JP3944437B2 - 無電解メッキ方法、埋め込み配線の形成方法、及び埋め込み配線 - Google Patents

無電解メッキ方法、埋め込み配線の形成方法、及び埋め込み配線 Download PDF

Info

Publication number
JP3944437B2
JP3944437B2 JP2002262724A JP2002262724A JP3944437B2 JP 3944437 B2 JP3944437 B2 JP 3944437B2 JP 2002262724 A JP2002262724 A JP 2002262724A JP 2002262724 A JP2002262724 A JP 2002262724A JP 3944437 B2 JP3944437 B2 JP 3944437B2
Authority
JP
Japan
Prior art keywords
copper
nitride film
layer
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002262724A
Other languages
English (en)
Other versions
JP2003178999A (ja
Inventor
正三 新宮原
隆行 高萩
弘之 坂上
Original Assignee
株式会社半導体理工学研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体理工学研究センター filed Critical 株式会社半導体理工学研究センター
Priority to JP2002262724A priority Critical patent/JP3944437B2/ja
Publication of JP2003178999A publication Critical patent/JP2003178999A/ja
Application granted granted Critical
Publication of JP3944437B2 publication Critical patent/JP3944437B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、銅の埋め込み配線の形成方法に関し、特に、無電解メッキ法を用いた埋め込み配線の形成方法に関する。
【0002】
【従来の技術】
半導体装置の高集積化に伴い、平滑回路形成技術として、絶縁層に銅配線を埋め込むダマシンプロセスが用いられる。かかるダマシンプロセスでは、まず、絶縁層にホールやトレンチを形成する。次に、スパッタ法又はCVD法を用いて、ホール等の内壁にTaN、WN等のバリアメタル層を形成する。更に、バリアメタル層は高抵抗であるため、その上に、膜厚が数10nm程度の銅のシード層をスパッタ法で形成する。続いて、電解メッキ法によりシード層上に銅を堆積させて、ホール等を埋め込み銅の埋め込み配線を形成する。
【0003】
【発明が解決しようとする課題】
しかし、半導体装置の高集積化、微細化に伴い、ホールやトレンチ等のアスペクト比が高くなると、スパッタ法ではホール等の内壁に均一なシード層を形成するのが困難となり、特に、側壁部のカバレジ(被覆性)が低下した。このため、シード層上にメッキ層を形成する電解メッキ法では、均一な銅メッキ層で微細なホール等を埋め込むことが困難になった。
なお、高イオン化率スパッタ装置や長距離スパッタ装置のような特殊なスパッタ装置を用いることにより、シード層のカバレジ(被覆性)を向上させることができるが、かかる方法では、上記技術を一世代程度延命できるにすぎず、明らかに限界がある。
【0004】
そこで、本発明は、高集積化、微細化されたホールやトレンチ等に銅メッキ層を埋め込んで配線を形成する配線作製方法の提供を目的とする。
【0005】
【課題を解決するための手段】
そこで、発明者らは鋭意研究の結果、高融点金属、特に、表面近傍に窒素安定化層を有する高融点金属窒化物をバリアメタル層に用いることにより、触媒層を使用することなく、バリアメタル層上に無電解メッキ層を形成する方法を見出し、本発明を完成した。
【0006】
即ち、本発明は、銅の無電解メッキ方法であって、基板を準備する工程と、高融点金属の窒化膜であって、その表面近傍に含まれる、酸素原子に対する窒素原子の原子数の比(窒素原子の数/酸素原子の数)が略0.4以上である該窒化膜を、該基板上に形成する窒化膜形成工程と、銅を含むメッキ液に該基板を浸漬して、該窒化膜に含まれる高融点金属と該銅とを置換して、銅メッキ層を該窒化膜上に形成する工程とを含むことを特徴とする無電解メッキ方法である。
かかる無電解メッキ方法では、触媒層を用いることなく、微細化された孔部を均一に埋め込むことが可能となる。このため、高密度化、高集積化された多層配線を高い歩留りで形成することができる。また、高密度化、高集積化された多層配線を、安価に提供することができる。
【0007】
また、本発明は、上記原子数の比は、上記窒化膜の表面から深さ方向に略5nmの範囲に含まれる比であることを特徴とする無電解メッキ方法でもある。
かかる領域の原子数の比を制御することにより、良好な無電解メッキ反応を得ることができる。
【0008】
上記窒化膜形成工程は、上記高融点金属の窒化膜を上記基板上に形成した後に、該窒化膜の表面に窒素プラズマを照射する工程を含むものであっても良い。
このように、窒化膜の表面に窒素プラズマを照射することにより、酸素原子に対する窒素原子の原子数の比が略0.4以上の、化学量論的に安定な窒素安定化層を、窒化膜の表面に形成することができる。
【0009】
上記窒化膜形成工程は、上記高融点金属の窒化膜を上記基板上に形成した後に、該窒化膜の表面層を除去する工程を含むものであっても良い。
このように、表面層を除去することによっても、所定の原子数の比を有する表面層を得ることができる。なお、除去工程後に、銅の無電解メッキ工程を速やかに行うことが好ましい。
【0010】
上記窒化膜形成工程は、上記基板上に、略化学量論的組成を有する上記窒化膜を堆積させる工程を含むものであっても良い。
窒化膜の堆積条件を調整することにより、かかる窒化膜を堆積させてもかまわない。
【0011】
また、本発明は、銅の無電解メッキ方法であって、基板を準備する工程と、チタン又はコバルトを主成分とする高融点金属膜を該基板上に形成する工程と、銅を含むメッキ液に該基板を浸漬して、該高融点金属膜に含まれる高融点金属と該銅とを置換して、銅メッキ層を該高融点金属膜上に形成する工程とを含むことを特徴とする無電解メッキ方法でもある。
高融点金属膜にこれらの金属を用いることによっても、銅の無電解メッキが可能となる。
【0012】
また、本発明は、銅の埋め込み配線の形成方法であって、基板を準備する工程と、該基板に孔部を形成する工程と、該孔部の内壁上に、高融点金属の窒化膜からなり、その表面近傍の、酸素原子に対する窒素原子の原子数の比が略0.4以上であるバリアメタル層を形成するバリアメタル層形成工程と、銅を含むメッキ液に該基板を浸漬して、該バリアメタル層に含まれる高融点金属と該銅とを置換して、銅メッキ層を該バリアメタル層上に形成し、埋め込み配線とする工程とを含むことを特徴とする埋め込み配線の形成方法でもある。
かかる埋め込み配線の形成方法を用いることにより、微細化された多層配線構造の形成が可能となる。
なお、基板には、例えば、シリコン酸化層が表面に形成されたシリコン基板が用いられる。また、GaAsやセラミック基板のような、他の基板にも適用できる。
【0013】
上記バリアメタル層形成工程は、上記バリアメタル層を形成した後に、該バリアメタル層の表面に窒素プラズマを照射する工程を含むものであっても良い。
【0014】
更に、上記銅メッキ層上に、該銅メッキ層をシード層に用いて、銅の電解メッキ層を形成する工程を含むものであっても良い。
無電解メッキ法と電解メッキ法とを併用することにより、より高品質の埋め込み配線を得ることができる。
【0015】
また、本発明は、銅の埋め込み配線であって、基板と、該基板に設けられた孔部と、該孔部の内壁上に設けられた、高融点金属の窒化物からなるバリアメタル層と、該バリアメタル層上に設けられた、該孔部を埋め込む銅メッキ層とを含み、該バリアメタル層が、該銅メッキ層との界面近傍に、酸素原子に対する窒素原子の原子数の比が略0.4以上である窒素安定化層を含むことを特徴とする埋め込み配線でもある。
【0016】
上記窒素安定化層の膜厚は、好適には、略5nmである。
また、酸素原子に対する窒素原子の原子数の比は、略0.4以上であれば、略1.5以上であってもよい。
【0017】
【発明の実施の形態】
実施の形態1.
図1は、本発明の実施の形態1にかかる埋め込み配線の製造方法の工程図である。かかる製造方法は、以下の工程1〜工程4を含む。
【0018】
工程1:図1(a)に示すように、表面に誘電中間層からなる絶縁層2が形成されたシリコン基板1を準備する。続いて、一般的な、リソグラフィ技術、エッチング技術を用いて、絶縁層2に、ホールやトレンチ等の孔部3を形成する。
【0019】
工程2:図1(b)に示すように、絶縁層2の表面に、TaN等の高融点金属の窒化膜のバリアメタル層4を、スパッタ法又はCVD法を用いて堆積させる。バリアメタル層4は、絶縁層2の表面上、及び孔部3の内壁上に略均一な膜厚で堆積される。なお、高融点金属には、Ta、Mo、Zr、Hf、W等が含まれる。
【0020】
次に、バリアメタル層4の表面を窒素プラズマ処理することにより、バリアメタル層4の表面に、化学量論的に安定な組成を有する、窒素安定化層を形成する。具体的には、NプラズマやNHプラズマ中に、バリアメタル層4が形成されたシリコン基板1を配置して、表面に窒素安定化層を形成する。窒素安定化層には、高融点金属と窒素が、化学量論的組成に近い組成で含まれ、膜厚は、例えば5nmである。なお、バリアメタル層4の形成工程と窒素プラズマ処理工程とは、一貫した真空プロセスとして行うことが好ましい。
【0021】
後述するように、窒素安定化層中に含まれる、酸素原子に対する窒素原子の原子数の比(窒素原子の数/酸素原子の数)は略0.4以上になっている。
【0022】
工程3:バリアメタル層4が形成されたシリコン基板1を、銅メッキ液に浸漬させ(図示せず)、無電解メッキ工程を行う。実験においては、7.6g/リットルのCuSO4・5H2Oと、70.0g/リットルのエチレンジアミン四酢酸(EDTA)と、14.0g/リットルの還元剤としてのグリオキシル酸と、追加的な試薬とから構成された無電解導メッキ液が用いられた。またメッキ液のpHは、水酸化テトラメチルアンモニウムを用いて約12.3に調製され、メッキ液の温度は、70℃に保持された。メッキ工程は、バリアメタル層4中の高融点金属がイオン化し、メッキ液中の銅が還元されてこれと置き換わることにより進行する(置換メッキ工程)。
この結果、図1(c)に示すように、孔部3を埋め込むように、バリアメタル層4の上に銅メッキ層(無電解メッキ層)5が形成される。
【0023】
工程4:図1(d)に示すように、銅メッキ層5の表面から、CMP法を用いて絶縁層2上の銅メッキ層5、バリアメタル層4を除去し、絶縁層2の孔部3内にのみ、銅メッキ層5とバリアメタル層4とを残す。これにより、銅を配線材料に用いた埋め込み配線10が完成する。
なお、埋め込み配線10は、例えば、還元性雰囲気中で、300℃で30分間、熱処理することが好ましい。これにより、バリアメタル層4と銅メッキ層5との密着性が向上する。
【0024】
次に、図2を用いて、本実施の形態にかかる他の埋め込み配線の製造工程について説明する。かかる製造工程は、以下の工程1〜工程5を含む。
【0025】
工程1、2:図1(a)(b)に示す、上述の工程1、2と同じ工程を行い、シリコン基板1上に設けられた酸化シリコンからなる絶縁層2に孔部3を設け、絶縁層2の表面上、及び孔部3の内壁上に、高融点金属の窒化膜からなるバリアメタル層4を形成する。
【0026】
工程3:図2(c)に示すように、上述の工程3と同様に、無電解メッキ(置換メッキ)法を用いて、バリアメタル層4の上に銅メッキ層5を堆積させる。かかる工程では、銅メッキ層5だけでは、孔部3を埋めてしまわない。
【0027】
工程4:図2(d)に示すように、銅メッキ層5をシード層に用いて、電解メッキ工程を行う。この結果、銅メッキ層5の表面上に、孔部3を埋め込むように、電解メッキ層6が形成される。
【0028】
工程5:図2(e)に示すように、CMP法を用いて、絶縁層2上のバリアメタル層4、銅メッキ層5、6を除去し、銅の埋め込み配線20が完成する。
【0029】
このように、本実施の形態にかかる方法を用いることにより、Pd等の触媒層を用いることなく、無電解メッキ工程により銅の埋め込み配線を形成することができる。この結果、微細な孔部等でも完全に銅を埋め込むことが可能になり、高集積化、微細化された多層配線構造を、高い歩留りで形成することができる。
【0030】
また、高価なスパッタ装置等を使用する必要がなく、製造コストの低減も可能となる。
【0031】
なお、かかる埋め込み配線の形成方法は、シングルダマシンプロセス及びデュアルダマシンプロセスの、双方のダマシンプロセスに適用することができる。これは、実施の形態2以下についても同様である。
【0032】
実施の形態2.
本発明の実施の形態2にかかる埋め込み配線の製造方法では、図1(a)と同様に、シリコン基板1上に設けた絶縁層2に、孔部3を形成する。
【0033】
次に、図1(b)と同様の工程で、CVD法を用いて、高融点金属の窒化膜からなるバリアメタル層4を形成する。
本実施の形態では、バリアメタル層4に窒素安定化処理を行う代わりに、バリアメタル層4の表面をエッチングして除去する。バリアメタル層4のエッチングは、例えば、約1%の希フッ酸に約30秒間浸漬することにより行われる。
【0034】
次に、図1(c)と同様の工程を用い、無電解メッキ工程で銅メッキ層5を形成する。上述のエッチング工程の後、速やかに無電解メッキ工程を行うことが好ましい。
続いて、図1(d)と同様の工程で、CMP法を用いて、孔部3内にのみバリアメタル層4、銅メッキ層5を残し、銅の埋め込み配線10が完成する。
【0035】
図3は、バリアメタル層4のエッチング処理(約1%の希フッ酸で約10分間処理)の前後における、バリアメタル層4の表面のXPS分析法(X線光電子分析法)を用いた分析結果である。ここでは、バリアメタル層4として、TaN層を用いた。
図3(a)は、エッチング処理前のXPS分析結果であり、図3(b)は、エッチング処理後のXPS分析結果である。エッチング処理前/後ともに、バリアメタル層4中に、酸素が存在している。窒素原子の酸素原子に対する比(窒素原子の数/酸素原子の数)は、エッチング処理前は約0.24であるが、エッチング処理後は約0.76となっている。
【0036】
エッチング処理前の試料、エッチング処理後の試料、双方に対して無電解メッキ工程を行った結果、エッチング処理前の試料には、銅メッキ層5が形成できなかった。これに対して、エッチング処理後の試料には、良好な銅メッキ層5が形成された。
【0037】
このように、高融点金属の窒化膜からなるバリアメタル層4の表面近傍の組成は、酸素を含まない化学量論的組成に近いことが好ましい。これは、バリアメタル層4の表面近傍に含まれる酸素量が増加すると、バリアメタル層4の酸化還元電位が、銅メッキ層5の酸化還元電位より高くなるためと考えられる。
図3の結果では、窒素原子の酸素原子に対する原子数の比が約0.76の場合(図3(b))に、良好な銅メッキ層5が得られたが、バリアメタル層4の表面近傍において、窒素原子の酸素原子に対する原子数の比が約0.4以上であれば、良好な銅メッキ層5が得られることを確認している。
【0038】
実施の形態3.
本発明の実施の形態3にかかる埋め込み配線の製造方法では、図1(a)と同様の工程で、シリコン基板1上に設けた絶縁層2に、孔部3を形成する。
続いて、絶縁層2の上、及び孔部3の内壁上に、略化学量論的組成の高融点金属窒化物からなるバリアメタル層4を、例えばCVD法で形成する。略化学量論的組成の高融点金属窒化物の形成は、CVD装置の導入されるArガスとNガスの流量比等のCVD条件を最適化することにより行われる。
【0039】
略化学量論的組成の高融点金属窒化物からなるバリアメタル層4は、表面近傍が安定であり、大気中で取り扱っても、バリアメタル層4中に酸素が混入しにくく、窒素原子の酸素原子に対する原子数の比は、略0.4以上となる。
【0040】
次に、図1(c)(d)と同様の工程を行い、銅の埋め込み配線が形成される。なお、バリアメタル4の形成した後、速やかに無電解メッキ工程を行うことが好ましい。
【0041】
実施の形態4.
図4は、本発明の実施の形態4にかかる埋め込み配線の製造方法の工程図であり、図4中、図1と同一符号は、同一又は相当箇所を示す。かかる製造方法は、以下の工程1〜工程4を含む。
【0042】
工程1:図4(a)に示すように、実施の形態1と同様に、シリコン基板1上に設けた絶縁層2に、孔部3を形成する。
【0043】
工程2:図4(b)に示すように、絶縁層2の表面上、及び孔部3の内壁上に、チタン又はコバルトを主成分とする高融点金属(チタン、コバルト、チタンとコバルトの合金等)からなるバリアメタル層14を、CVD法で形成する。
これらのこれらの高融点金属は安定であり、特に窒素プラズマ処置等は行わない。
【0044】
工程3:バリアメタル層4が形成されたシリコン基板1を、銅メッキ液に浸漬させ(図示せず)、無電解メッキ工程(置換メッキ工程)を行う。この結果、図4(c)に示すように、孔部3を埋め込むように、バリアメタル層14の上に銅メッキ層5が形成される。
【0045】
工程4:図4(d)に示すように、銅メッキ層5の表面から、CMP法を用いて銅メッキ層5、バリアメタル層14を除去し、絶縁層2の孔部3内にのみ、銅メッキ層5とバリアメタル層4とを残す。これにより、銅を配線材料に用いた埋め込み配線30が完成する。
【0046】
なお、上述のように、無電解メッキ工程と電解メッキ工程とを併用しても構わない。
【0047】
【発明の効果】
以上の説明から明らかなように、本発明にかかる無電解メッキ方法では、触媒層を用いることなく、微細化された孔部の埋め込みが可能となり、高密度化、高集積化された多層配線の形成が可能となる。
【0048】
また、高密度化、高集積化された多層配線を、安価に提供することが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1にかかる埋め込み配線の製造工程図である。
【図2】 本発明の実施の形態1にかかる他の埋め込み配線の製造工程図である。
【図3】 バリアメタル層のXPS分析の結果である。
【図4】 本発明の実施の形態4にかかる埋め込み配線の製造工程図である。
【符号の説明】
1 シリコン基板、2 絶縁層、3 孔部、4、14 バリアメタル層、5、6 銅メッキ層、10、20、30 埋め込み配線。

Claims (8)

  1. 銅の無電解メッキ方法であって、
    基板を準備する工程と、
    高融点金属の窒化膜を上記基板上に形成した後に、該窒化膜の表面に窒素プラズマを照射して、その表面近傍に含まれる、酸素原子に対する窒素原子の原子数の比が略0.4以上である該窒化膜を、該基板上に形成する窒化膜形成工程と、
    銅を含むメッキ液に該基板を浸漬して、該窒化膜に含まれる高融点金属と該銅とを置換して、銅メッキ層を該窒化膜上に形成する工程とを含むことを特徴とする無電解メッキ方法。
  2. 上記原子数の比が、上記窒化膜の表面から深さ方向に略5nmの範囲に含まれる比であることを特徴とする請求項1に記載の無電解メッキ方法。
  3. 銅の無電解メッキ方法であって、
    基板を準備する工程と、
    高融点金属の窒化膜を上記基板上に形成した後に、該窒化膜の表面層を除去して、その表面近傍に含まれる、酸素原子に対する窒素原子の原子数の比が略0.4以上である該窒化膜を、該基板上に形成する窒化膜形成工程と、
    銅を含むメッキ液に該基板を浸漬して、該窒化膜に含まれる高融点金属と該銅とを置換して、銅メッキ層を該窒化膜上に形成する工程とを含むことを特徴とする無電解メッキ方法。
  4. 銅の無電解メッキ方法であって、
    基板を準備する工程と、
    上記基板上に、CVD法を用いて、酸素原子に対する窒素原子の原子数の比が略0.4以上である、略化学量論的組成を有する高融点金属の窒化膜を堆積させる窒化膜形成工程と、
    銅を含むメッキ液に該基板を浸漬して、該窒化膜に含まれる高融点金属と該銅とを置換して、銅メッキ層を該窒化膜上に形成する工程とを含むことを特徴とする無電解メッキ方法。
  5. 銅の埋め込み配線の形成方法であって、
    基板を準備する工程と、
    該基板に孔部を形成する工程と、
    高融点金属の窒化膜を該孔部の内壁上に形成した後に、該窒化膜の表面に窒素プラズマを照射して、その表面近傍に含まれる、酸素原子に対する窒素原子の原子数の比が略0.4以上である該高融点金属の窒化膜からなるバリアメタル層を形成するバリアメタル層形成工程と、
    銅を含むメッキ液に該基板を浸漬して、該バリアメタル層に含まれる高融点金属と該銅とを置換して、銅メッキ層を該バリアメタル層上に形成し、埋め込み配線とする工程とを含むことを特徴とする埋め込み配線の形成方法。
  6. 銅の埋め込み配線の形成方法であって、
    基板を準備する工程と、
    該基板に孔部を形成する工程と、
    高融点金属の窒化膜を該孔部の内壁上に形成した後に、該窒化膜の表面に窒素プラズマを照射して、その表面近傍に含まれる、酸素原子に対する窒素原子の原子数の比が略0.4以上である該高融点金属の窒化膜からなるバリアメタル層を形成するバリアメタル層形成工程と、
    銅を含むメッキ液に該基板を浸漬して、該バリアメタル層に含まれる高融点金属と該銅とを置換して、銅メッキ層を該バリアメタル層上に形成する工程と、
    該銅メッキ層上に、該銅メッキ層をシード層に用いて、銅の電解メッキ層を形成する工程とを含むことを特徴とする埋め込み配線の形成方法。
  7. 銅の埋め込み配線であって、
    基板と、
    該基板に設けられた孔部と、
    該孔部の内壁上に設けられた、高融点金属の窒化物からなるバリアメタル層と、
    該バリアメタル層上に設けられた、該孔部を埋め込む銅メッキ層とを含み、
    該バリアメタル層が、該銅メッキ層との界面近傍に、酸素原子に対する窒素原子の原子数の比が略0.4以上である窒素安定化層を含むことを特徴とする埋め込み配線。
  8. 上記窒素安定化層の膜厚が、略5nmであることを特徴とする請求項7に記載の埋め込み配線。
JP2002262724A 2001-10-05 2002-09-09 無電解メッキ方法、埋め込み配線の形成方法、及び埋め込み配線 Expired - Fee Related JP3944437B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262724A JP3944437B2 (ja) 2001-10-05 2002-09-09 無電解メッキ方法、埋め込み配線の形成方法、及び埋め込み配線

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001309885 2001-10-05
JP2001-309885 2001-10-05
JP2002262724A JP3944437B2 (ja) 2001-10-05 2002-09-09 無電解メッキ方法、埋め込み配線の形成方法、及び埋め込み配線

Publications (2)

Publication Number Publication Date
JP2003178999A JP2003178999A (ja) 2003-06-27
JP3944437B2 true JP3944437B2 (ja) 2007-07-11

Family

ID=26623755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262724A Expired - Fee Related JP3944437B2 (ja) 2001-10-05 2002-09-09 無電解メッキ方法、埋め込み配線の形成方法、及び埋め込み配線

Country Status (1)

Country Link
JP (1) JP3944437B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072139A (ja) * 2003-08-21 2005-03-17 Sony Corp 磁気記憶装置及びその製造方法
WO2008007732A1 (en) * 2006-07-14 2008-01-17 Ulvac, Inc. Method for manufacturing semiconductor device
JP6054049B2 (ja) * 2012-03-27 2016-12-27 東京エレクトロン株式会社 めっき処理方法、めっき処理システムおよび記憶媒体

Also Published As

Publication number Publication date
JP2003178999A (ja) 2003-06-27

Similar Documents

Publication Publication Date Title
US6605549B2 (en) Method for improving nucleation and adhesion of CVD and ALD films deposited onto low-dielectric-constant dielectrics
US6464779B1 (en) Copper atomic layer chemical vapor desposition
US6924226B2 (en) Methods for making multiple seed layers for metallic interconnects
US7105434B2 (en) Advanced seed layery for metallic interconnects
JP5203602B2 (ja) 銅でないメッキ可能層の上への銅の直接電気メッキのための方法
US8138084B2 (en) Electroless Cu plating for enhanced self-forming barrier layers
JP3116897B2 (ja) 微細配線形成方法
US20090081863A1 (en) Method of forming metal wiring layer of semiconductor device
KR20000035640A (ko) 반도체 구조물에서의 저온 구리 리플로우를 개선하기 위한구조물 및 방법
US6495453B1 (en) Method for improving the quality of a metal layer deposited from a plating bath
US7064065B2 (en) Silver under-layers for electroless cobalt alloys
JP2009194195A (ja) 半導体装置及びその製造方法
JP2005056945A (ja) 半導体装置の製造方法
US20090166867A1 (en) Metal interconnect structures for semiconductor devices
JP2007180496A (ja) 金属シード層の製造方法
JP3727277B2 (ja) 半導体装置の製造方法
JP3944437B2 (ja) 無電解メッキ方法、埋め込み配線の形成方法、及び埋め込み配線
US6852624B2 (en) Electroless plating process, and embedded wire and forming process thereof
WO2001046494A1 (fr) Solution de plaquage non electrique et procede de formation d'un cablage avec cette solution
JP2002329682A (ja) Cu薄膜作製方法
JP3715975B2 (ja) 多層配線構造の製造方法
JP3032503B2 (ja) 半導体装置の製造方法
EP1063696B1 (en) A method for improving the quality of a metal-containing layer deposited from a plating bath
JP3820329B2 (ja) 半導体基板のめっき方法
KR100421913B1 (ko) 반도체 소자의 금속 배선 형성방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees