2000-12-13 Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same Expired - Fee Related JP3960408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378580A JP3960408B2 (en) 2000-12-13 2000-12-13 Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378580A JP3960408B2 (en) 2000-12-13 2000-12-13 Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same

Publications (2)

Publication Number Publication Date
JP2002177716A JP2002177716A (en) 2002-06-25
JP3960408B2 true JP3960408B2 (en) 2007-08-15

Family

ID=18847122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378580A Expired - Fee Related JP3960408B2 (en) 2000-12-13 2000-12-13 Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same

Country Status (1)

Country Link
JP (1) JP3960408B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970499B1 (en) * 2018-08-14 2019-04-19 (주)한길산업 An odor removing apparatus for removing odor, a method for manufacturing the same, and an odor removing apparatus using the manufactured adsorption deodorizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102465A2 (en) 2005-03-21 2006-09-28 Camfil Farr Inc. An exhaust filter module, and a method and apparatus for efficiency testing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970499B1 (en) * 2018-08-14 2019-04-19 (주)한길산업 An odor removing apparatus for removing odor, a method for manufacturing the same, and an odor removing apparatus using the manufactured adsorption deodorizer

Also Published As

Publication number Publication date
JP2002177716A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
EP0713933B1 (en) Process for producing separation functional fibers and ion-exchange fibers produced therefrom
US5087372A (en) Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
JP5252653B2 (en) Method for manufacturing sintered body
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
KR100852265B1 (en) Method for preparing ozone removing material of air
JP3647667B2 (en) Iodine removal filter and iodine removal device carrying silver
WO2001029104A1 (en) Organic polymeric material, process for producing the same, and heavy-metal ion remover comprising the same
JPH0620554B2 (en) Method for producing gas adsorbent
JPH11279945A (en) Polyethylene material graft-polymerized with radiation
JP3960408B2 (en) Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same
JP3386929B2 (en) Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same
KR100454093B1 (en) Ion exchange textile for electrodeionization process
JP3823283B2 (en) Alkyl halide removing agent and method for producing the same
US20070102364A1 (en) Chelate adsorbents that can be used in a strongly acidic region
EP1230968B1 (en) Moisture adsorbing and desorbing material
JP2002346400A (en) Anion exchanger and method for manufacturing the same
JP2002177767A (en) Sulfur based gas removing material
JP2001038202A (en) Gas adsorbent
JP4238076B2 (en) Material for removing contaminants in gas and method for producing the same
JP2017070939A (en) Fiber carrying metal catalyst, production method of the same, and removal method of oxidative or reductive substance using the same
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JPH05156057A (en) Method for carrying out vapor phase graft reaction
TWI239935B (en) Sintered body, resin particles and method for production thereof
KR20010084107A (en) Unit capable of reaction and washing and its method for preparing ion exchange adsorbent
JP2003024735A (en) Method for removing noxious gas component in air

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees