JP3937729B2 - Heating furnace atmosphere control method and heating furnace - Google Patents

Heating furnace atmosphere control method and heating furnace Download PDF

Info

Publication number
JP3937729B2
JP3937729B2 JP2001008524A JP2001008524A JP3937729B2 JP 3937729 B2 JP3937729 B2 JP 3937729B2 JP 2001008524 A JP2001008524 A JP 2001008524A JP 2001008524 A JP2001008524 A JP 2001008524A JP 3937729 B2 JP3937729 B2 JP 3937729B2
Authority
JP
Japan
Prior art keywords
furnace
heating
heating furnace
burner
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001008524A
Other languages
Japanese (ja)
Other versions
JP2002213879A (en
Inventor
一郎 杉本
誠博 古川
建太 苅部
一成 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001008524A priority Critical patent/JP3937729B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to CA002639404A priority patent/CA2639404A1/en
Priority to EP06018722A priority patent/EP1757707A3/en
Priority to CNB018092470A priority patent/CN100338236C/en
Priority to CNA2005100789441A priority patent/CN1693756A/en
Priority to PCT/JP2001/011508 priority patent/WO2002057501A1/en
Priority to EP01273342A priority patent/EP1275740B1/en
Priority to US10/220,726 priority patent/US6644962B2/en
Priority to BR0109303-7A priority patent/BR0109303A/en
Priority claimed from PCT/JP2001/011508 external-priority patent/WO2002057501A1/en
Priority to CNA2005100789456A priority patent/CN1693757A/en
Priority to AT01273342T priority patent/ATE346172T1/en
Priority to CA002403221A priority patent/CA2403221C/en
Priority to KR1020027012192A priority patent/KR100634776B1/en
Priority to CNB2005100789386A priority patent/CN1333087C/en
Priority to DE60124691T priority patent/DE60124691T2/en
Priority to TW091100620A priority patent/TW524956B/en
Publication of JP2002213879A publication Critical patent/JP2002213879A/en
Publication of JP3937729B2 publication Critical patent/JP3937729B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、加熱炉の雰囲気制御、特に雰囲気における酸素濃度の上昇を抑制する方法およびこの方法に直接使用する加熱炉に関するのである。
【0002】
【従来の技術】
例えば、鋼材の加熱炉は、分塊工場で粗圧延された鋼片や、連続鋳造された鋳片を最終製品に圧延するため、その圧延に適した所定の温度に再加熱する場合に主に用いられている。この加熱炉は、バッチ式と連続式とに大別されるが、それぞれ長所および短所があるため、その目的に応じて選択使用されている。中でも、連続式加熱炉は、近年の大量生産に適しているところから、製鉄所などで多用されている。
【0003】
この連続式加熱炉は、その典型例を図1に示すように、鋼材の装入側から順に予熱帯1、加熱帯2および均熱帯3から成るのが一般的であり、少なくとも加熱帯2および均熱帯3は、バーナ4によって所定温度に加熱保持されている。そして、装入扉1aから予熱帯1に導入された鋼材5は、搬送路6上を移動されて加熱帯2そして均熱帯3を経て均熱帯3出側の抽出扉3aから炉外へ搬出される間に、所定温度に加熱される。なお、バーナ4の燃焼によって生じた排ガスは、予熱帯1の入側に設けられた煙道7から炉外に排出される。
【0004】
ここに、連続式加熱炉では、その後の圧延工程に適した温度に鋼材を加熱する必要があり、連続式加熱炉で加熱された鋼材の温度が所定の圧延適合温度、特にその下限を下回ると、圧延操業並びに製品品質において悪影響を招来することになる。一方、加熱炉から抽出した鋼材温度が必要以上に高くなると、連続鋼材加熱炉における熱損失が大きくなることから、連続式加熱炉においては、鋼材を圧延適合温度まで必要最低限の燃料で加熱することが重要になる。さらに、加熱炉においては、圧延工程における圧延ピッチに対応して、加熱された鋼材が加熱炉から順次に供給されるように、加熱時間を調整することも要求されている。
【0005】
かように、連続式加熱炉においては、熱損失、とりわけ加熱帯からの放射エネルギー損失が大きいことから、加熱帯の入出側に予熱帯および均熱帯を配置して炉内を3つに仕切ることによって、熱損失を抑制しているのである。
【0006】
【発明が解決しようとする課題】
ところで、連続式加熱炉に装入する鋼材において、常温まで冷却された鋳片や、連続鋳造後に直ちに圧延工程へ直送されるホットチャージ材など、加熱炉入側での温度は様々である上、その加熱温度も多岐にわたり、また加熱炉での加熱する処理量も変化するために、これらの諸々の条件に応じて、加熱炉内の温度を制御する必要がある。そのためには、炉内の加熱を司るバーナの燃焼量を増減して加熱温度を調整する必要があるが、このバーナの燃焼量の変化によって炉内圧は変動することになる。
【0007】
特に、炉内圧が炉外の圧力に比べて低くなる変動があると、加熱炉の開口部である装入扉および抽出扉から空気が炉内に侵入して、炉内雰囲気の酸素濃度が上昇するため、炉内に装入した鋼材などの被加熱材の表面酸化が促進される結果、表面品質の低下をまねくことになる。また、空気が炉内に侵入すると、炉内温度の低下をまねき、バーナの燃焼量を増加する必要があり、燃料原単位が増加してコストの上昇をまねく不利もある。
【0008】
従って、加熱炉内への空気の侵入を防止することは、製品の品質上そして加熱炉の操業上から、極めて重要になることから、そのための技術が種々提案されている。
例えば、特開平11−172326号公報には、加熱炉の抽出口からの空気の侵入を防ぐために、炉内の加熱バーナとは別に抽出口付近に設けたノズルから可燃性ガスを噴出して、その際の燃焼によって侵入空気中の酸素を消費することが、提案さている。
【0009】
しかしながら、抽出口付近に専用の可燃性ガス噴出ノズルを設ける必要があり、設備コストが嵩む不利がある。また、噴出ノズルの設置位置より上方の侵入空気に対しては有効であるが、該噴出ノズル下方の炉圧が負になるため、この下部域に向かって空気が侵入するのを避けることはできない。とりわけ、抽出口下部に、エキストラクターのエキストラフォークを受け入れるための櫛歯状の開口部(以下、エキストラフォーク開口部と示す)を有する場合には、その開口部からの空気の侵入を確実に防ぐことは困難であった。
【0010】
そこで、この発明は、加熱炉内への抽出扉からの空気の侵入を確実に防ぐことのできる方途について提案することを目的とする。また、この発明の目的は、この方法に直接使用する加熱炉を提供することにある。
【0011】
【課題を解決するための手段】
発明者らは、炉内が負圧になった場合の空気の侵入について鋭意究明したところ、その場合、装入扉および抽出扉の両方から炉内に空気が侵入するが、図1に示したように、装入扉1aの直後に煙道7が設けられているため、装入扉1aから侵入した空気は、直ちに煙道7に抜けて炉外に排出されるため、炉内酸素濃度の上昇や炉内温度の低下を引き起こす要因になり難いことが判明した。従って、炉内酸素濃度の上昇や炉内温度の低下を回避するには、抽出口からの空気の侵入を回避することが肝要であり、そのためには、抽出端において侵入空気を確実に遮断することが重要になることを知見するに到った。
【0012】
すなわち、この発明の要旨構成は、次のとおりである。
(1) 装入扉の直後に煙道を設けた加熱炉の抽出扉を開放する際、該加熱炉内の両側壁に配設した複数の加熱用バーナのうち、炉抽出端の下部域に配置した加熱用バーナの燃焼を独立に制御し、該バーナのフレームを抽出口の幅方向に該開口幅にわたって延長し、抽出口からの空気の侵入路をバーナフレームにて遮断して、炉内の酸素濃度の上昇を抑制することを特徴とする加熱炉の雰囲気制御方法。
【0013】
(2) 上記(1) において、炉抽出端に配置した加熱用バーナの炉内側に、炉床から屹立する仕切壁を設けて該仕切壁に沿う上昇流を形成し、抽出口から侵入した空気を上記上昇流に乗せることを特徴とする加熱炉の雰囲気制御方法。
【0014】
(3) 上記(1) または(2) において、炉抽出端に配置した加熱用バーナを低空気比の下に燃焼運転することを特徴とする加熱炉の雰囲気制御方法。
【0015】
(4) 加熱源として、蓄熱体が付帯されたバーナの対を加熱炉内の両側壁に向かい合わせに配設した蓄熱式バーナの複数を具え、該蓄熱式バーナの各対のバーナを交互に燃焼させると共に、非燃焼時のバーナから炉内の排ガスを吸引し、上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回収し、この回収した熱を燃焼時のバーナの燃焼用空気の加熱に利用して操業を行う、装入扉の直後に煙道を設けた加熱炉において、少なくとも加熱炉の抽出端の下部域に配置した蓄熱式バーナは、その他の蓄熱式バーナとは独立した燃焼制御系を有することを特徴とする加熱炉。
【0016】
(5) 上記(4) において、独立した燃焼制御系を有する蓄熱式バーナを加熱炉の抽出扉との間で挟む位置に、炉床から屹立する仕切壁を設けたことを特徴とする加熱炉。
【0017】
【発明の実施の形態】
以下、この発明の方法について、詳しく説明する。
まず、図1に示した連続式加熱炉において、その炉内に配設した複数の加熱用バーナ4のうち、炉抽出端の下部域に配置した加熱用バーナ40に対して、その他の加熱用バーナ4とは異なる独立した制御系を導入し、該加熱用バーナ40の燃焼を独立して制御する。
【0018】
ここで、加熱炉内の燃焼用バーナ4は、図2に示すように、その対4aおよび4bを加熱炉の両側壁間で向かい合わせに配置して設けるのが通例であり、これは炉抽出端の下部域に配置した加熱用バーナ40についてもバーナ40aおよび40bの対として配置されている。
【0019】
そして、加熱炉で加熱された被加熱材を炉外に抽出するため、加熱炉の抽出扉3aを開放する際は、加熱用バーナ40aおよび40bの燃焼を独立して制御し、図2に示すように、抽出扉3aの開放中は加熱用バーナ40aおよび40bのバーナフレームが抽出口3bの幅方向に開口幅にわたって延びるように、燃焼運転を行う。かように抽出口3bの開口幅にわたるバーナフレームを形成すると、抽出口3bから炉内に侵入した空気は、まずバーナフレームに遮断されて炉内への更なる侵入が回避されるとともに、侵入空気中の酸素が該バーナフレームによって消費されるため、侵入空気による炉内酸素濃度の上昇は未然に回避される。
【0020】
特に、図3に示すように、抽出口3bの下部に櫛歯状のエキストラフォーク開口部3cを有する抽出扉では、このエキストラフォーク開口部3cから空気が侵入し易いため、炉抽出端の下部域に配置した加熱用バーナ40aおよび40bのバーナフレームで空気侵入経路を遮断することは、極めて有効である。なお、加熱用バーナが対で配置されない場合は、単独の加熱用バーナのバーナフレームを炉幅方向に延ばす燃焼制御を行えばよい。
【0021】
ここで、加熱用バーナ40aおよび40bのバーナフレームの形成位置は、炉長方向において、バーナフレームが抽出口下部の構造物に触れない範囲で、かつ可能な限り抽出口に近づけることが好ましく、一方炉の高さ方向において、バーナフレームがエキストラフォーク開口部を塞ぐことが可能な位置で、かつ炉床に触れない範囲とすることが好ましい。
【0022】
また、図4に示すように、加熱用バーナ40aおよび40bの炉内側に、炉床から屹立する仕切壁8を設けた上で、加熱用バーナ40aおよび40bのバーナフレームで空気侵入経路を遮断することが好ましい。
ここに、炉内の圧力分布は、図4に示すように、搬送路6を境にして上部は炉外の圧力(ほぼ大気圧)に対して正圧であるが、下部は負圧になっている。すなわち、通常炉内では、その下方に至るほどドラフトが大きくなるため、炉圧は下方になるに従い低くなる分布を呈する。かような加熱炉において、炉内全域を正圧にすると、炉内上部はより高圧になる結果、炉内ガスが各開口部より噴出する、おそれがあるため、ダンパ10(図1参照)により搬送路6の高さ位置で炉圧が大気圧と等しくなるように制御し、品質上および経済上の優位性を確保している。
【0023】
従って、抽出口3bの特にエキストラフォーク開口部3cから侵入した空気は、搬送路6下部に向かって進行し、大半が加熱用バーナ40aおよび40bのバーナフレームに取り込まれるが、侵入空気が炉内温度より低温であるために、図4に破線で示すように、侵入空気の一部は一旦炉床に沈む向きに流入する。この侵入空気は、加熱用バーナ40aおよび40bの背面側から炉内深くに進行するため、少ないながらも炉内雰囲気を阻害する要因となる。
【0024】
ところが、仕切壁8を設けると、上記加熱用バーナ40aおよび40bの背面側から侵入した空気が仕切壁8で塞き止められ、ここで徐々に温められて仕切壁8に沿う上昇流となって搬送路6上部の正圧域に至るため、搬送路6上部から炉外に排出されることになり、加熱用バーナ40aおよび40bの背面側から侵入した空気についても炉内への侵入を防止することができる。
【0025】
さらに、加熱用バーナ40aおよび40bのバーナフレームで空気侵入経路を遮断するに当り、加熱用バーナ40aおよび40bを低空気比の下に燃焼運転することが好ましい。すなわち、抽出端の加熱用バーナにおける空気比と侵入した空気の該加熱用バーナでの燃焼量との関係を、図5に示すように、加熱用バーナにおける空気比が下がると、侵入空気の加熱用バーナでの燃焼量が増加することが明らかである。従って、加熱用バーナ40aおよび40bを低空気比の下に燃焼運転すれば、抽出口3bから侵入した空気中の酸素を直ちに燃焼して消費することができ、炉内雰囲気を低酸素濃度に保持するのに有効である。
【0026】
なお、仕切壁8は、炉の両側壁間にわたる幅で、炉床から炉内の搬送装置類に干渉しない範囲において高くすることが、侵入空気の遮断並びに上昇流の形成にとって有利である。
【0027】
【実施例】
図1に示した連続式加熱炉において、鋼スラブを室温から1150℃まで加熱する操業を行った。そして、加熱後の鋼スラブを抽出扉3aから抽出する際に、抽出端の加熱用バーナ40aおよび40bを表1に示す条件で燃焼運転した。また、図1に示した連続式加熱炉に図4に示した仕切壁8を下記の仕様で設けた、連続式加熱炉を用いた操業において、表1に示す条件で鋼スラブを抽出した。さらに、比較として、抽出端の加熱用バーナ40aおよび40bを他の加熱用バーナ4と同じ条件で燃焼運転する、在来の加熱炉操業も実施した。
以上の各種操業における、加熱炉内に侵入した空気量および均熱帯の雰囲気酸素濃度を測定した結果について、表1に併記する。

仕切壁 高さ:炉床から1.2 m
幅:炉幅と同幅
【0028】
【表1】

Figure 0003937729
【0029】
【発明の効果】
以上述べたように、この発明によれば、加熱炉内への抽出扉からの空気の侵入は確実に防がれる結果、被加熱材の品質低下は回避され、また加熱炉における燃料原単位の増加を抑制することができる。
【図面の簡単な説明】
【図1】 連続式加熱炉の構造を示す図である。
【図2】 加熱用バーナの炉内配置を示す図である。
【図3】 加熱炉の抽出口を示す図である。
【図4】 加熱炉抽出端付近の空気流を示す図である。
【図5】 加熱用バーナの空気比と侵入空気の燃焼量との関係を示す図である。
【符号の説明】
1 予熱帯
1a 装入扉
2 加熱炉
3 均熱帯
3a 抽出扉
3b 抽出口
3c エキストラフォーク開口部
4 加熱用バーナ
5 搬送路
6 鋼材
7 煙道
8 仕切壁
40a,40b 加熱用バーナ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an atmosphere control of a heating furnace, particularly a method for suppressing an increase in oxygen concentration in the atmosphere, and a heating furnace used directly in this method.
[0002]
[Prior art]
For example, a steel furnace is mainly used when rolling steel slabs that have been roughly rolled at a lump factory or continuously cast slabs into a final product and reheating them to a predetermined temperature suitable for the rolling. It is used. Although this heating furnace is roughly classified into a batch type and a continuous type, each has advantages and disadvantages, and is therefore selectively used depending on the purpose. Among them, the continuous heating furnace is frequently used in steelworks because it is suitable for mass production in recent years.
[0003]
As shown in FIG. 1, this continuous heating furnace is generally composed of a pretropical zone 1, a heating zone 2 and a soaking zone 3 in order from the steel material charging side, and at least the heating zone 2 and The soaking zone 3 is heated and held at a predetermined temperature by the burner 4. Then, the steel material 5 introduced into the pre-tropical zone 1 from the charging door 1a is moved on the conveying path 6 and is carried out of the furnace zone 2 and the soaking zone 3 from the extraction door 3a on the exit side of the soaking zone 3 to the outside of the furnace. In the meantime, it is heated to a predetermined temperature. The exhaust gas generated by the combustion of the burner 4 is discharged out of the furnace through a flue 7 provided on the entry side of the pre-tropical zone 1.
[0004]
Here, in the continuous heating furnace, it is necessary to heat the steel material to a temperature suitable for the subsequent rolling process, and when the temperature of the steel material heated in the continuous heating furnace falls below a predetermined rolling adaptation temperature, particularly the lower limit thereof. This will have adverse effects on rolling operations and product quality. On the other hand, if the temperature of the steel material extracted from the heating furnace becomes higher than necessary, heat loss in the continuous steel material heating furnace increases, so in the continuous heating furnace, the steel material is heated to the rolling compatibility temperature with the minimum necessary fuel. It becomes important. Furthermore, in the heating furnace, it is also required to adjust the heating time so that the heated steel materials are sequentially supplied from the heating furnace in accordance with the rolling pitch in the rolling process.
[0005]
In this way, in a continuous heating furnace, heat loss, especially radiant energy loss from the heating zone, is large, so a pretropical zone and a soaking zone are arranged on the entrance and exit sides of the heating zone, and the inside of the furnace is divided into three. Therefore, heat loss is suppressed.
[0006]
[Problems to be solved by the invention]
By the way, in steel materials charged in a continuous heating furnace, the temperature at the entrance side of the heating furnace is various, such as a slab cooled to room temperature, a hot charge material that is directly sent to a rolling process immediately after continuous casting, Since the heating temperature varies widely, and the amount of treatment to be heated in the heating furnace also changes, it is necessary to control the temperature in the heating furnace according to these various conditions. For this purpose, it is necessary to adjust the heating temperature by increasing / decreasing the amount of combustion of the burner that controls heating in the furnace, but the pressure in the furnace fluctuates due to the change in the amount of combustion of the burner.
[0007]
In particular, if there is a fluctuation in which the pressure inside the furnace becomes lower than the pressure outside the furnace, air enters the furnace from the charging door and the extraction door, which are the openings of the heating furnace, and the oxygen concentration in the furnace atmosphere increases. Therefore, as a result of promoting the surface oxidation of the material to be heated such as a steel material charged in the furnace, the surface quality is deteriorated. In addition, when air enters the furnace, it is necessary to increase the burner combustion amount, leading to a decrease in the furnace temperature, and there is a disadvantage that the fuel consumption increases and the cost increases.
[0008]
Therefore, preventing air from entering the heating furnace is extremely important in terms of product quality and operation of the heating furnace, and various techniques have been proposed for this purpose.
For example, in JP-A-11-172326, in order to prevent intrusion of air from the extraction port of the heating furnace, a combustible gas is ejected from a nozzle provided near the extraction port separately from the heating burner in the furnace, It has been proposed that oxygen in the intruding air is consumed by combustion at that time.
[0009]
However, it is necessary to provide a dedicated combustible gas ejection nozzle in the vicinity of the extraction port, which disadvantageously increases equipment costs. In addition, it is effective against intruding air above the position where the ejection nozzle is installed, but since the furnace pressure below the ejection nozzle becomes negative, it is inevitable that air enters the lower area. . In particular, in the case where the lower part of the extraction port has a comb-like opening for receiving the extra fork of the extractor (hereinafter, referred to as an extra fork opening), the intrusion of air from the opening is surely prevented. It was difficult.
[0010]
Therefore, an object of the present invention is to propose a method capable of reliably preventing air from entering the heating furnace from the extraction door. Another object of the present invention is to provide a heating furnace used directly in this method.
[0011]
[Means for Solving the Problems]
The inventors diligently investigated the intrusion of air when the pressure inside the furnace becomes negative. In that case, air enters the furnace from both the charging door and the extraction door, as shown in FIG. Thus, since the flue 7 is provided immediately after the charging door 1a, the air that has entered from the charging door 1a immediately passes through the flue 7 and is discharged outside the furnace. It has been found that it is unlikely to cause a rise or a decrease in furnace temperature. Therefore, in order to avoid an increase in the oxygen concentration in the furnace and a decrease in the temperature in the furnace, it is important to avoid the intrusion of air from the extraction port. For that purpose, the intruding air is surely blocked at the extraction end. I came to know that this is important.
[0012]
That is, the gist configuration of the present invention is as follows.
(1) When opening the extraction door of the heating furnace provided with a flue immediately after the charging door, heating arranged in the lower region of the furnace extraction end among the plurality of heating burners arranged on both side walls in the heating furnace The burner flame is controlled independently, the burner frame is extended over the opening width in the width direction of the extraction port, the air intrusion path from the extraction port is blocked by the burner frame, and the oxygen concentration in the furnace A method for controlling the atmosphere of a heating furnace, characterized in that the rise in temperature is suppressed.
[0013]
(2) In the above (1), a partition wall standing upright from the hearth is provided inside the furnace of the heating burner arranged at the furnace extraction end to form an upward flow along the partition wall, and air that has entered from the extraction port A method for controlling the atmosphere of a heating furnace, characterized in that:
[0014]
(3) A method for controlling the atmosphere of a heating furnace according to (1) or (2), wherein the heating burner disposed at the furnace extraction end is burned at a low air ratio.
[0015]
(4) As a heating source, it comprises a plurality of heat storage burners in which a pair of burners attached with a heat storage body is arranged facing both side walls in the heating furnace, and the burners of each pair of the heat storage burners are alternately arranged. In addition to burning, the exhaust gas in the furnace is sucked from the burner during non-combustion, the exhaust gas is introduced into the heat storage body, the heat in the exhaust gas is recovered in the heat storage body, and the recovered heat is used for burning the burner during combustion. In a heating furnace that operates using air heating and has a flue immediately after the charging door , at least the regenerative burner placed in the lower area of the extraction end of the heating furnace is the other regenerative burner A heating furnace having an independent combustion control system.
[0016]
(5) The heating furnace according to (4), wherein a partition wall is provided that stands upright from the hearth at a position sandwiching the regenerative burner having an independent combustion control system with the extraction door of the heating furnace. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in detail.
First, in the continuous heating furnace shown in FIG. 1, among the plurality of heating burners 4 arranged in the furnace, the heating burner 40 arranged in the lower region of the furnace extraction end is used for other heating purposes. An independent control system different from the burner 4 is introduced to control the combustion of the heating burner 40 independently.
[0018]
Here, as shown in FIG. 2, the combustion burner 4 in the heating furnace is usually provided with its pair 4a and 4b arranged facing each other between both side walls of the heating furnace. The heating burner 40 disposed in the lower region of the end is also disposed as a pair of burners 40a and 40b.
[0019]
And in order to extract the to-be-heated material heated with the heating furnace outside the furnace, when opening the extraction door 3a of a heating furnace, combustion of the heating burners 40a and 40b is controlled independently, and it shows in FIG. Thus, during the opening of the extraction door 3a, the combustion operation is performed so that the burner frames of the heating burners 40a and 40b extend across the opening width in the width direction of the extraction port 3b. When a burner frame that spans the opening width of the extraction port 3b is formed in this way, the air that has entered the furnace from the extraction port 3b is first blocked by the burner frame, and further intrusion into the furnace is avoided. Since the oxygen inside is consumed by the burner frame, an increase in the oxygen concentration in the furnace due to the intruding air is avoided in advance.
[0020]
In particular, as shown in FIG. 3, in the extraction door having the comb-shaped extra fork opening 3 c at the lower part of the extraction port 3 b, air easily enters from the extra fork opening 3 c. It is extremely effective to block the air intrusion path with the burner frames of the heating burners 40a and 40b arranged in the above. When the heating burners are not arranged in pairs, combustion control may be performed by extending the burner frame of the single heating burner in the furnace width direction.
[0021]
Here, the position where the burner frame of the heating burners 40a and 40b is formed is preferably as close as possible to the extraction port in the furnace length direction as long as the burner frame does not touch the structure below the extraction port, In the height direction of the furnace, it is preferable that the burner frame is in a position where the extra fork opening can be closed and in a range where the burner frame does not touch the hearth.
[0022]
Further, as shown in FIG. 4, a partition wall 8 standing from the hearth is provided inside the furnace of the heating burners 40a and 40b, and the air intrusion path is blocked by the burner frame of the heating burners 40a and 40b. It is preferable.
Here, as shown in FIG. 4, the pressure distribution in the furnace is positive with respect to the pressure outside the furnace (almost atmospheric pressure) with the conveyance path 6 as a boundary, but the negative pressure is in the lower part. ing. That is, in a normal furnace, since the draft increases toward the lower side, the furnace pressure exhibits a distribution that becomes lower as it goes downward. In such a heating furnace, if the whole area in the furnace is set to a positive pressure, the upper part of the furnace becomes higher in pressure, so that the gas in the furnace may be ejected from each opening. Therefore, the damper 10 (see FIG. 1) The furnace pressure is controlled so as to be equal to the atmospheric pressure at the height position of the conveyance path 6 to ensure quality and economic advantages.
[0023]
Accordingly, the air that has entered the extraction port 3b, particularly from the extra fork opening 3c, travels toward the lower portion of the conveyance path 6 and is mostly taken into the burner frames of the heating burners 40a and 40b. Since the temperature is lower, as shown by the broken line in FIG. 4, a part of the intruding air flows in a direction once sinking into the hearth. This intruding air travels from the back side of the heating burners 40a and 40b to the inside of the furnace, so that the intruding air becomes a factor that hinders the atmosphere in the furnace.
[0024]
However, when the partition wall 8 is provided, the air that has entered from the back side of the heating burners 40a and 40b is blocked by the partition wall 8, and is gradually warmed up to form an upward flow along the partition wall 8. Since it reaches the positive pressure region at the top of the transport path 6, it is discharged from the top of the transport path 6 to the outside of the furnace, and air that has entered from the back side of the heating burners 40a and 40b is also prevented from entering the furnace. be able to.
[0025]
Further, when the air intrusion path is blocked by the burner frame of the heating burners 40a and 40b, it is preferable that the heating burners 40a and 40b are operated for combustion at a low air ratio. That is, the relationship between the air ratio in the heating burner at the extraction end and the combustion amount of the invading air in the heating burner is shown in FIG. It is clear that the amount of combustion in the industrial burner increases. Accordingly, if the heating burners 40a and 40b are operated at a low air ratio, oxygen in the air that has entered through the extraction port 3b can be immediately burned and consumed, and the furnace atmosphere is kept at a low oxygen concentration. It is effective to do.
[0026]
It is advantageous for blocking the intruding air and forming an upward flow that the partition wall 8 has a width extending between both side walls of the furnace so as not to interfere with the conveying devices in the furnace from the hearth.
[0027]
【Example】
In the continuous heating furnace shown in FIG. 1, the steel slab was heated from room temperature to 1150 ° C. Then, when the heated steel slab was extracted from the extraction door 3a, the heating burners 40a and 40b at the extraction end were burned under the conditions shown in Table 1. Further, in the operation using the continuous heating furnace in which the partition wall 8 shown in FIG. 4 was provided in the following specifications in the continuous heating furnace shown in FIG. 1, the steel slab was extracted under the conditions shown in Table 1. Further, as a comparison, a conventional heating furnace operation in which the heating burners 40a and 40b at the extraction end were burned under the same conditions as the other heating burners 4 was also carried out.
Table 1 shows the results of measuring the amount of air that has entered the heating furnace and the atmospheric oxygen concentration in the soaking zone in the above various operations.
Partition wall height: 1.2 m from the hearth
Width: Same width as furnace width [0028]
[Table 1]
Figure 0003937729
[0029]
【The invention's effect】
As described above, according to the present invention, as a result of reliably preventing air from entering the heating furnace from the extraction door, deterioration of the quality of the material to be heated is avoided, and the fuel intensity of the heating furnace is reduced. Increase can be suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing the structure of a continuous heating furnace.
FIG. 2 is a view showing the arrangement of a heating burner in a furnace.
FIG. 3 is a view showing an extraction port of a heating furnace.
FIG. 4 is a view showing an air flow in the vicinity of a heating furnace extraction end.
FIG. 5 is a diagram showing a relationship between an air ratio of a heating burner and a combustion amount of intruding air.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pre-tropical 1a Charging door 2 Heating furnace 3 Soaking zone 3a Extracting door 3b Extracting port 3c Extra fork opening 4 Heating burner 5 Conveying path 6 Steel material 7 Flue 8 Partition wall
40a, 40b Heating burner

Claims (5)

装入扉の直後に煙道を設けた加熱炉の抽出扉を開放する際、該加熱炉内の両側壁に配設した複数の加熱用バーナのうち、炉抽出端の下部域に配置した加熱用バーナの燃焼を独立に制御し、該バーナのフレームを抽出口の幅方向に該開口幅にわたって延長し、抽出口からの空気の侵入路をバーナフレームにて遮断して、炉内の酸素濃度の上昇を抑制することを特徴とする加熱炉の雰囲気制御方法。When opening the extraction door of the heating furnace provided with a flue immediately after the charging door, heating arranged in the lower region of the furnace extraction end among the plurality of heating burners arranged on both side walls in the heating furnace The burner flame is controlled independently, the burner frame is extended over the opening width in the width direction of the extraction port, the air intrusion path from the extraction port is blocked by the burner frame, and the oxygen concentration in the furnace A method for controlling the atmosphere of a heating furnace, characterized in that the rise in temperature is suppressed. 請求項1において、炉抽出端に配置した加熱用バーナの炉内側に、炉床から屹立する仕切壁を設けて該仕切壁に沿う上昇流を形成し、抽出口から侵入した空気を上記上昇流に乗せることを特徴とする加熱炉の雰囲気制御方法。  In Claim 1, the partition wall which stands up from a hearth is provided in the furnace inside of the heating burner arrange | positioned at the furnace extraction end, the upward flow along this partition wall is formed, and the air which penetrate | invaded from the extraction port is made into the said upward flow A method for controlling the atmosphere of a heating furnace, characterized in that the method is mounted on a furnace. 請求項1または2において、炉抽出端に配置した加熱用バーナを低空気比の下に燃焼運転することを特徴とする加熱炉の雰囲気制御方法。  3. The atmosphere control method for a heating furnace according to claim 1 or 2, wherein the heating burner arranged at the furnace extraction end is burned and operated at a low air ratio. 加熱源として、蓄熱体が付帯されたバーナの対を加熱炉内の両側壁に向かい合わせに配設した蓄熱式バーナの複数を具え、該蓄熱式バーナの各対のバーナを交互に燃焼させると共に、非燃焼時のバーナから炉内の排ガスを吸引し、上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回収し、この回収した熱を燃焼時のバーナの燃焼用空気の加熱に利用して操業を行う、装入扉の直後に煙道を設けた加熱炉において、少なくとも加熱炉の抽出端の下部域に配置した蓄熱式バーナは、その他の蓄熱式バーナとは独立した燃焼制御系を有することを特徴とする加熱炉。As a heating source, a plurality of regenerative burners having a pair of burners attached with a heat accumulator facing each side wall in a heating furnace are provided, and the burners of each pair of the regenerative burners are alternately burned. The exhaust gas in the furnace is sucked from the burner during non-combustion, the exhaust gas is introduced into the heat storage body, the heat in the exhaust gas is recovered in the heat storage body, and the recovered heat is used to heat the combustion air of the burner during combustion In a heating furnace with a flue immediately after the charging door, the regenerative burner placed at least in the lower area of the extraction end of the heating furnace burns independently from other regenerative burners. A heating furnace having a control system. 請求項4において、独立した燃焼制御系を有する蓄熱式バーナを加熱炉の抽出扉との間で挟む位置に、炉床から屹立する仕切壁を設けたことを特徴とする加熱炉。  5. A heating furnace according to claim 4, wherein a partition wall standing upright from the hearth is provided at a position sandwiching a regenerative burner having an independent combustion control system with an extraction door of the heating furnace.
JP2001008524A 2001-01-17 2001-01-17 Heating furnace atmosphere control method and heating furnace Expired - Fee Related JP3937729B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2001008524A JP3937729B2 (en) 2001-01-17 2001-01-17 Heating furnace atmosphere control method and heating furnace
CA002403221A CA2403221C (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
CNB018092470A CN100338236C (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating heating furnace
CNA2005100789441A CN1693756A (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating heating furnace
PCT/JP2001/011508 WO2002057501A1 (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
EP01273342A EP1275740B1 (en) 2001-01-17 2001-12-27 Method of operating a heating furnace with regenerative burners
US10/220,726 US6644962B2 (en) 2001-01-17 2001-12-27 Heating furnace having heat regenerating burners and operation method thereof
BR0109303-7A BR0109303A (en) 2001-01-17 2001-12-27 Heating furnace having heat regeneration burners and their method of operation
CA002639404A CA2639404A1 (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
CNA2005100789456A CN1693757A (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
AT01273342T ATE346172T1 (en) 2001-01-17 2001-12-27 METHOD FOR OPERATING A HEATING FURNACE WITH REGENERATIVE BURNERS
EP06018722A EP1757707A3 (en) 2001-01-17 2001-12-27 Heating furnace having heat regenerating burners and operation method thereof
KR1020027012192A KR100634776B1 (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
CNB2005100789386A CN1333087C (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating heating furnace
DE60124691T DE60124691T2 (en) 2001-01-17 2001-12-27 METHOD FOR OPERATING A HEATER WITH REGENERATIVE BURNERS
TW091100620A TW524956B (en) 2001-01-17 2002-01-16 Heating furnace with regenerative burners and method of operating the heating furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001008524A JP3937729B2 (en) 2001-01-17 2001-01-17 Heating furnace atmosphere control method and heating furnace
PCT/JP2001/011508 WO2002057501A1 (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace

Publications (2)

Publication Number Publication Date
JP2002213879A JP2002213879A (en) 2002-07-31
JP3937729B2 true JP3937729B2 (en) 2007-06-27

Family

ID=18876136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008524A Expired - Fee Related JP3937729B2 (en) 2001-01-17 2001-01-17 Heating furnace atmosphere control method and heating furnace

Country Status (2)

Country Link
JP (1) JP3937729B2 (en)
CN (3) CN1693757A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452955B2 (en) * 2009-03-13 2014-03-26 本田技研工業株式会社 Preform heating device
CN101900359B (en) * 2010-09-05 2012-02-15 无锡市盛力达机械工程有限公司 Automatic pressure control device for gas furnace pressure
DE102011053698C5 (en) * 2011-09-16 2017-11-16 Benteler Automobiltechnik Gmbh Process for the manufacture of structural and chassis components by thermoforming and heating station
JPWO2016153049A1 (en) * 2015-03-26 2017-11-02 大陽日酸株式会社 Steel product heating apparatus and method for heating steel product
CN104949517A (en) * 2015-06-19 2015-09-30 邯钢集团邯宝钢铁有限公司 Rapid cooling method for steel rolling heating furnace heat exchanger
CN106676252B (en) * 2017-02-21 2018-02-23 东北大学 A kind of direct flame impingement heater of sheet metal strip
CN109141051B (en) * 2018-10-12 2020-03-17 厦门大学嘉庚学院 Optimal design method for furnace pressure control of heat accumulating type industrial heating furnace
CN117663161B (en) * 2023-12-11 2024-05-14 星远智维邯郸环境科技有限公司 Rotary heat accumulating type heating furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776198A (en) * 1980-10-30 1982-05-13 Nippon Steel Corp Control of terperature of material in heating furnace
JP2589541Y2 (en) * 1993-09-30 1999-01-27 石川島播磨重工業株式会社 Steel heating furnace
JP2885072B2 (en) * 1994-05-30 1999-04-19 住友金属工業株式会社 Heating furnace control method
JPH09209032A (en) * 1996-02-01 1997-08-12 Nippon Steel Corp Method for controlling optimum furnace pressure in heating furnace

Also Published As

Publication number Publication date
CN1333087C (en) 2007-08-22
CN1693756A (en) 2005-11-09
CN1693757A (en) 2005-11-09
JP2002213879A (en) 2002-07-31
CN1693755A (en) 2005-11-09

Similar Documents

Publication Publication Date Title
WO2002057501A1 (en) Heating furnace with regenerative burners and method of operating the heating furnace
JP3937729B2 (en) Heating furnace atmosphere control method and heating furnace
GB1601052A (en) Furnaces
US4069008A (en) Method and apparatus for heating a workpiece
US11920786B2 (en) Regenerative burner, industrial furnace and method for producing a fired article
JP7115995B2 (en) Furnace pressure control method for continuous heating furnace, furnace pressure control device, and continuous heating furnace
JPS61231117A (en) Re-heating furnace
JP4237842B2 (en) Billet continuous heating device
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
JP2002220621A (en) Method for controlling furnace pressure using regenerative burner
JPH09272919A (en) Continuous heating method and apparatus therefor
KR101066572B1 (en) Reheating furnace for heating charging slab homogeneously
SU840159A1 (en) Method of nonoxidative heating of metal
JPS5858230A (en) Soaking pit
JP2002155313A (en) Horizontal continuous heat treatment furnace for steel strip
JP2000273530A (en) Continuous heating apparatus for steel material
KR200180039Y1 (en) Indirect cooling structure of cooling zone for roller hearth kiln
JPS6038151Y2 (en) heating furnace
JP4146939B2 (en) Stainless steel strip continuous annealing furnace
JP3627794B2 (en) Method for preventing air intrusion into heating furnace and heating furnace
JPH02141533A (en) Method for operating holding furnace
KR20100047005A (en) Preheating zone structure in heating furnace
RU2335719C2 (en) Compartment furnace
JP3174148B2 (en) Furnace equipment for heating and soaking high-temperature slabs
JPS6233006Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees