JP3955573B2 - 結晶性高級αオレフィン重合体及びその製造方法 - Google Patents

結晶性高級αオレフィン重合体及びその製造方法 Download PDF

Info

Publication number
JP3955573B2
JP3955573B2 JP2003569697A JP2003569697A JP3955573B2 JP 3955573 B2 JP3955573 B2 JP 3955573B2 JP 2003569697 A JP2003569697 A JP 2003569697A JP 2003569697 A JP2003569697 A JP 2003569697A JP 3955573 B2 JP3955573 B2 JP 3955573B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
dimethylsilylene
zirconium dichloride
olefin polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003569697A
Other languages
English (en)
Other versions
JPWO2003070790A1 (ja
Inventor
裕 南
正実 金丸
正憲 世良
達哉 江川
剛経 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Publication of JPWO2003070790A1 publication Critical patent/JPWO2003070790A1/ja
Application granted granted Critical
Publication of JP3955573B2 publication Critical patent/JP3955573B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂の改質剤、粘着剤成分、接着剤成分、潤滑油成分、有機無機複合材料、蓄熱材、軽油などの燃料油の改質剤、アスファルトの改質剤、高性能ワックスとして有用な結晶性炭素数10以上の高級αオレフィン重合体及びその製造方法に関するものである。
【0002】
【従来の技術】
炭素数10以上の高級αオレフィンの重合に関する検討は、従来より行われているが、主にチーグラーナッタ系触媒を用いて検討されている。
例えば、PolymerJ.,10,619(1978)や、Macromol.Chem.,190,2683(1989)、Makromol.Chem.,RapidComm.,13,447(1992)、特開平7−145205などが挙げられる。
しかしながら,これらの文献において得られる高級αオレフィン重合体は、分子量が低い場合や、規則性が高いために融点が高く、又、融点が2つあるなど不均一であることが示されている。
又、Macromol.Sci.PureAppl.Chem.,A35、473(1998)や、J.Polym.Sci.A、38,233(2000)、Macromol.Mater.Eng.,286,480(2001)、Macromol.Mater.Eng.,286,350(2001)には、メタロセン触媒と呼ばれる均一系触媒により高級αオレフィン重合体が得られることが記載されている。
しかしながら、不均一系触媒により得られた重合体同様に、分子量が十分高いと言えなかったり、規則性が高いために融点が高く、又、融点が2つあるなど、不均一であることが示されている。
融点が複数あることは結晶の大きさなどが不均一であることを示しており、べとつきの原因となることもある。
改質剤として他の素材と混合した場合、ブレンドが均一に行われず、所望の改良物性が得られないこともある。
又、蓄熱剤などの用途では、効率向上の為に特定温度において急激に融解や結晶化が起こることで急激な発熱・吸熱が生じることが望まれており、不均一な樹脂は使用が難しい。
【0003】
【発明が解決しようとする課題】
本発明は、熱可塑性樹脂、特に、ポリオレフィンとの相溶性、潤滑油や燃料油やワックスとの相溶性、無機充填剤との混合性、二次加工性に優れ、融解・結晶化の温度域が狭い結晶性高級αオレフィン重合体及びその製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、炭素数10以上の高級αオレフィンから得られ、DSCで測定した融点(Tm)が特定範囲にある結晶性樹脂が本目的に適うものであり、特定のメタロセン触媒を用いることによりこのような重合体を製造できることを見出し、本発明に到達した。
【0005】
即ち、本発明は、以下の結晶性高級αオレフィン重合体及びその製造方法を提供するものである。
1.(1)炭素数10以上の高級αオレフィンから得られ、以下を満足することを特徴とする結晶性高級αオレフィン重合体。
(2A):示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、190℃まで、10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークのピークトップとして定義される融点(TmD)を有し、更に、190℃で5分保持した後、−10℃まで、5℃/分で降温させ、−10℃で5分保持した後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークが1つで、かつ、そのピークトップとして定義される融点(Tm)が20〜100℃である。
2.ゲルパーミエイションクロマトグラフ(GPC)法により測定した重量平均分子量(Mw)が1,000〜10,000,000である上記1に記載の結晶性高級αオレフィン重合体。
3.GPC法により測定した分子量分布(Mw/Mn)が5.0以下である上記1に記載の結晶性高級αオレフィン重合体。
4.立体規則性指標値M2が50モル%以上である上記1に記載の結晶性高級αオレフィン重合体。
5.(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)下記一般式(III)又は(IV)で表される化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、炭素数10以上の高級αオレフィンを重合させることを特徴とする上記1に記載の結晶性高級αオレフィン重合体の製造方法。
【0006】
【化1】
Figure 0003955573
【0007】
〔式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基,ホスフィド基,炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
【0008】
(〔L 1 −R 10 k+ a (〔Z〕 - b ・・・( III
(〔L 2 k+ a (〔Z〕 - b ・・・( IV
(ただし、L 2 はM 2 、R 11 12 3 、R 13 3 C又はR 14 3 である。)、
〔( III )、 (IV )式中、L 1 はルイス塩基、〔Z〕 - は、非配位性アニオン〔Z 1 - 及び〔Z 2 - 、ここで〔Z 1 - は複数の基が元素に結合したアニオン、即ち〔M 1 1 2 ・・・G f - (ここで、M 1 は周期律表第5〜15族元素、好ましくは周期律表第13〜15族元素を示す。G 1 〜G f はそれぞれ水素原子、ハロゲン原子、炭素数1〜20のアルキル基、炭素数2〜40のジアルキルアミノ基、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、炭素数7〜40のアルキルアリール基、炭素数7〜40のアリールアルキル基、炭素数1〜20のハロゲン置換炭化水素基、炭素数1〜20のアシルオキシ基、有機メタロイド基、又は炭素数2〜20のヘテロ原子含有炭化水素基を示す。G 1 〜G f のうち2つ以上が環を形成していてもよい。fは〔(中心金属M 1 の原子価)+1〕の整数を示す。)、〔Z 2 - は、酸解離定数の逆数の対数(pKa)が−10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩基を示す。又、ルイス塩基が配位していてもよい。又、R 10 は水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、アルキルアリール基又はアリールアルキル基を示し、R 11 及びR 12 はそれぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又はフルオレニル基、R 13 は炭素数1〜20のアルキル基、アリール基、アルキルアリール基又はアリールアルキル基を示す。R 14 はテトラフェニルポルフィリン、フタロシアニン等の大環状配位子を示す。kは〔L 1 −R 10 〕、〔L 2 〕のイオン価数で1〜3の整数、aは1以上の整数、b=(k×a)である。M 2 は、周期律表第1〜3、11〜13、17 族元素を含むものであり、M 3 は、周期律表第7〜12族元素を示す。〕
【0009】
【発明の実施の形態】
以下に、本発明について詳細に説明する。
先ず、本発明の結晶性高級αオレフィン重合体は、炭素数10以上の高級αオレフィンを50mol%以上含むものである。
好ましくは70〜100mol%、更に好ましくは85〜100%、特に好ましくは炭素数10以上の高級αオレフィンのみからなる重合体である。
炭素数10以上の高級αオレフィンの含量が50mol%以下では、結晶性が得られなったり、融点が高すぎてしまい各種物質との相溶性が低下してしまう。
炭素数10以上の高級αオレフィンとしては、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン等が挙げられ、これらのうち一種又は二種以上を用いることができる。
本発明の結晶性高級αオレフィン重合体の原料なる高級αオレフィンの炭素数が10未満の場合は、結晶性が低く、べたつきや強度低下につながる。
該高級αオレフィンの炭素数の上限は25以下が好ましい。
【0010】
又、本発明の結晶性高級αオレフィン重合体は下記の(1 - 1)の要件を満たす結晶性樹脂からなる結晶性高級αオレフィン重合体重合体であり、(2)〜(4)の要件を満たすことが好ましい。
(1-1):示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、190℃まで、10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークのピークトップとして定義される融点(TmD)を有し、更に、190℃で5分保持した後、−10℃まで、5℃/分で降温させ、−10℃で5分保持した後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークが1つで、かつ、そのピークトップとして定義される融点(Tm)が20〜100℃である。
(2)ゲルパーミエイションクロマトグラフ(GPC)法により測定した重量平均分子量(Mw)が1,000〜10,000,000
(3)GPC法により測定した分子量分布(Mw/Mn)が5.0以下
(4)立体規則性指標値M2が50モル%以上
【0011】
本発明のαオレフィン重合体の融点(TmD及びTm)は、示差走査型熱量計(DSC)で観測される。
この融点(TmD及びTm)は、試料を窒素雰囲気下−10℃で5分間保持した後、190℃まで、10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークのピークトップとして定義される融点がTmDであり、更に、190℃で5分保持した後、−10℃まで、5℃/分で降温させ、−10℃で5分保持した後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークが1つで、かつ、そのピークトップとして定義されるのがTmである。
このように定義される本発明のαオレフィン重合体の融点(Tm)は、20〜100℃であり、好ましくは20〜80℃、更に好ましくは25〜55℃である。
本発明のαオレフィン重合体はこのような関係を満たすことにより、常温でべたつきが発生しがたく、貯蔵性や二次加工性に優れたものとなるとともに、低温にて均一に溶融するため加工性に優れたものとなる。
【0012】
本発明のαオレフィン重合体は、ゲルパーミエイションクロマトグラフ(GPC)法により測定した重量平均分子量(Mw)が1,000〜10,000,000であることが好ましく、更に好ましくは10,000〜10,000,000である。
Mwが1,000未満では強度が低下し、10,000,000を超えると、成形、混練が困難となる。
又、本発明のαオレフィン重合体はGPC法により測定した分子量分布(Mw/Mn)が5.0以下であることが好ましく、更に好ましくは1.5〜3.5、特に好ましくは1.5〜3.0である。
分子量分布(Mw/Mn)が5.0を超えると組成分布が広くなり、表面特性の悪化、特にべたつき、強度低下につながる。
【0013】
尚、上記の分子量分布(Mw/Mn)は、GPC法により、下記の装置及び条件で測定したポリスチレン換算の質量平均分子量Mw及び数平均分子量Mnより算出した値である。
GPC測定装置
カラム :TOSO GMHHR−H(S)HT
検出器 :液体クロマトグラム用RI検出器 WATERS 150C
測定条件
溶媒 :1,2,4−トリクロロベンゼン
測定温度 :145℃
流速 :1.0ミリリットル/分
試料濃度 :2.2mg/ミリリットル
注入量 :160マイクロリットル
検量線 :Universal Calibration
解析プログラム:HT−GPC(Ver.1.0)
【0014】
本発明のαオレフィン重合体は、アイソタクチック構造が良好で、立体規則性指標値M2が50モル%以上であることが好ましい。
更に好ましくは50〜90モル%、特に好ましくは55〜85モル%、一層好ましくは55〜75モル%である。
このように立体規則性を中程度以上、更には中程度に制御することにより、本発明の目的を達成することができるようになる。
立体規則性指標値のM2が50モル未満の場合、アクタクチック構造やシンジオタクチック構造となり、非晶性もしくは、結晶性が低下し、表面特性の悪化、特にべたつき、強度低下につながる。
【0015】
この立体規則性指標値M2は、T.Asakura,M.Demura,Y.Nishiyamaにより報告された「Macromolecules,24,2334(1991)」で提案された方法に準拠して求めた。
即ち、13CNMRスペクトルで側鎖α位のCH2炭素が立体規則性の違いを反映して***して観測されることを利用してM2を求めることができる。
このM2の値が大きいほどアイソタクティシティーが高いことを示す。
尚、13CNMRの測定は以下の装置、条件にて行う。
装置:日本電子(株)製 EX−400
測定温度:130℃
パルス幅:45°
積算回数:1000回
溶媒:1,2,4‐トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
【0016】
又、立体規則性指標値M2の計算は以下のようにして求める。
混合溶媒に基づく大きな吸収ピークが、127〜135ppmに6本見られる。
このピークのうち、低磁場側から4本目のピーク値を131.1ppmとし、化学シフトの基準とする。
このとき側鎖α位のCH2炭素に基づく吸収ピークが34〜37ppm付近に観測される。
このとき以下の式を用いてM2(mol%)を求める。
【0017】
【式1】
Figure 0003955573
【0019】
次に、本発明のαオレフィン重合体は、以下に示すメタロセン系触媒を用いて製造することができ、その中でも特に、アイソタクチックポリマーを合成できる、C2対称及び、C1対称の遷移金属化合物を用いることが好ましい。
即ち、(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、炭素数10以上の高級αオレフィンを重合させる方法である。
【0020】
【化2】
Figure 0003955573
【0021】
〔式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基,ホスフィド基,炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
【0022】
上記一般式(I)において、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、具体例としてはチタン,ジルコニウム,ハフニウム,イットリウム,バナジウム,クロム,マンガン,ニッケル,コバルト,パラジウム及びランタノイド系金属などが挙げられるが、これらの中ではオレフィン重合活性などの点からチタン,ジルコニウム及びハフニウムが好適である。
1及びE2はそれぞれ、置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基(−N<),ホスフィン基(−P<),炭化水素基〔>CR−,>C<〕及び珪素含有基〔>SiR−,>Si<〕(但し、Rは水素又は炭素数1〜20の炭化水素基あるいはヘテロ原子含有基である)の中から選ばれた配位子を示し、A1及びA2を介して架橋構造を形成している。
又、E1及びE2は互いに同一でも異なっていてもよい。
このE1及びE2としては、置換シクロペンタジエニル基,インデニル基及び置換インデニル基が好ましい。
【0023】
又、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。
該Xの具体例としては、ハロゲン原子,炭素数1〜20の炭化水素基,炭素数1〜20のアルコキシ基,炭素数6〜20のアリールオキシ基,炭素数1〜20のアミド基,炭素数1〜20の珪素含有基,炭素数1〜20のホスフィド基,炭素数1〜20のスルフィド基,炭素数1〜20のアシル基などが挙げられる。
一方、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のYやE1,E2又はXと架橋していてもよい。
該Yのルイス塩基の具体例としては、アミン類,エーテル類,ホスフィン類,チオエーテル類などを挙げることができる。
【0024】
次に、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子又は炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。
このような架橋基としては、例えば、一般式
【0025】
【化3】
Figure 0003955573
【0026】
(Dは炭素、ケイ素又はスズ、R2及びR3はそれぞれ水素原子又は炭素数1〜20の炭化水素基で、それらは互いに同一でも異なっていてもよく、又互いに結合して環構造を形成していてもよい。eは1〜4の整数を示す。)
で表されるものが挙げられ、その具体例としては、メチレン基,エチレン基,エチリデン基,プロピリデン基,イソプロピリデン基,シクロヘキシリデン基,1,2−シクロヘキシレン基,ビニリデン基(CH2=C=),ジメチルシリレン基,ジフェニルシリレン基,メチルフェニルシリレン基,ジメチルゲルミレン基,ジメチルスタニレン基,テトラメチルジシリレン基,ジフェニルジシリレン基などを挙げることができる。
これらの中で、エチレン基,イソプロピリデン基及びジメチルシリレン基が好適である。
qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。
このような一般式(I)で表される遷移金属化合物の中では、一般式(II)
【0027】
【化4】
Figure 0003955573
【0028】
で表される二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物が好ましい。
上記一般式(II)において、M,A1,A2,q及びrは、一般式(I)と同じである。
1はσ結合性の配位子を示し、X1が複数ある場合、複数のX1は同じでも異なっていてもよく、他のX1又はY1と架橋していてもよい。
このX1の具体例としては、一般式(I)のXの説明で例示したものと同じものを挙げることができる。
1はルイス塩基を示し、Y1が複数ある場合、複数のY1は同じでも異なっていてもよく、他のY1又はX1と架橋していてもよい。
このY1の具体例としては、一般式(I)のYの説明で例示したものと同じものを挙げることができる。
4〜R9はそれぞれ水素原子,ハロゲン原子,炭素数1〜20の炭化水素基,炭素数1〜20のハロゲン含有炭化水素基,珪素含有基又はヘテロ原子含有基を示すが、その少なくとも一つは水素原子でないことが必要である。
又、R4〜R9は互いに同一でも異なっていてもよく、隣接する基同士が互いに結合して環を形成していてもよい。
なかでも、R6とR7は環を形成していること及びR8とR9は環を形成していることが好ましい。
4及びR5としては、酸素、ハロゲン、珪素等のヘテロ原子を含有する基が重合活性が高くなり好ましい。
【0029】
この二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物は、配位子間の架橋基にケイ素を含むものが好ましい。
一般式(I)で表される遷移金属化合物の具体例としては、(1,2’−エチレン)(2,1’−エチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4,5−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(5,6−ジメチルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4,7−ジイソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4−フェニルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(3−メチル−4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(5,6−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−エチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−フェニルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4,5−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(5,6−ジメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4,7−ジ−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4−フェニルインデニル)ジルコニウムジクロリド,(1 ,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−メチル−4−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(5,6−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−フェニルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−イソプロピルシクロペンタジエニル)(3’−メチル−5’−イソプロピルシクロペンタジエニル)ジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−フェニルシクロペンジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロ
ペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジイソプロピルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジメチルシリレンインデニル) (2,2’−ジメチルシリレン−3−トリメチルシリルインデニル) ジルコニウムジクロリド、(1,1’−ジフェニルシリレンインデニル) (2,2’−ジフェニルシリレン−3−トリメチルシリルインデニル) ジルコニウムジクロリド、(1,1’−ジフェニルシリレンインデニル) (2,2’−ジメチルシリレン−3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、 (1,1’−ジフェニルシリレン)(2,2’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジイソブロピルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリドなど及びこれらの化合物におけるジルコニウムをチタン又はハフニウムに置換したものを挙げることができる。もちろんこれらに限定されるものではない。
又、他の族又はランタノイド系列の金属元素の類似化合物であってもよい。
又、上記化合物において、(1,1’−)(2,2’−)が(1,2’−)(2,1’−)であってもよく、(1,2’−)(2,1’−)が(1,1’−)(2,2’−)であってもよい。
【0030】
次に、(B)成分のうちの(B−1)成分としては、上記(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物であれば、いずれのものでも使用できるが、次の一般式(III),(IV)
(〔L1−R10k+a(〔Z〕-b ・・・(III)
(〔L2k+a(〔Z〕-b ・・・(IV)
(ただし、L2はM2、R11123、R13 3C又はR143である。)
〔(III),(IV)式中、L1はルイス塩基、〔Z〕-は、非配位性アニオン〔Z1-及び〔Z2-、ここで〔Z1-は複数の基が元素に結合したアニオン、即ち〔M112・・・Gf-(ここで、M1は周期律表第5〜15族元素、好ましくは周期律表第13〜15族元素を示す。G1〜Gfはそれぞれ水素原子,ハロゲン原子,炭素数1〜20のアルキル基,炭素数2〜40のジアルキルアミノ基,炭素数1〜20のアルコキシ基,炭素数6〜20のアリール基,炭素数6〜20のアリールオキシ基,炭素数7〜40のアルキルアリール基,炭素数7〜40のアリールアルキル基,炭素数1〜20のハロゲン置換炭化水素基,炭素数1〜20のアシルオキシ基,有機メタロイド基、又は炭素数2〜20のヘテロ原子含有炭化水素基を示す。G1〜Gfのうち2つ以上が環を形成していてもよい。fは〔(中心金属M1の原子価)+1〕の整数を示す。)、〔Z2-は、酸解離定数の逆数の対数(pKa)が−10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩基を示す。又、ルイス塩基が配位していてもよい。又、R10は水素原子,炭素数1〜20のアルキル基,炭素数6〜20のアリール基,アルキルアリール基又はアリールアルキル基を示し、R11及びR12はそれぞれシクロペンタジエニル基,置換シクロペンタジエニル基,インデニル基又はフルオレニル基、R13は炭素数1〜20のアルキル基,アリール基,アルキルアリール基又はアリールアルキル基を示す。R14はテトラフェニルポルフィリン,フタロシアニン等の大環状配位子を示す。kは〔L1−R10〕,〔L2〕のイオン価数で1〜3の整数、aは1以上の整数、b=(k×a)である。M2は、周期律表第1〜3、11〜13、17族元素を含むものであり、M3は、周期律表第7〜12族元素を示す。〕
で表されるものを好適に使用することができる。
【0031】
ここで、L1の具体例としては、アンモニア,メチルアミン,アニリン,ジメチルアミン,ジエチルアミン,N−メチルアニリン,ジフェニルアミン,N,N−ジメチルアニリン,トリメチルアミン,トリエチルアミン,トリ−n−ブチルアミン,メチルジフェニルアミン,ピリジン,p−ブロモ−N,N−ジメチルアニリン,p−ニトロ−N,N−ジメチルアニリンなどのアミン類、トリエチルホスフィン,トリフェニルホスフィン,ジフェニルホスフィンなどのホスフィン類、テトラヒドロチオフェンなどのチオエーテル類、安息香酸エチルなどのエステル類、アセトニトリル,ベンゾニトリルなどのニトリル類などを挙げることができる。
【0032】
10の具体例としては水素,メチル基,エチル基,ベンジル基,トリチル基などを挙げることができ、R11,R12の具体例としては、シクロペンタジエニル基,メチルシクロペンタジエニル基,エチルシクロペンタジエニル基,ペンタメチルシクロペンタジエニル基などを挙げることができる。
13の具体例としては、フェニル基,p−トリル基,p−メトキシフェニル基などを挙げることができ、R14の具体例としてはテトラフェニルポルフィリン,フタロシアニン,アリル,メタリルなどを挙げることができる。
又、M2の具体例としては、Li,Na,K,Ag,Cu,Br,I,I3などを挙げることができ、M3の具体例としては、Mn,Fe,Co,Ni,Znなどを挙げることができる。
【0033】
又、〔Z1-、即ち〔M112・・・Gf〕において、M1の具体例としてはB,Al,Si,P,As,Sbなど、好ましくはB及びAlが挙げられる。
又、G1,G2〜Gfの具体例としては、ジアルキルアミノ基としてジメチルアミノ基,ジエチルアミノ基など、アルコキシ基若しくはアリールオキシ基としてメトキシ基,エトキシ基,n−ブトキシ基,フェノキシ基など、炭化水素基としてメチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,n−オクチル基,n−エイコシル基,フェニル基,p−トリル基,ベンジル基,4−t−ブチルフェニル基,3,5−ジメチルフェニル基など、ハロゲン原子としてフッ素,塩素,臭素,ヨウ素,ヘテロ原子含有炭化水素基としてp−フルオロフェニル基,3,5−ジフルオロフェニル基,ペンタクロロフェニル基,3,4,5−トリフルオロフェニル基,ペンタフルオロフェニル基,3,5−ビス(トリフルオロメチル)フェニル基,ビス(トリメチルシリル)メチル基など、有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基,トリメチルゲルミル基,ジフェニルアルシン基,ジシクロヘキシルアンチモン基,ジフェニル硼素などが挙げられる。
【0034】
又、非配位性のアニオン、即ちpKaが−10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基〔Z2-の具体例としては、トリフルオロメタンスルホン酸アニオン(CF3SO3-,ビス(トリフルオロメタンスルホニル)メチルアニオン,ビス(トリフルオロメタンスルホニル)ベンジルアニオン,ビス(トリフルオロメタンスルホニル)アミド,過塩素酸アニオン(ClO4-,トリフルオロ酢酸アニオン(CF3CO2-,ヘキサフルオロアンチモンアニオン(SbF6-,フルオロスルホン酸アニオン(FSO3-,クロロスルホン酸アニオン(ClSO3-,フルオロスルホン酸アニオン/5−フッ化アンチモン(FSO3/SbF5-,フルオロスルホン酸アニオン/5−フッ化砒素(FSO3/AsF5-,トリフルオロメタンスルホン酸/5−フッ化アンチモン(CF3SO3/SbF5-などを挙げることができる。
【0035】
このような前記(A)成分の遷移金属化合物と反応してイオン性の錯体を形成するイオン性化合物、即ち(B−1)成分化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム,テトラフェニル硼酸トリ−n−ブチルアンモニウム,テトラフェニル硼酸トリメチルアンモニウム,テトラフェニル硼酸テトラエチルアンモニウム,テトラフェニル硼酸メチル(トリ−n−ブチル)アンモニウム,テトラフェニル硼酸ベンジル(トリ−n−ブチル)アンモニウム,テトラフェニル硼酸ジメチルジフェニルアンモニウム,テトラフェニル硼酸トリフェニル(メチル)アンモニウム,テトラフェニル硼酸トリメチルアニリニウム,テトラフェニル硼酸メチルピリジニウム,テトラフェニル硼酸ベンジルピリジニウム,テトラフェニル硼酸メチル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリ−n−ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラ−n−ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ−n−ブチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸メチル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸メチル(4−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム,テトラキス〔ビス(3,5−ジトリフルオロメチル)フェニル〕硼酸ジメチルアニリニウム,テトラフェニル硼酸フェロセニウム,テトラフェニル硼酸銀、テトラフェニル硼酸トリチル,テトラフェニル硼酸テトラフェニルポルフィリンマンガン,テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸(1,1’−ジメチルフェロセニウム),テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル,テトラキス(ペンタフルオロフェニル)硼酸リチウム,テトラキス(ペンタフルオロフェニル)硼酸ナトリウム,テトラキス(ペンタフルオロフェニル)硼酸テトラフェニルポルフィリンマンガン,テトラフルオロ硼酸銀,ヘキサフルオロ燐酸銀,ヘキサフルオロ砒素酸銀,過塩素酸銀,トリフルオロ酢酸銀,トリフルオロメタンスルホン酸銀などを挙げることができる。
(B−1)は一種用いてもよく、又二種以上を組み合わせて用いてもよい。
一方、(B−2)成分のアルミノキサンとしては、一般式(V)
【0036】
【化5】
Figure 0003955573
【0037】
(式中、R15は炭素数1〜20、好ましくは1〜12のアルキル基,アルケニル基,アリール基,アリールアルキル基などの炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2〜50、好ましくは2〜40の整数である。尚、各R15は同じでも異なっていてもよい。)
で示される鎖状アルミノキサン、及び一般式(VI)
【0038】
【化6】
Figure 0003955573
【0039】
(式中、R15及びwは前記一般式(V)におけるものと同じである。)
で示される環状アルミノキサンを挙げることができる。
【0040】
前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。
例えば、(1)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、(2)重合時に当初有機アルミニウム化合物を加えておき、後に水を添加する方法、(3)金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(4)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、更に水を反応させる方法などがある。
尚、アルミノキサンとしては、トルエン不溶性のものであってもよい。
これらのアルミノキサンは一種用いてもよく、二種以上を組み合わせて用いてもよい。
【0041】
(A)触媒成分と(B)触媒成分との使用割合は、(B)触媒成分として(B−1)化合物を用いた場合には、モル比で好ましくは10:1〜1:100、より好ましくは2:1〜1:10の範囲が望ましく、上記範囲を逸脱する場合は、単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。
又、(B−2)化合物を用いた場合には、モル比で好ましくは1:1〜1:1000000、より好ましくは1:10〜1:10000の範囲が望ましい。
この範囲を逸脱する場合は単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。
又、触媒成分(B)としては(B−1),(B−2)を単独又は二種以上組み合わせて用いることもできる。
【0042】
又、本発明のαオレフィン重合体を製造する際の重合用触媒は、上記(A)成分及び(B)成分に加えて(C)成分として有機アルミニウム化合物を用いることができる。
ここで、(C)成分の有機アルミニウム化合物としては、一般式(VII)
16 vAlJ3-v ・・・(VII)
〔式中、R16は炭素数1〜10のアルキル基、Jは水素原子、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基又はハロゲン原子を示し、vは1〜3の整数である〕
で示される化合物が用いられる。
前記一般式(VII)で示される化合物の具体例としては、トリメチルアルミニウム,トリエチルアルミニウム,トリイソプロピルアルミニウム,トリイソブチルアルミニウム,ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,メチルアルミニウムジクロリド,エチルアルミニウムジクロリド,ジメチルアルミニウムフルオリド,ジイソブチルアルミニウムヒドリド,ジエチルアルミニウムヒドリド,エチルアルミニウムセスキクロリド等が挙げられる。
これらの有機アルミニウム化合物は一種用いてもよく、二種以上を組合せて用いてもよい。
【0043】
前記(A)触媒成分と(C)触媒成分との使用割合は、モル比で好ましくは1:1〜1:10000、より好ましくは1:5〜1:2000、更に好ましくは1:10ないし1:1000の範囲が望ましい。
該(C)触媒成分を用いることにより、遷移金属当たりの重合活性を向上させることができるが、あまり多いと有機アルミニウム化合物が無駄になるとともに、重合体中に多量に残存し、好ましくない。
本発明のαオレフィン重合体の製造においては、触媒成分の少なくとも一種を適当な担体に担持して用いることができる。
該担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特に無機酸化物担体あるいはそれ以外の無機担体が好ましい。
【0044】
無機酸化物担体としては、具体的には、SiO2,Al23,MgO,ZrO2,TiO2,Fe23,B23,CaO,ZnO,BaO,ThO2やこれらの混合物、例えば、シリカアルミナ,ゼオライト,フェライト,グラスファイバーなどが挙げられる。
これらの中では、特にSiO2,Al23が好ましい。
尚、上記無機酸化物担体は、少量の炭酸塩,硝酸塩,硫酸塩などを含有してもよい。
【0045】
一方、上記以外の担体として、MgCl2,Mg(OC25)2などで代表される一般式MgR17 x1 yで表されるマグネシウム化合物やその錯塩などを挙げることができる。
ここで、R17は炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基又は炭素数6〜20のアリール基、X1はハロゲン原子又は炭素数1〜20のアルキル基を示し、xは0〜2、yは0〜2でり、かつx+y=2である。
各R17及び各X1はそれぞれ同一でもよく、又異なってもいてもよい。
又、有機担体としては、ポリスチレン,スチレン−ジビニルベンゼン共重合体,ポリエチレン,ポリ1−ブテン,置換ポリスチレン,ポリアリレートなどの重合体やスターチ,カーボンなどを挙げることができる。
【0046】
本発明のαオレフィン重合体の製造に用いられる触媒の担体としては、MgCl2,MgCl(OC25),Mg(OC25)2,SiO2,Al23などが好ましい。
又、担体の性状は、その種類及び製法により異なるが、平均粒径は通常1〜300μm、好ましくは10〜200μm、より好ましくは20〜100μmである。
粒径が小さいと重合体中の微粉が増大し、粒径が大きいと重合体中の粗大粒子が増大し嵩密度の低下やホッパーの詰まりの原因になる。
又、担体の比表面積は、通常1〜1000m2/g、好ましくは50〜500m2/g、細孔容積は通常0.1〜5cm3/g、好ましくは0.3〜3cm3/gである。
【0047】
比表面積又は細孔容積の何れかが上記範囲を逸脱すると、触媒活性が低下することがある。尚比表面積及び細孔容積は、例えば、BET法に従って吸着された窒素ガスの体積から求めることができる〔J.Am.Chem.Soc.、60,309(1983)参照〕。
更に、上記担体が無機酸化物担体である場合には、通常150〜1000℃、好ましくは200〜800℃で焼成して用いることが望ましい。
【0048】
触媒成分の少なくとも一種を前記担体に担持させる場合、(A)触媒成分及び(B)触媒成分の少なくとも一方を、好ましくは(A)触媒成分及び(B)触媒成分の両方を担持させるのが望ましい。
該担体に、(A)成分及び(B)成分の少なくとも一方を担持させる方法については、特に制限されないが、例えば(1)(A)成分及び(B)成分の少なくとも一方と担体とを混合する方法、(2)担体を有機アルミニウム化合物又はハロゲン含有ケイ素化合物で処理した後、不活性溶媒中で(A)成分及び(B)成分の少なくとも一方と混合する方法、(3)担体と(A)成分及び/又は(B)成分と有機アルミニウム化合物又はハロゲン含有ケイ素化合物とを反応させる方法、(4)(A)成分又は(B)成分を担体に担持させた後、(B)成分又は(A)成分と混合する方法、(5)(A)成分と(B)成分との接触反応物を担体と混合する方法、(6)(A)成分と(B)成分との接触反応に際して、担体を共存させる方法などを用いることができる。
尚、上記(4)(5)及び(6)の方法において、(C)成分の有機アルミニウム化合物を添加することもできる。
【0049】
このようにして得られた触媒は、いったん溶媒留去を行って固体として取り出してから重合に用いてもよいし、そのまま重合に用いてもよい。
又、本発明のαオレフィン重合体の製造においては、(A)成分及び(B)成分の少なくとも一方の担体への担持操作を重合系内で行うことにより触媒を生成させることができる。
例えば、(A)成分及び(B)成分の少なくとも一方と担体と更に必要により前記(C)成分の有機アルミニウム化合物を加え、エチレンなどのオレフィンを常圧〜2MPa(gauge)加えて、−20〜200℃で1分〜2時間程度予備重合を行い触媒粒子を生成させる方法を用いることができる。
【0050】
本発明のαオレフィン重合体の製造に用いられる触媒における(B−1)成分と担体との使用割合は、質量比で好ましくは1:5〜1:10000、より好ましくは1:10〜1:500とするのが望ましく、(B−2)成分と担体との使用割合は、質量比で好ましくは1:0.5〜1:1000、より好ましくは1:1〜1:50とするのが望ましい。
(B)成分として二種以上を混合して用いる場合は、各(B)成分と担体との使用割合が質量比で上記範囲内にあることが望ましい。
又、(A)成分と担体との使用割合は、質量比で、好ましくは1:5〜1:10000、より好ましくは1:10〜1:500とするのが望ましい。
【0051】
(B)成分〔(B−1)成分又は(B−2)成分〕と担体との使用割合、又は(A)成分と担体との使用割合が上記範囲を逸脱すると、活性が低下することがある。
このようにして調製された重合用触媒の平均粒径は、通常2〜200μm、好ましくは10〜150μm、特に好ましくは20〜100μmであり、比表面積は、通常20〜1000m2/g、好ましくは50〜500m2/gである。
平均粒径が2μm未満であると重合体中の微粉が増大することがあり、200μmを超えると重合体中の粗大粒子が増大することがある。
比表面積が20m2/g未満であると活性が低下することがあり、1000m2/gを超えると重合体の嵩密度が低下することがある。
又、1−ブテン系重合体の製造に用いられる触媒において、担体100g中の遷移金属量は、通常0.05〜10g、特に0.1〜2gであることが好ましい。
遷移金属量が上記範囲外であると、活性が低くなることがある。
このように担体に担持することによって工業的に有利な高い嵩密度と優れた粒径分布を有する重合体を得ることができる。
【0052】
本発明のαオレフィン重合体において、重合方法は特に制限されず、スラリー重合法,気相重合法,塊状重合法,溶液重合法,懸濁重合法などのいずれの方法を用いてもよいが、スラリー重合法,気相重合法が特に好ましい
重合条件については、重合温度は通常−100〜250℃、好ましくは−50〜200℃、より好ましくは0〜130℃である。
又、反応原料に対する触媒の使用割合は、原料モノマー/上記(A)成分(モル比)が好ましくは1〜108、特に100〜105となることが好ましい。
重合時間は通常5分〜10時間、反応圧力は好ましくは常圧〜20MPa(gauge)、更に好ましくは常圧〜10MPa(gauge)である。
【0053】
本発明のαオレフィン重合体の製造方法において、水素を添加すると重合活性が向上するので好ましい。
水素を用いる場合は、通常、常圧〜5MPa(gauge)、好ましくは常圧〜3MPa(gauge)、更に好ましくは常圧〜2MPa(gauge)である。
重合溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタンなどのハロゲン化炭化水素などを用いることができる。
これらの溶媒は一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。
又、α−オレフィンなどのモノマーを溶媒として用いてもよい。
尚、重合方法によっては無溶媒で行うことができる。
【0054】
重合に際しては、前記重合用触媒を用いて予備重合を行うことができる。
予備重合は、固体触媒成分に、例えば、少量のオレフィンを接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。
予備重合に用いるオレフィンについては特に制限はなく、前記に例示したものと同様のもの、例えば、エチレン、炭素数3〜20のα−オレフィン、あるいはこれらの混合物などを挙げることができるが、該重合において用いるオレフィンと同じオレフィンを用いることが有利である。
【0055】
予備重合温度は、通常−20〜200℃、好ましくは−10〜130℃、より好ましくは0〜80℃である。
予備重合においては、溶媒として、脂肪族炭化水素,芳香族炭化水素,モノマーなどを用いることができる。
これらの中で特に好ましいのは脂肪族炭化水素である。
又、予備重合は無溶媒で行ってもよい。
予備重合においては、予備重合生成物の極限粘度〔η〕(135℃デカリン中で測定)が0.1デシリットル/g以上、触媒中の遷移金属成分1ミリモル当たりに対する予備重合生成物の量が1〜10000g、特に10〜1000gとなるように条件を調整することが望ましい。
【0056】
又、重合体の分子量の調節方法としては、各触媒成分の種類、使用量、重合温度の選択、更には水素存在下での重合などがある。
窒素等の不活性ガスを存在させても良い。
以上のように、本発明の方法により、結晶性高級αオレフィン重合体を効率よく得ることができ、低温特性、剛性、耐熱性、潤滑油との相溶性、無機充填剤との混合性、二次加工性が優れた結晶性高級αオレフィン重合体が得られる。
【0057】
【実施例】
以下に、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
先ず、本発明のαオレフィン重合体の物性の評価方法について説明する。
【0058】
(1)立体規則性指標値のM2
明細書本文中に記載した方法により測定した。
(2)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
明細書本文中に記載した方法により測定した。
(3)DSC測定
示差走査型熱量計(パーキン・エルマー社製, DSC−7)を用い、試料10mgを窒素雰囲気下−10℃で5分間保持した後、190℃まで、10℃/分で昇温させることにより得られた融解吸熱量(ΔHD)カーブから観測されるピークのピークトップの融点(TmD)を測定し、更に、190℃で5分保持した後、−10℃まで、5℃/分で降温させ、−10℃で5分保持した後、190℃まで10℃/分で昇温させることにより得られた融解吸熱量(ΔH)カーブから観測されるピークのピークトップの融点(Tm)を測定した。
(4)結晶性
上記のDSC測定において、融点(TmD)が測定された場合を○、融点(TmD)が測定されなかった場合を×とした。
【0059】
製造例1(2−クロロジメチルシリルインデンの製造)
窒素気流下、1リットルの三つ口フラスコにTHF(テトラヒドロフラン)50ミリリットルとマグネシウム2.5g(41ミリモル)を加え、ここに1,2−ジブロモエタン0.1ミリリットルを加えて30分間攪拌し、マグネシウムを活性化した。
攪拌後、溶媒を抜き出し、新たにTHF50ミリリットルを添加した。
ここに2−ブロモインデン5.0g(25.6ミリモル)のTHF(200ミリリットル)溶液を2時間かけて滴下した。
滴下終了後、室温において2時間攪拌した後、−78℃に冷却し、ジクロロジメチルシラン3.1ミリリットル(25.6ミリモル)のTHF(100ミリリットル)溶液を1時間かけて滴下し、15時間攪拌した後、溶媒を留去した。
残渣をヘキサン200ミリリットルで抽出した後、溶媒を留去することにより、2−クロロジメチルシリルインデン6.6g(24.2ミリリモル)を得た(収率94%)。
【0060】
製造例2〔(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(インデン)の製造〕
窒素気流下、1リットルの三つ口フラスコにTHF400ミリリットルと製造例1で得られた2−クロロジメチルシリルインデン8gを加え、−78℃に冷却した。この溶液へ、LiN(SiMe32のTHF溶液(1.0モル/リットル)を38.5ミリリットル(38.5ミリモル)滴下した。
室温において15時間攪拌した後、溶媒を留去し、ヘキサン300ミリリットルで抽出した。溶媒を留去することにより、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)−ビス(インデン)を2.0g(6.4ミリモル)得た(収率33.4%)。
【0061】
製造例3〔(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムクロライドの製造〕
窒素気流下、200ミリリットルのシュレンク瓶にエーテル50ミリリットルと製造例2で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(インデン)3.5g(10.2ミリモル)を加えた。
ここに−78℃でn−ブチルリチウム(n−BuLi)のヘキサン溶液(1.60M、12.8ミリリットル)を滴下した。
室温で8時間接触した後、溶媒を留去し、得られた固体を減圧乾燥することにより白色固体5.0gを得た。
この固体をTHF50ミリリットルに溶解させ、ここへヨードメチルトリメチルシラン1.4ミリリットルを室温で滴下した。
水10ミリリットルを加え、有機相をエーテル50ミリリットルで抽出した。有機相を乾燥し溶媒を留去した。
ここヘエーテル50ミリリットルを加え、−78℃でn−BuLiのヘキサン溶液(1.60M、12.4ミリリットル)を滴下した。
室温に上げ3時間撹拌後、エーテルを留去した。
得られた固体をヘキサン30ミリリットルで洗浄した後減圧乾燥した。
この白色固体5.11gをトルエン50ミリリットルに混濁させ、別のシュレンク中でトルエン10ミリリットルに懸濁した四塩化ジルコニウム2.0g(8.6mmol)を添加した。
室温で12時間撹拌後、溶媒を留去し、残渣をヘキサン50ミリリットルで洗浄した。
残渣をジクロロメタン30ミリリットルから再結晶化させることにより(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムクロライドの黄色微結晶1.2gを得た(収率25%)。
1H−NMR(90MHz、CDCl3):δ−0.09(s、−SiMe3、9H);0.89、0.86、1.03、1.06(s、−Me2Si−、12H);2.20、2.65(d、−CH2−、2H);6.99(s、CH、1H);7.0−7.8(m、ArH、8H)
【0062】
実施例1
加熱乾燥した1リットルオートクレーブに、ヘプタン200ミリリットル、1−オクタデセン(C18)200ミリリットル、トリイソブチルアルミニウム0.5ミリモル、メチルアルミノキサン1ミリモルを加え、更に水素0.03MPa導入した。
攪拌しながら温度を60℃にした後、製造例3で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−トリメチルシリルメチルインデニル)(インデニル)ジルコニウムジクロライドを1マイクロモル加え30分間重合した。
重合反応終了後、反応物を加熱、減圧下、乾燥することにより、高級αオレフィン重合体を25g得た。
得られた重合体の物性測定結果を第1表に示す。
【0063】
実施例2
加熱乾燥した1リットルオートクレーブに、1−オクタデセン(C18)200ミリリットル、メチルアルミノキサン10ミリモルを加え、更に水素0.2MPa導入した。
攪拌しながら温度を60℃にした後、製造例3で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−トリメチルシリルメチルインデニル)(インデニル)ジルコニウムジクロライドを10マイクロモル加え30分間重合した。
重合反応終了後、反応物を加熱、減圧下、乾燥することにより、高級αオレフィン重合体を10g得た。
得られた重合体の物性測定結果を第1表に示す。
【0064】
実施例3
加熱乾燥した1リットルオートクレーブに、1−ヘキサデセン(C16)200ミリリットル、メチルアルミノキサン10ミリモルを加え、更に水素0.2MPa導入した。
攪拌しながら温度を60℃にした後、製造例3で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−トリメチルシリルメチルインデニル)(インデニル)ジルコニウムジクロライドを10マイクロモル加え30分間重合した。
重合反応終了後、反応物を加熱、減圧下、乾燥することにより、高級αオレフィン重合体を16g得た。
得られた重合体の物性測定結果を第1表に示す。
【0065】
製造例4〔エチル(2−インデニル)アセテートの製造〕
窒素気流下、水素化ナトリウム3.3g(0.14モル)をテトラヒドロフラン300ミリリットルに懸濁させ、10℃に冷却した。
この懸濁液に、エチルジエチルホスホノアセテート28.3g(0.11モル)のテトラヒドロフラン溶液200ミリリットルを1時間で滴下した。
滴下終了後、30分間室温で攪拌し、氷冷した後、これに2−インダノン16.33g(0.12モル)のテトラヒドロフラン溶液75ミリリットルを1時間で滴下した。
滴下後、30分間室温で攪拌した後、水により加水分解し、次いでジエチルエーテル500ミリリットルにより抽出を行い、有機相分離後、減圧下に溶媒を留去した。
残渣を減圧蒸留することにより、薄黄色オイルとして、エチル(2−インデニル)アセテートを単離した。収量11.06g、収率49.5%であった。
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(CDCl3)(δ,ppm):1.23(t,3H),3.40(s,2H),3.45(s,2H),4.16(q,2H),6.65(s,1H),6.94〜7.50(m,4H)
【0066】
製造例5〔2−(2−インデニル)−エタノールの製造〕
窒素気流下、水素化リチウムアルミニウム2.2g(58.49ミリモル)をジエチルエーテル100ミリリットルに懸濁させた。
この懸濁液に、製造例4で得られたエチル(2−インデニル)アセテート11.06g(59.06ミリモル)のジエチルエーテル溶液50ミリリットルを1時間で滴下した。
滴下後30分間室温で攪拌した後、氷冷し、水50ミリリットルを徐々に加え、更に希塩酸を加え、不溶物を溶解した。
有機相を分離し、減圧下に溶媒を留去して、2−(2−インデニル)−エタノールを白色固体として得た。
2−(2−インデニル)−エタノールの収量は7.89gであった。
このものは、これ以上精製することなく、次の反応に用いた。
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(CDCl3)(δ,ppm):1.56(s,1H),2.76(t,2H),3.37(s,2H),3.83(t,2H),6.62(s,1H),6.95〜7.62(m,4H)
【0067】
製造例6〔1−ブロモ−2−(2−インデニル)エタンの製造〕
窒素気流下、製造例5で得られた2−(2−インデニル)−エタノール4.61g(28.77ミリモル)をジクロロメタン65ミリリットルに溶解した。
この溶液にトリフェニルホスフィン7.66g(29.20ミリモル)を加えた後、N−ブロモコハク酸イミド5.19g(29.16ミリモル)を徐々に加えた。
N−ブロモコハク酸イミドの添加終了後、室温で30分間攪拌した後、これに水を加え攪拌し、次いで有機相を分離して、無水硫酸マグネシウムで乾燥した。
減圧下に溶媒を留去し、残渣をシリカゲルカラム(展開溶媒:ヘキサン)で精製し、1−ブロモ−2−(2−インデニル)エタンを無色油状物として得た。
収量5.07g、収率80.85%であった。
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(CDCl3)(δ,ppm):3.02(t,2H),3.32(s,2H),3.52(t,2H),6.60(s,1H),6.93〜7.53(m,4H)
【0068】
製造例7〔(1,2‘−エチレン)(2,1’−エチレン)−ビス(インデン)の製造〕
窒素気流下、テトラヒドロフラン50ミリリットルに、ジイソプロピルアミン6.87ミリリットル(52.41ミリモル)を加え、−78℃に冷却した。
この溶液にn−ブチルリチウム1.64モル/リットル濃度のヘキサン溶液31.96ミリリットル(n−ブチルリチウム:52.41ミリモル)を10分間で滴下した。
滴下終了後、反応混合物を0℃まで自然昇温させることにより、LDA(リチウムジイソプロピルアミド)溶液を調製した。
次に、窒素気流下、テトラヒドロフラン500ミリリットルに製造例6で得られた1−ブロモ−2−(2−インデニル)エタン11.69g(52.39ミリモル)を加え、攪拌溶解させた後、−78℃に冷却した。
次いで、この溶液に、先に調製したLDA溶液を−78℃に冷却して、30分間かけて滴下した。
LDA溶液の滴下終了後、そのまま室温まで自然昇温させた後、12時間攪拌を行った。
この反応混合物に水500ミリリットルを加え、有機相を洗浄した後、無水硫酸マグネシウムを加えて有機相を乾燥した。
硫酸マグネシウムを濾別後、減圧下溶媒を留去したところ、白色固体として、(1,2‘−エチレン)(2,1’−エチレン)−ビス(インデン)の粗生成物5.95gを得た。
この粗生成物をFD−MS(フィールドディソープションマススペクトル)法により分析したところ、目的物である(1,2’−エチレン)(2,1’−エチレン)−ビス(インデン)(2量体)を確認した。
この粗生成物を0.2torr(0.027kPa),150℃で昇華精製することにより、(1,2’−エチレン)(2,1’−エチレン)−ビス(インデン)1.87gを得た。
収率25.1%であった。
このものの構造は、FD−MS及び1H−NMRより確認を行った。
尚、FD−MSの測定は加速電圧8kVで行った。
1H−NMR(CDCl3)(δ,ppm):3.02(s,8H),3.29(s,4H),7.0〜7.5(m,8H)
FD−MS:M+=284
【0069】
製造例8〔(1,2’−エチレン)(2,1’−エチレン)−ビス(インデン)のジリチウム塩の製造〕
窒素気流下、上記製造例7で得られた(1,2’−エチレン)(2,1’−エチレン)−ビス(インデン)1.87g(6.58ミリモル)にジエチルエーテル100ミリリットルを加え、攪拌し、−78℃まで冷却した。
これに、n−ブチルリチウム1.64モル/リットル濃度のヘキサン溶液8.02ミリリットル(n−ブチルリチウム:13.15ミリモル)を30分間で滴下した。
この反応混合物を室温まで自然昇温させた後、室温で12時間攪拌し、次いでこの反応混合物を減圧下で処理して溶媒を留去し、残渣をヘキサン50ミリリットルで2回洗浄した。
減圧下で乾燥することにより、(1,2’−エチレン)(2,1’−エチレン)−ビス(インデン)のジリチウム塩を淡黄色の粉末として得た。
このものの1H−NMRを求めたところ、次の結果が得られた。
尚、THFはテトラヒドロフランである。
このものはジエチルエーテル付加物であり、そのまま次の反応に使用した。
収量1.63g,収率69.3%であった。
1H−NMR(THF−d8)(δ,ppm):3.22(8H),5.38(s,2H),5.95〜6.35(m,4H),6.70〜7.20(m,4H)
【0070】
製造例9〔(1,2’−エチレン)(2,1’−エチレン)−ビス(インデニル)ジルコニウムジクロリドの製造〕
窒素気流下、製造例8で得られた(1,2’−エチレン)(2,1’−エチレン)−ビス(インデン)のジリチウム塩1.63g(4.56ミリモル)をトルエン50ミリリットルに懸濁させた後、−78℃に冷却した。
一方、窒素気流下、四塩化ジルコニウム1.06g(4.56ミリモル)をトルエン100ミリリットルに懸濁させた後、−78℃に冷却した。
この四塩化ジルコニウムのトルエン懸濁液に、先に調製した(1,2’−エチレン)(2,1’−エチレン)−ビス(インデン)ジリチウム塩のトルエン懸濁液を30分間で滴下した。
この反応混合物を室温まで自然昇温させ、室温で12時間攪拌した後、トルエン上澄みをろ別後、残渣をジクロロメタン50ミリリットルで2回抽出した。
減圧下に溶媒を留去した後、残渣をジクロロメタン/ヘキサンで再結晶することにより、(1,2’−エチレン)(2,1’−エチレン)−ビス(インデニル)ジルコニウムジクロリド0.25gを得た。
収率12.3%であった。
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(CDCl3)(δ,ppm):3.62(8H),6.53(s,2H),6.90〜7.60(m,8H)
この遷移金属化合物の構造を次に示す。
【0071】
【化7】
Figure 0003955573
【0072】
実施例4
加熱乾燥した1リットルオートクレーブに、1−ドデセン(C12)200ミリリットル、メチルアルミノキサン5ミリモルを加え、更に水素0.5MPa導入した。
撹絆しながら温度を60℃にした後、製造例9で得られた(1,2’−エチレン)(2,1’−エチレン)ビスインデニルジルコニウムジクロライドを5マイクロモル加え30分間重合した。
重合反応終了後、反応物を加熱、減圧下、乾燥することにより、高級αオレフィン重合体を14g得た。
得られた重合体の物性測定結果を第1表に示す。
【0073】
比較例1
加熱乾燥した1リットルオートクレーブに、ヘプタン200ミリリットル、1−オクテン(C8)200ミリリットル、トリイソブチルアルミニウム0.5ミリモル、メチルアルミノキサン1ミリモルを加え、更に水素0.03MPa導入した。
攪拌しながら温度を60℃にした後、製造例3で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−トリメチルシリルメチルインデニル)(インデニル)ジルコニウムジクロライドを1マイクロモル加え30分間重合した。
重合反応終了後、反応物を加熱、減圧下、乾燥することにより、高級αオレフィン重合体を68g得た。
得られた重合体の物性測定結果を第1表に示す。
【0074】
【表1】
Figure 0003955573
【0075】
以上の実施例1〜4では融点(Tm)が28.2〜41.8℃であり、その温度以下ではべたつきが発生しない。
一方、比較例1では室温(25℃程度)でべたつきが認められた。
このように、本発明の重合体は、べたつきが発生する温度が高いので、ペレット化が容易であり、又、ペレットの貯蔵を室温で行なうことができることなどから、取扱性に優れている。
【0076】
製造例10〔(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドの製造〕
窒素気流下、200ミリリットルのシュレンク瓶に製造例2で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(インデン)2.5g(7.2ミリモル)とエーテル100ミリリットルを加えた。
−78℃に冷却しn−ブチルリチウム(n−BuLi)のヘキサン溶液(1.6M)を9.0ミリリットル(14.8ミリモル)加えた後、室温で12時間攪拌した。
溶媒を留去し、得られた固体をヘキサン20ミリリットルで洗浄し減圧乾燥することによりリチウム塩を白色固体として定量的に得た。
シュレンク瓶中、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(インデン)のリチウム塩(6.97ミリモル)をTHF50ミリリットルに溶解し、室温でヨードメチルトリメチルシラン2.1ミリリットル(14.2ミリモル)をゆっくりと滴下し12時間攪拌した。
溶媒を留去し、エーテル50ミリリットル加えて飽和塩化アンモニウム溶液で洗浄した。
分液後、有機相を乾燥し、溶媒を除去することにより(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデン)3.04g(5.9ミリモルを)得た。(収率84%)
次に、窒素気流下においてシュレンク瓶に、上記で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデン)3.04g(5.9ミリモル)とエーテル50ミリリットルを加えた。
−78℃に冷却し、n−ブチルリチウム(n−BuLi)のヘキサン溶液(1.6M)を7.4ミリリットル(11.8ミリモル)を加えた後、室温で12時間攪拌した。
溶媒を留去し、得られた固体をヘキサン40ミリリットルで洗浄することによりリチウム塩をエーテル付加体として3.06gを得た。
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(90MHz,THF−d8):δ0.04(s,−SiMe3,18H),0.48(s,−Me2Si−,12H),1.10(t,−CH3,6H),2.59(s,−CH2−,4H),3.38(q,−CH2−,4H),6.2−7.7(m,Ar−H,8H)
窒素気流下で上記で得られたリチウム塩3.06gをトルエン50ミリリットルに懸濁させた。
−78℃に冷却し、ここへ予め−78℃に冷却した四塩化ジルコニウム1.2g(5.1ミリモル)のトルエン(20ミリリットル)懸濁液を滴下した。
滴下後、室温で6時間攪拌した。
反応溶液の溶媒を留去後、得られた残渣をジクロロメタンにより再結晶化することにより(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドの黄色微結晶0.9g(1.33ミリモル)を得た。(収率26%)
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(90MHz,CDCl3):δ0.0(s,―SiMe3−,18H),1.02,1.12(s,−Me2Si−,12H),2.51(dd,−CH2−,4H),7.1−7.6(m,Ar−H,8H)
【0077】
実施例5
加熱乾燥した1リットルオートクレーブに、1−オクタデセン(C18)200ミリリットル、トリイソブチルアルミニウム1ミリモル、製造例10で得られたメチルアルミノキサン1ミリモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1マイクロモルを加え、更に水素0.03MPa導入し、重合温度30℃にて60分間重合した。
重合反応終了後、反応物をアセトンにて沈殿させた後、減圧下、加熱乾燥することにより、高級αオレフィン重合体を59g得た。
得られた重合体の物性測定結果を第2表に示す。
【0078】
実施例6
加熱乾燥した1リットルオートクレーブに、ヘプタン200ミリリットル、1−オクタデセン(C18)200ミリリットル、トリイソブチルアルミニウム1.0ミリモル、メチルアルミノキサン1.0ミリモルを加え、更に水素0.03MPa導入した。
攪拌しながら温度を60℃にした後、製造例3で得られた(1,2‘−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル加え、60分間重合した。
重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体を50.7g得た。
得られた重合体の物性測定結果を第2表に示す。
【0079】
製造例11[固体触媒成分の製造]
(固体触媒成分の調製)
内容積0.5リットルの攪拌機付きの三つ口フラスコを窒素ガスで置換した後、脱水処理したヘプタンを80ml、ジエトキシマグネシウム4.0g(35ミリモル)を加えた。
80℃まで昇温した後、フタル酸−n−ジブチル13.2ミリモルを添加した。
この溶液を80℃で保持し、引き続き四塩化チタンを116ml(1.06モル)加え、内温110℃で、2時間攪拌して担持操作を行った。
その後、脱水ヘプタンを用いて充分に洗浄した。更に、四塩化チタンを116ml(1.06モル)加え、内温110℃で、2時間攪拌して2回目の担持操作を行った。
その後、脱水ヘプタンを用いて充分に洗浄を行い、固体触媒成分を得た(チタン担持量=1.21重量%)
【0080】
比較例2
加熱乾燥した1リットルオートクレーブに、ヘプタン200ミリリットル、1−オクタデセン(C18)200ミリリットル、トリイソブチルアルミニウム0.8ミリモル、ジシクロペンチルジメトキシシラン0.04ミリモルを加え、更に水素0.05MPa導入した。
攪拌しながら温度を60℃にした後、製造例11で得られた固体触媒成分をTi原子換算で8.0マイクロモル加え、60分間重合した。
重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体を30.0g得た。
得られた重合体の物性測定結果を第2表に示す。
【0081】
比較例3
加熱乾燥した10リットルオートクレーブに、ヘプタン4000ミリリットル、1−オクタデセン(C18)4000ミリリットル、トリイソブチルアルミニウム24.0ミリモル、ジシクロペンチルジメトキシシラン1.2ミリモルを加え、更に水素0.8MPa導入した。
攪拌しながら温度を80℃にした後、製造例11で得られた固体触媒成分をTi原子換算で160マイクロモル加え、120分間重合した。
重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体を760.0g得た。
得られた重合体の物性測定結果を第2表に示す。
【0082】
【表2】
Figure 0003955573
【0084】
2表から、実施例5及び実施例6の重合体は、融点(Tm)は単一であるのに対し、比較例2及び比較例3の重合体は融点(Tm)が2つ観測され
【0085】
【産業上の利用可能性】
本発明の方法により、低温特性、剛性、耐熱性、潤滑油との相溶性、無機充填剤との混合性、二次加工性等の優れた結晶性高級αオレフィン重合体が効率よく得られ、樹脂の改質剤、潤滑油成分、粘着材成分、接着剤成分、蓄熱材、燃料油改質剤、アスファルト改質剤、高性能ワックス、有機無機複合材料などに有用である。

Claims (5)

  1. (1)炭素数10以上の高級αオレフィンから得られ、以下を満足することを特徴とする結晶性高級αオレフィン重合体。
    (2A):示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、190℃まで、10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークのピークトップとして定義される融点(TmD)を有し、更に、190℃で5分保持した後、−10℃まで、5℃/分で降温させ、−10℃で5分保持した後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークが1つで、かつ、そのピークトップとして定義される融点(Tm)が20〜100℃である。
  2. ゲルパーミエイションクロマトグラフ(GPC)法により測定した重量平均分子量(Mw)が1,000〜10,000,000である請求項1に記載の結晶性高級αオレフィン重合体。
  3. GPC法により測定した分子量分布(Mw/Mn)が5.0以下である請求項1に記載の結晶性高級αオレフィン重合体。
  4. 立体規則性指標値M2が50モル%以上である請求項1に記載の結晶性高級αオレフィン重合体。
  5. (A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)下記一般式( III )又は( IV )で表される化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、炭素数10以上の高級αオレフィンを重合させることを特徴とする請求項1に記載の結晶性高級αオレフィン重合体の製造方法。
    Figure 0003955573
    〔式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基,ホスフィド基,炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
    (〔L 1 −R 10 k+ a (〔Z〕 - b ・・・( III
    (〔L 2 k+ a (〔Z〕 - b ・・・( IV
    (ただし、L 2 はM 2 、R 11 12 3 、R 13 3 C又はR 14 3 である。)、
    〔( III )、 (IV )式中、L 1 はルイス塩基、〔Z〕 - は、非配位性アニオン〔Z 1 - 及び〔Z 2 - 、ここで〔Z 1 - は複数の基が元素に結合したアニオン、即ち〔M 1 1 2 ・・・G f - (ここで、M 1 は周期律表第5〜15族元素、好ましくは周期律表第13〜15族元素を示す。G 1 〜G f はそれぞれ水素原子、ハロゲン原子、炭素数1〜20のアルキル基、炭素数2〜40のジアルキルアミノ基、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、炭素数7〜40のアルキルアリール基、炭素数7〜40のアリールアルキル基、炭素数1〜20のハロゲン置換炭化水素基、炭素数1〜20のアシルオキシ基、有機メタロイド基、又は炭素数2〜20のヘテロ原子含有炭化水素基を示す。G 1 〜G f のうち2つ以上が環を形成していてもよい。fは〔(中心金属M 1 の原子価)+1〕の整数を示す。)、〔Z 2 - は、酸解離定数の逆数の対数(pKa)が−10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩基を示す。又、ルイス塩基が配位していてもよい。又、R 10 は水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、アルキルアリール基又はアリールアルキル基を示し、R 11 及びR 12 はそれぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又はフルオレニル基、R 13 は炭素数1〜20のアルキル基、アリール基、アルキルアリール基又はアリールアルキル基を示す。R 14 はテトラフェニルポルフィリン、フタロシアニン等の大環状配位子を示す。kは〔L 1 −R 10 〕、〔L 2 〕のイオン価数で1〜3の整数、aは1以上の整数、b=(k×a)である。M 2 は、周期律表第1〜3、11〜13、17族元素を含むものであり、M 3 は、周期律表第7〜12族元素を示す。〕
JP2003569697A 2002-02-21 2003-02-19 結晶性高級αオレフィン重合体及びその製造方法 Expired - Lifetime JP3955573B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002044598 2002-02-21
JP2002044598 2002-02-21
PCT/JP2003/001794 WO2003070790A1 (fr) 2002-02-21 2003-02-19 Polymere cristallin d'$g(a)-olefine d'ordre superieur et son procede de production

Publications (2)

Publication Number Publication Date
JPWO2003070790A1 JPWO2003070790A1 (ja) 2005-06-09
JP3955573B2 true JP3955573B2 (ja) 2007-08-08

Family

ID=27750557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003569697A Expired - Lifetime JP3955573B2 (ja) 2002-02-21 2003-02-19 結晶性高級αオレフィン重合体及びその製造方法

Country Status (6)

Country Link
US (1) US7214755B2 (ja)
EP (1) EP1477500B1 (ja)
JP (1) JP3955573B2 (ja)
AT (1) ATE472566T1 (ja)
DE (1) DE60333171D1 (ja)
WO (1) WO2003070790A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714081B2 (en) 2003-10-29 2010-05-11 Idemitsu Kosan Co., Ltd. Heat-storage material composition
JP2005200447A (ja) * 2004-01-13 2005-07-28 Mitsui Chemicals Inc 潤滑油添加剤および潤滑油組成物
JP2005200448A (ja) * 2004-01-13 2005-07-28 Mitsui Chemicals Inc 潤滑油添加剤および潤滑油組成物
DE602005017243D1 (de) * 2004-01-28 2009-12-03 Idemitsu Kosan Co Inpolymerisierung
JP2006131784A (ja) * 2004-11-08 2006-05-25 Idemitsu Kosan Co Ltd 架橋オレフィン重合体及びその製造方法
JP4783041B2 (ja) 2005-03-16 2011-09-28 出光興産株式会社 樹脂組成物、該樹脂組成物の製造方法及び該樹脂組成物の成形体
KR20080012897A (ko) 2005-04-27 2008-02-12 가부시키가이샤 프라임 폴리머 프로필렌계 수지 압출 발포 복합체
JP5064662B2 (ja) * 2005-06-15 2012-10-31 出光興産株式会社 α−オレフィン重合体変性物及びその架橋体の製造方法
WO2007063885A1 (ja) * 2005-11-30 2007-06-07 Idemitsu Kosan Co., Ltd. 高結晶性高級α-オレフィン系重合体及びその製造方法
JP2007182495A (ja) * 2006-01-06 2007-07-19 Idemitsu Kosan Co Ltd ポリオレフィンの製造方法およびその製造に用いる触媒成分
JP5285218B2 (ja) * 2006-12-28 2013-09-11 出光興産株式会社 金属加工用潤滑油組成物
JP5129540B2 (ja) * 2007-01-23 2013-01-30 出光興産株式会社 α−オレフィン重合体及びその製造方法
JP2008189603A (ja) * 2007-02-05 2008-08-21 Kose Corp 化粧料
JP5379677B2 (ja) * 2007-02-19 2013-12-25 出光興産株式会社 α−オレフィン重合体及びその製造方法
WO2008114648A1 (ja) * 2007-03-16 2008-09-25 Idemitsu Kosan Co., Ltd. 酸化変性α-オレフィン系重合体及びその製造方法
JP2009040715A (ja) * 2007-08-08 2009-02-26 Kose Corp 睫用化粧料
JP5231947B2 (ja) * 2008-11-06 2013-07-10 出光興産株式会社 高級α−オレフィン共重合体及びその製造方法
CA2758265A1 (en) 2009-04-10 2010-10-14 Idemitsu Kosan Co., Ltd. .alpha.-olefin oligomer and method for producing same
RU2577986C2 (ru) 2010-06-18 2016-03-20 Дженентек, Инк. Антитела против axl и способы их применения
CN103717623A (zh) 2011-08-12 2014-04-09 出光兴产株式会社 α-烯烃低聚物及其制造方法
JP5951216B2 (ja) * 2011-10-13 2016-07-13 リンテック株式会社 粘着シートおよびその使用方法
US9909002B2 (en) 2014-04-09 2018-03-06 Sumitomo Chemical Company, Limited Resin composition, cross-linked product, and method for manufacturing cross-linked product

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195813A (ja) 1987-10-07 1989-04-13 Kubota Ltd 押出し用複合ダイ
US4990424A (en) * 1988-08-12 1991-02-05 Xerox Corporation Toner and developer compositions with semicrystalline polyolefin resin blends
US5187250A (en) * 1989-06-05 1993-02-16 Mitsui Toatsu Chemicals, Incorporated Poly-α-olefins
US5296433A (en) * 1992-04-14 1994-03-22 Minnesota Mining And Manufacturing Company Tris(pentafluorophenyl)borane complexes and catalysts derived therefrom
FI96615C (fi) * 1993-06-04 1996-07-25 Neste Oy Menetelmä C4-C40- -olefiinien polymeroimiseksi tai kopolymeroimiseksi muiden -olefiinien kanssa
US5880241A (en) * 1995-01-24 1999-03-09 E. I. Du Pont De Nemours And Company Olefin polymers
DE19622272A1 (de) * 1996-06-03 1997-12-04 Basf Ag Copolymere von Alk-1-enen und a,beta-Dienen mit erhöhtem Viskositätsindex
DE19827323A1 (de) 1998-06-19 1999-12-23 Basf Ag Verwendung von metallocenkatalysiert hergestellten Oligodecenen als Komponenten in Schmierstoffen
JP4931269B2 (ja) * 2000-05-30 2012-05-16 出光興産株式会社 α−オレフィン重合体の製造方法及び潤滑油

Also Published As

Publication number Publication date
DE60333171D1 (de) 2010-08-12
EP1477500A1 (en) 2004-11-17
EP1477500B1 (en) 2010-06-30
WO2003070790A1 (fr) 2003-08-28
US20050119374A1 (en) 2005-06-02
JPWO2003070790A1 (ja) 2005-06-09
ATE472566T1 (de) 2010-07-15
US7214755B2 (en) 2007-05-08
EP1477500A4 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP3955573B2 (ja) 結晶性高級αオレフィン重合体及びその製造方法
US7109283B2 (en) Higher α-olefin copolymers and process for preparation thereof
JP3946248B2 (ja) 遷移金属化合物、オレフィン重合用触媒及びオレフィン系重合体の製造方法
JP4870308B2 (ja) エチレン系共重合体、その製造方法及びそれを含む潤滑油組成物
JP2008285443A (ja) 遷移金属化合物、それを含有するオレフィン重合触媒、それを用いたオレフィン系重合体の製造方法、並びに末端不飽和プロピレン系重合体及びその製造方法
WO2010117028A1 (ja) αオレフィンオリゴマーおよびその製造方法
WO2013024701A1 (ja) α-オレフィンオリゴマーおよびその製造方法
WO2012035710A1 (ja) 高粘度高級アルファオレフィン重合体及びその製造方法
JPH11130807A (ja) 遷移金属化合物、プロピレン重合用触媒、該触媒を用 いたプロピレン重合体の製造方法およびプロピレン重 合体
JPH08127612A (ja) 遷移金属化合物、それを含有するオレフィン重合用触媒、その触媒を用いたオレフィン系重合体、およびそのオレフィン系重合体の製造方法。
JP5231947B2 (ja) 高級α−オレフィン共重合体及びその製造方法
JP4384292B2 (ja) エチレン系共重合体、その製造方法並びにそれを含む樹脂組成物、成形体および潤滑油
JP2000344833A (ja) プロピレン系樹脂組成物、その製造方法及び成形体
WO1996004317A1 (fr) Compose de metal de transition, catalyseur de polymerisation d'olefine, polymere d'olefine obtenu au moyen du catalyseur et procede de production du polymere
JP2006111848A (ja) 熱伝導性樹脂組成物
JP3895193B2 (ja) 樹脂複合材料
JP2008303242A (ja) アスファルト改質材及びアスファルト組成物
JP4166324B2 (ja) 遷移金属化合物、オレフィン重合用触媒及びオレフィン系重合体の製造方法
JPH06340711A (ja) オレフィン重合用触媒及び該触媒を用いたポリオレフィンの製造方法
JP2006131784A (ja) 架橋オレフィン重合体及びその製造方法
JP4184765B2 (ja) プロピレン−エチレンブロック共重合体及びその製造方法
JPH08239413A (ja) 遷移金属化合物,オレフィン重合用触媒及びそれを用いたオレフィン系重合体
JP2004196848A (ja) ブテン系ブロック共重合体及びその製造方法
WO2013031779A1 (ja) α-オレフィン重合体の製造方法
JP2003064115A (ja) α−オレフィン−環状オレフィン共重合体およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Ref document number: 3955573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

EXPY Cancellation because of completion of term