JP3924849B2 - Transparent conductive film and electromagnetic wave shielding filter using the same - Google Patents

Transparent conductive film and electromagnetic wave shielding filter using the same Download PDF

Info

Publication number
JP3924849B2
JP3924849B2 JP17955897A JP17955897A JP3924849B2 JP 3924849 B2 JP3924849 B2 JP 3924849B2 JP 17955897 A JP17955897 A JP 17955897A JP 17955897 A JP17955897 A JP 17955897A JP 3924849 B2 JP3924849 B2 JP 3924849B2
Authority
JP
Japan
Prior art keywords
layer
film
light transmittance
total light
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17955897A
Other languages
Japanese (ja)
Other versions
JPH1120076A (en
Inventor
正典 小林
政尚 工藤
陽三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP17955897A priority Critical patent/JP3924849B2/en
Publication of JPH1120076A publication Critical patent/JPH1120076A/en
Application granted granted Critical
Publication of JP3924849B2 publication Critical patent/JP3924849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Insulated Conductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透明導電フィルム、およびこれを用いたディスプレイ用の電磁波シールドフィルターに関する。
【0002】
【従来の技術・発明が解決しようとする課題】
従来、透明導電フィルムは、ポリエチレンテレフタレート(PET)等の透明高分子フィルム上に、インジウム・錫酸化物(ITO)等の透明導電膜が積層されてなるのが一般的である。ITOによる透明導電膜において、透明性と導電性はトレードオフの関係にあることが多く、表面抵抗率が低く、特に10Ω/□以下であり、かつ透明性の高い透明導電膜を成膜することは困難であり、さらに成膜温度条件に制限のある高分子フィルム基材上に成膜するのは困難である。
【0003】
上記のような透明導電フィルムを、例えばプラズマディスプレイパネル(PDP)の電磁波シールドフィルターとして用いる場合、PDPの内部からはグロー放電に伴う、紫外線や赤外線を含めた電磁波が放出され、周囲の電子機器のノイズになったり、使用者の健康を害する等の問題点が指摘されており、このような電磁波をPDP外部に漏らさないようなものとして機能しなくてはならない。PDPの背面および側面は筐体に公知の電磁波シールド処理を施せばよいが、パネル前面には透明なシールド材を配置する必要がある。これまでもパソコン等のCRT用電磁波シールドフィルターは各種発売されているが、PDP用ではより高度な電磁波シールド性能が必要となる。つまり、このシールド材に用いる透明導電フィルムには透明性はもちろんのこと、優れた導電性(低抵抗率)が求められる。
【0004】
このような要求特性を満足し得る透明導電フィルムとしてAu、Ag、Cu等の金属薄膜を積層した導電フィルムがある。例えば、膜厚が100Åから150Åの銀のスパッタリング膜をPETフィルム上に積層した透明導電フィルムは、表面抵抗率は数Ω/□と低く、光線透過率も70%前後あり、低抵抗率と高光線透過率のバランスのとれた高性能な透明導電フィルムとなる。しかし、Ag、Cu等の金属薄膜は環境安定性が悪く、高温高湿度下では、酸化が進み初期の性能が維持できなくなる。また、Auはコスト高になり、着色度も大きい。
また、これらAu、Ag、Cu等の金属薄膜を透明高分子フィルム上に積層したフィルムのように、電気伝導性を優先した透明導電フィルムでは、一般に金属薄膜はその膜厚の増加に従って電気伝導性は良くなるが、光線透過率も極端に低下し、200Å以上では反射率90%以上の金属光沢を持った膜となり、また高温高湿下での安定性が極端に悪く、PDP画面前面の電磁波シールドフィルターとしては、不満足なものである。
【0005】
このように、従来、プラズマディスプレイのように有害な電磁波を放出するディスプレイに適用し得る電磁波シールドフィルターを、好適に構成し得る透明導電フィルムはなかったのである。
【0006】
本発明の目的は、優れた環境安定性を有し、特に透光性を維持したまま電気伝導性を改善した透明導電フィルムを提供することにある。また、該透明導電フィルムを用いてなり、特にプラズマディスプレイ用に有用な電磁波シールドフィルターを提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、かかる問題を解決するために鋭意研究を重ねた結果、透明高分子フィルム上に、Agを主成分とする厚さ50Å〜200Åの金属薄膜層、In、Sn、Cd、Zn、AlおよびSbからなる群より選ばれる一種以上の金属の酸化物を有してなる透明導電薄膜層、Mg、Ca、Al、Si、Ti、ZrおよびCeからなる群より選ばれる一種以上の金属の酸化物を有してなる透明ガスバリア薄膜層を特定の順序で積層することにより、環境安定性(特に、高温高湿下での透明性)および電気伝導性を兼ね備えた透明導電フィルムとなることを見出し、本発明を完成するに至った。
【0008】
即ち本発明は、以下の通りである。
(1)透明高分子フィルム上に、(A)層/(B)層/(A)層/(C)層がこれらの順に4層積層された積層構造を少なくとも有する透明導電フィルム。
(A)層;Agを主成分とする厚さ50Å〜200Åの金属薄膜層。
(B)層;In、Sn、Cd、Zn、AlおよびSbからなる群より選ばれる一種以上の金属の酸化物を有してなる透明導電薄膜層。
(C)層;Mg、Ca、Al、Si、Ti、ZrおよびCeからなる群より選ばれる一種以上の金属の酸化物を有してなる透明ガスバリア薄膜層。
【0009】
(2)2つの(A)層のうち透明高分子フィルムから上層側にある(A)層に外部からの端子を電気的に接続し得るように、該(A)層の上面が外周縁部において露出している上記(1)記載の透明導電フィルム。
【0010】
(3)透明高分子フィルム上に、(A)層/(C)層/(A)層/(C)層がこれらの順に4層積層された積層構造を有し、両方の(C)層の外周形状が(A)層の外周形状より小さいものであり、2つの(A)層が電気的に接続されているものであり、かつ2つの(A)層のうち透明高分子フィルムから上層側にある(A)層が外部からの端子を電気的に接続し得るものである透明導電フィルム。
(A)層;Agを主成分とする厚さ50Å〜200Åの金属薄膜層。
(C)層;Mg、Ca、Al、Si、Ti、ZrおよびCeからなる群より選ばれる一種以上の金属の酸化物を有してなる透明ガスバリア薄膜層。
【0011】
(4)透明高分子フィルムと積層構造の間に、(C)層を有するものである上記(1)(3)のいずれかに記載の透明導電フィルム。
【0012】
(5)上記(1)(4)のいずれかに記載の透明導電フィルムを用いてなる電磁波シールドフィルター。
【0013】
(6)プラズマディスプレイに用いられる上記(5)記載の電磁波シールドフィルター。
【0014】
【発明の実施の形態】
本発明の透明導電フィルムは、図1〜4にその積層構成の例を示すように、透明高分子フィルム(D)側を下とし、その上に、(A)層、(B)層または(C)層、(A)層、(C)層の順に4層積層された積層構造を少なくとも有することを特徴とする。
また、(D)側からの透過ガスによる(A)層の劣化防止の点から、透明高分子フィルムと上記積層構造の間に(C)層を有していてもよい(図3および図4)。
【0015】
具体的には、下層側から上層側へ記載するものとして(以下、同様である)、(D)/(A)/(B)/(A)/(C)、(D)/(A)/(C)/(A)/(C)、(D)/(C)/(A)/(B)/(A)/(C)、(D)/(C)/(A)/(C)/(A)/(C)のような積層構成が挙げられる。
【0016】
また、図のように該透明導電フィルムにおいて、2つの(A)層のうち透明高分子フィルム(D)から上層側にある(A)層に外部からの端子を電気的に接続し得るように、該(A)層の上面が外周縁部においてその一部または全部が露出していることが好ましい。
さらに、図2および図4に示すように、透明高分子フィルム(D)上に積層される積層構造が、(A)/(C)/(A)/(C)であって、両方の(C)層の外周形状が(A)層の外周形状より小さいものであり、2つの(A)層のうち透明高分子フィルム(D)から上層側にある(A)層が、外部からの端子を電気的に接続し得るもの(例えば、前記のように該(A)層の上面が外周縁部において露出する形態等)であることが好ましい。またさらに、上記2つの(A)層が電気的に接続されている(例えば、図2および図4のように(A)層同士が外周縁部で直接積層される形態等)ことが好ましい。
【0017】
かくして、2つの金属薄膜層の間に異質の透明薄膜層を設け、必要に応じて周辺部で2つの金属薄膜層を互いに電気的に接続することで、合計膜厚が厚くなっても透光性を持たせたまま、電気伝導性を向上することができる。
【0018】
本発明の透明導電フィルムの構成によって、フィルム全体としての透明性は、全光線透過率として65%以上が達成可能である。
本発明において、全光線透過率とは、ヘイズメーター(日本電色工業(株)製,NDH−1001DP)により測定されたものである。
また、導電性は、最外層の(C)層を除いた状態の積層フィルムの表面抵抗率として10Ω/□以下が達成可能である。
本発明において、表面抵抗率とは、抵抗率計(三菱油化(株)製,ロレスタ・AP)を用いて測定されたものである。
【0019】
本発明の透明導電フィルムに用いられる(A)層、即ち金属薄膜層は、Agを主成分とする薄膜であり、可視域の吸収が少なく、電気伝導性の高いものであれば特に限定されないが、全光線透過率として70%以上、表面抵抗率が10Ω/□以下であることが好ましい。例えば、Ag薄膜あるいはAgと他の金属との合金からなる薄膜等が挙げられる。他の金属としては、例えばAu、Cu、Al、Ni、Cr、Ti、Si、Sn、In、Pd、Pt等が挙げられる。中でも、合金状態が安定であることによる耐久性、導電率の向上の点から、Ag−Au合金、Ag−Cu合金が好ましい。また、Agのマイグレーション防止の点からは、Ag−Pd合金が好ましい。当該合金におけるAgの組成は、光学特性の点から、薄膜層中50原子%以上、好ましくは60原子%以上、より好ましくは70〜100原子%の範囲である。
【0020】
また、当該金属薄膜層の膜厚は50Å〜200Åである。膜厚が50Å未満では薄膜が不連続な島状構造となり、電気伝導性が低く、一方200Åを超えると金属光沢の強い膜となり、反射率が急に高くなる。
【0021】
金属薄膜層の成膜法としては、例えばスパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法(物理蒸着法)等の公知の方法を用いることができるが、50Å〜200Åという薄い膜を安定的に成膜するためにはスパッタリング法のような高エネルギー粒子による成膜法が好ましい。特に、合金の薄膜形成の場合は、組成・膜厚の均一性の観点からスパッタリング法が好ましい。
【0022】
本発明に用いられる(B)層、即ち透明導電薄膜層は、In、Sn、Cd、Zn、AlおよびSbからなる群より選ばれる一種以上の金属の酸化物を有してなる導電性薄膜であり、全光線透過率が80%以上である。
当該全光線透過率が80%未満であると、積層フィルム全体としての全光線透過率が65%を下回る傾向がある。好ましくは85〜95%の範囲である。
当該全光線透過率は、透明導電薄膜層の組成や膜厚等により調整することができる。
【0023】
透明導電薄膜層の膜厚は、その電気伝導性の発現より、50Å以上が好ましく、より好ましくは150Å以上、さらに好ましくは200〜3000Åの範囲である。
透明導電薄膜の成膜法としては、例えばスパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法(物理蒸着法)、CVD法(化学蒸着法)等の高真空中での薄膜形成法等の公知の方法が用いられる。
【0024】
本発明に用いられる(C)層、即ち透明ガスバリア薄膜層は、金属薄膜層の電気伝導性および透光性の低下の原因である酸化を防ぐ目的のために、酸素、水蒸気等の気体透過性の極めて低いものであればよいが、酸素透過係数としては5cc/atm・m2 ・day以下、水蒸気透過係数としては5g/m2 ・day以下であることが好ましい。
【0025】
透明ガスバリア薄膜層の具体的な構成は、Mg、Ca、Al、Si、Ti、ZrおよびCeからなる群より選ばれる一種以上の金属の酸化物薄膜を有してなる。また、該透明ガスバリア薄膜層はその全光線透過率が80%以上である。
当該全光線透過率が80%未満であると、積層フィルム全体としての全光線透過率が65%を下回る傾向がある。好ましくは85〜95%の範囲である。
当該全光線透過率は、透明ガスバリア薄膜層の組成や膜厚等により調整することができる。
【0026】
ここで、酸素透過係数は、JIS K7126に準じ、モダンコントロールズ社製酸素透過度測定装置(OX−TRAN100型)により、測定温度25℃、相対湿度0%RHにて測定されるものであり、透明ガスバリア薄膜層の組成、膜厚等により調整することができる。
また、水蒸気透過係数は、JIS K7129に準じ、リッシー社製水蒸気透過度測定装置(L80−4000型)により、測定温度40℃にて測定されるものであり、透明ガスバリア薄膜層の組成や膜厚等により調整することができる。
【0027】
透明ガスバリア薄膜層の膜厚は、そのガスバリア性の発現より、100Å以上が好ましく、より好ましくは150Å以上、さらに好ましくは150〜500Åの範囲である。
透明ガスバリア薄膜層の成膜法としては、例えばスパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法(物理蒸着法)、CVD法(化学蒸着法)等の高真空中での薄膜形成法等の公知の方法が用いられる。
ここで、(C)層の外周形状が(A)層の外周形状より小さい場合は、例えば(C)層の成膜を周辺端部の一部または全部にマスキングをかけて行い、次の層を成膜する前にマスキングを剥離して行えばよい。
【0028】
本発明に用いられる透明高分子フィルムは、透明かつ成膜プロセスに耐える機械強度、耐熱性を有するものであれば特に限定されず、例えばポリエステル系樹脂、ポリオレフィン系樹脂、ポリスルホン系樹脂、ポリスチレン等のフィルムが挙げられる。具体的には、ポリエステル系樹脂としてはポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリカーボネート等が、ポリオレフィン系樹脂としては非晶質環式ポリオレフィン等が、ポリスルホン系樹脂としてはポリエーテルスルホン等が挙げられる。中でも、特性(透明性、機械強度等)と価格のバランスよりPETフィルムが好ましく用いられる。
【0029】
また、該透明高分子フィルムにおける透明とは、その全光線透過率が85%以上であることを意味する。
当該全光線透過率が85%未満であると、積層フィルム全体としての全光線透過率を下げる傾向がある。好ましくは87%以上、より好ましくは88〜95%の範囲である。
当該全光線透過率は、高分子フィルムの組成、膜厚、成膜法等により調整することができる。
【0030】
当該透明高分子フィルムの厚さは50〜300μmが好ましく、より好ましくは100〜200μmである。
【0031】
該透明高分子フィルムは、自体既知の方法により製造することができる。
【0032】
また、これらの透明高分子フィルムは、その機械的特性(例えば、耐衝撃性、屈曲性等)および光学特性を損なわない程度の着色剤、紫外線吸収剤、安定剤、可塑剤、色素等の公知の添加剤を含有していてもよく、またそれらを含むコート層を公知の方法で設けてもよい。とくに、プラズマディスプレイの電磁波シールドフィルターとして用いる場合には、リモコンや赤外線通信の誤動作の原因となる近赤外線を吸収する色素を含有することが好ましい。
【0033】
本発明の電磁波シールドフィルターは、上記透明導電フィルムを用いてなる。当該電磁波シールドフィルターは、透明導電フィルム以外に、フィルターの耐衝撃性向上のためのポリカーボネート、ポリメチルメタクリレート等の無色透明板、リモコン誤動作防止のための各種カラーフィルター(近赤外線カットフィルター)、反射率低減による画面輝度向上のための反射防止膜、ノングレア処理膜、画面傷つき防止のためのハードコート膜等が付与されることが好ましい。また、グランド端子は、例えば周辺部の導電ペースト印刷や導電金属テープにより付与することができる。
【0034】
【実施例】
以下に本発明を実施例に基づいて詳細に説明するが、本発明はこれら実施例に限定されるものではない。各物性は以下のようにして測定した。
〔表面抵抗率〕
表面抵抗率は、抵抗率計(三菱油化(株)製,ロレスタ・AP)を用いて測定した。
【0035】
〔全光線透過率およびヘイズ〕
全光線透過率およびヘイズは、ヘイズメーター(日本電色工業(株)製,NDH−1001DP)を用いて測定した。
【0036】
〔電磁波シールド特性〕
電磁波シールド特性の測定は、スペクトラムアナライザー(アドバンテスト社製,R3361A)およびシールドボックス(アドバンテスト社製,TR17301A)を用い、電界、磁界についてそれぞれ測定した。測定周波数は1MHz〜1GHzで行った。
【0037】
〔酸素透過係数〕
JIS K7126に準じ、モダンコントロールズ社製酸素透過度測定装置(OX−TRAN100型)を用いて、測定温度25℃、相対湿度0%RHの雰囲気下で測定した。
【0038】
〔水蒸気透過係数〕
JIS K7129に準じ、リッシー社製水蒸気透過度測定装置(L80−4000型)を用いて、測定温度40℃で測定した。
【0039】
実施例1
長さ300mm、幅210mm、厚さ188μmの2軸延伸ポリエチレンテレフタレートフィルム基板(全光線透過率92%)に、(A)層として100ÅのAg金属薄膜(全光線透過率85%)をDCマグネトロンスパッタリングにより積層した。次に(B)層として200Åの酸化錫の透明導電膜(全光線透過率85%)を高周波マグネトロンスパッタリングにより積層した。さらに(A)層として100ÅのAg金属薄膜(全光線透過率85%)を前記(A)層と同様に積層した。この積層体の表面抵抗率は2Ω/□であった。次に周辺部全周にわたって幅10mmのマスキングを施してから、(C)層として200Åの二酸化珪素(全光線透過率90%,酸素透過係数1cc/atm・m2 ・day,水蒸気透過係数1g/m2 ・day)を高周波マグネトロンスパッタリングにより積層した。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は68%、ヘイズは2.2%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は55dBであった。
【0040】
実施例2
長さ300mm、幅210mm、厚さ188μmの2軸延伸ポリエチレンテレフタレートフィルム基板(全光線透過率92%)に、(A)層として100ÅのAg金属薄膜(全光線透過率85%)をDCマグネトロンスパッタリングにより積層した。次に周辺部全周にわたって幅10mmのマスキングを施してから、(B)層として200Åの酸化錫(全光線透過率85%)の透明導電膜を高周波マグネトロンスパッタリングにより積層した。マスキングを剥がし、さらに(A)層として100ÅのAg金属薄膜(全光線透過率85%)を前記(A)層と同様に積層した。この積層体の表面抵抗率は1Ω/□であった。次に周辺部全周にわたって幅10mmのマスキングを施してから、(C)層として200Åの二酸化珪素(全光線透過率90%,酸素透過係数1cc/atm・m2 ・day,水蒸気透過係数1g/m2 ・day)を高周波マグネトロンスパッタリングにより積層した。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は68%、ヘイズは2.2%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は60dBであった。
【0041】
実施例3
長さ300mm、幅210mm、厚さ188μmの2軸延伸ポリエチレンテレフタレートフィルム基板(全光線透過率92%)に、(A)層として100ÅのAg金属薄膜(全光線透過率85%)をDCマグネトロンスパッタリングにより積層した。次に周辺部全周にわたって幅10mmのマスキングを施してから、(C)層として200Åの二酸化珪素(全光線透過率90%,酸素透過係数1cc/atm・m2 ・day,水蒸気透過係数1g/m2 ・day)の透明導電膜を高周波マグネトロンスパッタリングにより積層した。マスキングを剥がし、(A)層として100ÅのAg金属薄膜(全光線透過率85%)を前記(A)層と同様に積層した。この積層体の表面抵抗率は5Ω/□であった。次に周辺部全周にわたって幅10mmのマスキングを施してから、(C)層として200Åの二酸化珪素(全光線透過率90%,酸素透過係数1cc/atm・m2 ・day,水蒸気透過係数1g/m2 ・day)を高周波マグネトロンスパッタリングにより積層した。得られた積層体の全光線透過率は75%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は75%、ヘイズは2.0%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は50dBであった。
【0042】
実施例4
長さ300mm、幅210mm、厚さ188μmの2軸延伸ポリエチレンテレフタレートフィルム基板(全光線透過率92%)に、(C)層として200Åの二酸化珪素(全光線透過率90%,酸素透過係数1cc/atm・m2 ・day,水蒸気透過係数1g/m2 ・day)を高周波マグネトロンスパッタリングにより積層した。次に(A)層として、100ÅのAg金属薄膜(全光線透過率85%)をDCマグネトロンスパッタリングにより積層した。次に周辺部全周にわたって幅10mmのマスキングを施してから、(C)層として200Åの二酸化珪素(全光線透過率90%,酸素透過係数1cc/atm・m2 ・day,水蒸気透過係数1g/m2 ・day)を高周波マグネトロンスパッタリングにより積層した。マスキングを剥がし、(A)層として100ÅのAg金属薄膜(全光線透過率85%)を前記(A)層と同様に積層した。この積層体の表面抵抗率は2Ω/□であった。次に周辺部全周にわたって幅10mmのマスキングを施してから、(C)層として200Åの二酸化珪素(全光線透過率90%,酸素透過係数1cc/atm・m2 ・day,水蒸気透過係数1g/m2 ・day)を高周波マグネトロンスパッタリングにより積層した。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は70%、ヘイズは2.0%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は50dBであった。
【0043】
実施例5
実施例2の全ての(A)層を60ÅのAg金属薄膜(全光線透過率90%)に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は10Ω/□であった。得られた積層体の全光線透過率は85%、ヘイズは1.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は83%、ヘイズは1.2%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は45dBであった。
【0044】
実施例6
実施例2の全ての(A)層を175ÅのAg金属薄膜(全光線透過率75%)に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は0.5Ω/□であった。得られた積層体の全光線透過率は67%、ヘイズは3.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は65%、ヘイズは3.2%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は65dBであった。
【0045】
実施例7
実施例2の全ての(A)層を100ÅのAg−Pd合金薄膜〔Ag:Pd(原子数比)=8:2,全光線透過率85%〕に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は5Ω/□であった。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は70%、ヘイズは2.0%であり、変化がなかった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は50dBであった。
【0046】
実施例8
実施例2の全ての(A)層を100ÅのAg−Au合金薄膜〔Ag:Au(原子数比)=9:1,全光線透過率85%〕に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は5Ω/□であった。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は70%、ヘイズは2.0%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は50dBであった。
【0047】
実施例9
実施例2の全ての(A)層を100ÅのAg−Cu合金薄膜〔Ag:Cu(原子数比)=9:1,全光線透過率85%〕に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は5Ω/□であった。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は70%、ヘイズは2.0%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は50dBであった。
【0048】
実施例10
実施例2の(B)層を200ÅのZnO−Al2 3 薄膜〔ZnO:Al2 3 (重量比)=98:2,全光線透過率85%〕に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は1Ω/□であった。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は68%、ヘイズは2.2%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は60dBであった。
【0049】
実施例11
実施例2の(B)層を200ÅのSnO2 −Sb2 3 薄膜〔SnO2 :Sb2 3 (重量比)=95:5,全光線透過率85%〕に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は1Ω/□であった。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は68%、ヘイズは2.2%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は60dBであった。
【0050】
実施例12
実施例2の(B)層を200ÅのIn2 3 −ZnO薄膜〔In2 3 :ZnO(重量比)=80:20,全光線透過率85%〕に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は1Ω/□であった。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は68%、ヘイズは2.2%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は60dBであった。
【0051】
実施例13
実施例2の(B)層を200ÅのIn2 3 −SnO2 薄膜〔In2 3 :SnO2 (重量比)=90:10,全光線透過率85%〕に変えた以外は実施例2と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は1Ω/□であった。得られた積層体の全光線透過率は70%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は68%、ヘイズは2.2%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は60dBであった。
【0052】
実施例14
実施例3の(C)層を200ÅのAl2 3 −SiO2 薄膜〔Al:Si(原子数比)=30:70,全光線透過率95%,酸素透過係数0.5cc/atm・m2 ・day,水蒸気透過係数0.5g/m2 ・day〕に変えた以外は実施例3と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は5Ω/□であった。得られた積層体の全光線透過率は75%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は75%、ヘイズは2.0%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は50dBであった。
【0053】
実施例15
実施例3の(C)層を200ÅのZrO2 −SiO2 薄膜〔Zr:Si(原子数比)=1:1,全光線透過率95%,酸素透過係数0.5cc/atm・m2 ・day,水蒸気透過係数0.5g/m2 ・day〕に変えた以外は実施例3と同様にして積層体を作製した。最外層の二酸化珪素積層前の表面抵抗率は5Ω/□であった。得られた積層体の全光線透過率は75%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は75%、ヘイズは2.0%であった。また、周辺部のマスキングを剥がし、導電ペーストによりアース線を取り付けた。電磁波シールド特性は50dBであった。
【0054】
比較例1
長さ300mm、幅210mm、厚さ188μmの2軸延伸ポリエチレンテレフタレートフィルム基板(全光線透過率92%)に、100ÅのAg金属薄膜(全光線透過率85%)をDCマグネトロンスパッタリングにより積層した。得られた積層体の表面抵抗率は5Ω/□、全光線透過率は80%、ヘイズは1.5%であった。またこの積層体を60℃、95%RHの恒温恒湿槽に1000時間放置した後の表面抵抗率は100Ω/□以上で、全光線透過率は50%以下、ヘイズは10%以上であり、外観的にも酸化によるAg膜の変色が見られた。
【0055】
比較例2
実施例1の(C)層を積層しないこと以外は実施例1と同様に積層した。この積層体の表面抵抗率は2Ω/□であった。得られた積層体の全光線透過率は75%、ヘイズは2.0%であった。60℃、95%RHの恒温恒湿槽に1000時間放置した後の全光線透過率は55%、ヘイズは10%であり、外観的にもAg膜の変色が見られた。
【0056】
比較例3
実施例2の全ての(A)層を30ÅのAg金属薄膜(全光線透過率92%)に変えた以外は実施例2と同様にして積層体を作製した。金属薄膜層が不連続な島状構造となり、十分な導電性がでなかった(最外層の二酸化珪素積層前の表面抵抗率∞Ω/□)。
【0057】
比較例4
実施例2の全ての(A)層を300ÅのAg金属薄膜(全光線透過率2%以下)に変えた以外は実施例2と同様にして積層体を作製した。得られた積層体は、不透明な全反射膜であった(全光線透過率1%以下)。
【0058】
【発明の効果】
本発明によれば、優れた環境安定性、特に透光性と、電気伝導特性を有する透明導電フィルムが提供できる。従って、本発明の透明導電フィルムは、電磁波シールドフィルターとして、特にプラズマディスプレイ用電磁波シールドフィルターとして有用である。
【図面の簡単な説明】
【図1】本発明の透明導電フィルムの構成例を示す断面図である。
【図2】本発明の透明導電フィルムの他の構成例を示す断面図である。
【図3】本発明の透明導電フィルムの他の構成例を示す断面図である。
【図4】本発明の透明導電フィルムの他の構成例を示す断面図である。
【符号の説明】
(A) 金属薄膜
(B) 透明導電薄膜
(C) 透明ガスバリア薄膜
(D) 透明高分子フィルム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive film and an electromagnetic wave shielding filter for a display using the same.
[0002]
[Prior art / problems to be solved by the invention]
Conventionally, a transparent conductive film is generally formed by laminating a transparent conductive film such as indium / tin oxide (ITO) on a transparent polymer film such as polyethylene terephthalate (PET). In a transparent conductive film made of ITO, transparency and conductivity are often in a trade-off relationship, and the surface resistivity is low, particularly 10Ω / □ or less, and a highly transparent transparent conductive film is formed. In addition, it is difficult to form a film on a polymer film substrate having a limited film formation temperature condition.
[0003]
When the transparent conductive film as described above is used as, for example, an electromagnetic wave shielding filter of a plasma display panel (PDP), electromagnetic waves including ultraviolet rays and infrared rays accompanying glow discharge are emitted from the inside of the PDP, and the surrounding electronic devices Problems such as noise and harm to the health of the user have been pointed out, and it must function as something that does not leak such electromagnetic waves outside the PDP. The back and side surfaces of the PDP may be subjected to a known electromagnetic wave shielding treatment on the casing, but a transparent shield material needs to be disposed on the front surface of the panel. Various types of electromagnetic shielding filters for CRTs such as personal computers have been put on the market so far, but more advanced electromagnetic shielding performance is required for PDPs. That is, the transparent conductive film used for the shield material is required to have excellent conductivity (low resistivity) as well as transparency.
[0004]
As a transparent conductive film that can satisfy such required characteristics, there is a conductive film in which metal thin films such as Au, Ag, and Cu are laminated. For example, a transparent conductive film in which a silver sputtering film having a film thickness of 100 to 150 mm is laminated on a PET film has a low surface resistivity of several Ω / □, a light transmittance of around 70%, a low resistivity and a high It becomes a high-performance transparent conductive film with a balanced light transmittance. However, metal thin films such as Ag and Cu have poor environmental stability, and under high temperature and high humidity, oxidation proceeds and initial performance cannot be maintained. Further, Au is expensive and has a high degree of coloring.
In addition, a transparent conductive film giving priority to electrical conductivity, such as a film in which a metal thin film such as Au, Ag, Cu, etc. is laminated on a transparent polymer film, generally the metal thin film is electrically conductive as the film thickness increases. Although the light transmittance is extremely reduced, the film has a metallic luster with a reflectance of 90% or more at 200 mm or more, and the stability under high temperature and high humidity is extremely poor. As a shield filter, it is unsatisfactory.
[0005]
Thus, conventionally, there has been no transparent conductive film that can suitably constitute an electromagnetic wave shielding filter that can be applied to a display that emits harmful electromagnetic waves such as a plasma display.
[0006]
An object of the present invention is to provide a transparent conductive film having excellent environmental stability, in particular, improved electrical conductivity while maintaining translucency. Another object of the present invention is to provide an electromagnetic wave shielding filter that uses the transparent conductive film and is particularly useful for a plasma display.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have found that a metal thin film layer having a thickness of 50 to 200 mm mainly composed of Ag, In, Sn, Cd, Zn on a transparent polymer film. One or more metals selected from the group consisting of Mg, Ca, Al, Si, Ti, Zr and Ce, a transparent conductive thin film layer having an oxide of one or more metals selected from the group consisting of Al and Sb By laminating the transparent gas barrier thin film layers comprising the oxides in a specific order, a transparent conductive film having both environmental stability (especially transparency under high temperature and high humidity) and electrical conductivity can be obtained. As a result, the present invention has been completed.
[0008]
  That is, the present invention is as follows.
(1)On the transparent polymer film,(A) layer / (B) layer / (A) layer /(C) A transparent conductive film having at least a laminated structure in which four layers are laminated in this order.
(A) Layer: a metal thin film layer having a thickness of 50 to 200 mm mainly composed of Ag.
(B) Layer: A transparent conductive thin film layer comprising an oxide of one or more metals selected from the group consisting of In, Sn, Cd, Zn, Al and Sb.
(C) Layer: A transparent gas barrier thin film layer comprising an oxide of one or more metals selected from the group consisting of Mg, Ca, Al, Si, Ti, Zr and Ce.
[0009]
(2)The upper surface of the (A) layer is exposed at the outer peripheral edge so that an external terminal can be electrically connected to the (A) layer on the upper layer side from the transparent polymer film of the two (A) layers. ingAbove (1)The transparent conductive film as described.
[0010]
(3)On transparent polymer film(A) layer / (C) layer / (A) layer / (C) layerIn order4 layersLaminatedThe outer peripheral shape of both (C) layers is smaller than the outer peripheral shape of the (A) layer, the two (A) layers are electrically connected, and 2 Of the two (A) layers, the (A) layer on the upper layer side from the transparent polymer film can electrically connect terminals from the outside.Transparent conductive film.
(A) Layer: a metal thin film layer having a thickness of 50 to 200 mm mainly composed of Ag.
(C) Layer: A transparent gas barrier thin film layer comprising an oxide of one or more metals selected from the group consisting of Mg, Ca, Al, Si, Ti, Zr and Ce.
[0011]
(4)It has (C) layer between transparent polymer film and laminated structureAbove (1)~(3)The transparent conductive film according to any one of the above.
[0012]
(5) Above (1)~(4)An electromagnetic wave shielding filter comprising the transparent conductive film according to any one of the above.
[0013]
(6)Used for plasma displayAbove (5)The electromagnetic wave shielding filter as described.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The transparent conductive film of the present invention has a transparent polymer film (D) side on the bottom, as shown in FIGS. It has at least a laminated structure in which four layers are laminated in the order of C) layer, (A) layer, and (C) layer.
Further, from the viewpoint of preventing the deterioration of the (A) layer by the permeated gas from the (D) side, a (C) layer may be provided between the transparent polymer film and the above laminated structure (FIGS. 3 and 4). ).
[0015]
Specifically, as described from the lower layer side to the upper layer side (hereinafter the same), (D) / (A) / (B) / (A) / (C), (D) / (A) / (C) / (A) / (C), (D) / (C) / (A) / (B) / (A) / (C), (D) / (C) / (A) / ( C) / (A) / (C) is a laminated structure.
[0016]
Also, as shown in the figure, in the transparent conductive film, an external terminal can be electrically connected to the (A) layer on the upper layer side from the transparent polymer film (D) of the two (A) layers. The upper surface of the (A) layer is preferably partially or entirely exposed at the outer peripheral edge.
Further, as shown in FIGS. 2 and 4, the laminated structure laminated on the transparent polymer film (D) is (A) / (C) / (A) / (C), and both ( C) The outer peripheral shape of the layer is smaller than the outer peripheral shape of the (A) layer, and the (A) layer on the upper layer side from the transparent polymer film (D) of the two (A) layers is an external terminal. Are preferably capable of being electrically connected to each other (for example, a form in which the upper surface of the layer (A) is exposed at the outer peripheral edge as described above). Furthermore, it is preferable that the two (A) layers are electrically connected (for example, a form in which (A) layers are directly laminated at the outer peripheral edge as shown in FIGS. 2 and 4).
[0017]
Thus, a transparent transparent thin film layer is provided between the two metal thin film layers, and the two metal thin film layers are electrically connected to each other at the peripheral portion as necessary, so that the light transmission can be achieved even when the total film thickness increases. The electrical conductivity can be improved while maintaining the properties.
[0018]
With the configuration of the transparent conductive film of the present invention, the transparency of the entire film can be 65% or more as the total light transmittance.
In the present invention, the total light transmittance is measured by a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., NDH-1001DP).
Further, the conductivity can be 10Ω / □ or less as the surface resistivity of the laminated film excluding the outermost (C) layer.
In the present invention, the surface resistivity is measured using a resistivity meter (Mitsubishi Yuka Co., Ltd., Loresta AP).
[0019]
The (A) layer used in the transparent conductive film of the present invention, that is, the metal thin film layer, is a thin film mainly composed of Ag, and is not particularly limited as long as it has little absorption in the visible region and high electrical conductivity. The total light transmittance is preferably 70% or more and the surface resistivity is preferably 10Ω / □ or less. For example, an Ag thin film or a thin film made of an alloy of Ag and another metal can be used. Examples of other metals include Au, Cu, Al, Ni, Cr, Ti, Si, Sn, In, Pd, and Pt. Among these, Ag—Au alloy and Ag—Cu alloy are preferable from the viewpoint of improvement in durability and conductivity due to the stable alloy state. From the viewpoint of preventing Ag migration, an Ag—Pd alloy is preferable. The composition of Ag in the alloy is 50 atomic% or more, preferably 60 atomic% or more, more preferably 70 to 100 atomic% in the thin film layer from the viewpoint of optical properties.
[0020]
The thickness of the metal thin film layer is 50 to 200 mm. If the film thickness is less than 50 mm, the thin film has a discontinuous island structure, and the electrical conductivity is low. On the other hand, if the film thickness exceeds 200 mm, the film has a strong metallic luster, and the reflectivity suddenly increases.
[0021]
As a method for forming the metal thin film layer, a known method such as a PVD method (physical vapor deposition method) such as a sputtering method, a vacuum vapor deposition method, or an ion plating method can be used. In order to form a film stably, a film forming method using high energy particles such as a sputtering method is preferable. In particular, in the case of forming an alloy thin film, the sputtering method is preferred from the viewpoint of uniformity of composition and film thickness.
[0022]
The layer (B) used in the present invention, that is, the transparent conductive thin film layer, is a conductive thin film having an oxide of one or more metals selected from the group consisting of In, Sn, Cd, Zn, Al and Sb. Yes, the total light transmittance is 80% or more.
If the total light transmittance is less than 80%, the total light transmittance of the laminated film as a whole tends to be less than 65%. Preferably it is 85 to 95% of range.
The total light transmittance can be adjusted by the composition and film thickness of the transparent conductive thin film layer.
[0023]
The film thickness of the transparent conductive thin film layer is preferably 50 mm or more, more preferably 150 mm or more, and still more preferably in the range of 200 to 3000 mm, from the expression of electrical conductivity.
As a method for forming a transparent conductive thin film, for example, a PVD method (physical vapor deposition method) such as a sputtering method, a vacuum vapor deposition method or an ion plating method, a thin film formation method in a high vacuum such as a CVD method (chemical vapor deposition method), etc. These known methods are used.
[0024]
The layer (C) used in the present invention, that is, the transparent gas barrier thin film layer, is permeable to gases such as oxygen and water vapor for the purpose of preventing oxidation, which is a cause of a decrease in electrical conductivity and translucency of the metal thin film layer. However, the oxygen permeation coefficient is 5 cc / atm · m.2・ Day or less, water vapor transmission coefficient is 5g / m2-It is preferable that it is below day.
[0025]
A specific configuration of the transparent gas barrier thin film layer includes an oxide thin film of one or more metals selected from the group consisting of Mg, Ca, Al, Si, Ti, Zr, and Ce. The transparent gas barrier thin film layer has a total light transmittance of 80% or more.
If the total light transmittance is less than 80%, the total light transmittance of the laminated film as a whole tends to be less than 65%. Preferably it is 85 to 95% of range.
The total light transmittance can be adjusted by the composition and film thickness of the transparent gas barrier thin film layer.
[0026]
Here, the oxygen transmission coefficient is measured at a measurement temperature of 25 ° C. and a relative humidity of 0% RH with an oxygen permeability measurement device (OX-TRAN100 type) manufactured by Modern Controls, in accordance with JIS K7126. It can be adjusted by the composition, film thickness, etc. of the transparent gas barrier thin film layer.
The water vapor transmission coefficient is measured at a measurement temperature of 40 ° C. using a water vapor permeability measuring device (L80-4000 type) manufactured by Rissy in accordance with JIS K7129, and the composition and film thickness of the transparent gas barrier thin film layer. Etc. can be adjusted.
[0027]
The film thickness of the transparent gas barrier thin film layer is preferably 100 mm or more, more preferably 150 mm or more, and further preferably in the range of 150 to 500 mm, from the expression of the gas barrier property.
As a film forming method of the transparent gas barrier thin film layer, a thin film forming method in a high vacuum such as a PVD method (physical vapor deposition method) such as a sputtering method, a vacuum vapor deposition method or an ion plating method, or a CVD method (chemical vapor deposition method). A known method such as the above is used.
Here, when the outer peripheral shape of the (C) layer is smaller than the outer peripheral shape of the (A) layer, for example, the film formation of the (C) layer is performed by masking part or all of the peripheral end portion, and the next layer The masking may be peeled off before forming the film.
[0028]
The transparent polymer film used in the present invention is not particularly limited as long as it is transparent and has mechanical strength and heat resistance that can withstand the film formation process. For example, polyester resin, polyolefin resin, polysulfone resin, polystyrene, etc. A film is mentioned. Specifically, examples of the polyester resin include polyethylene terephthalate (PET), polyethylene naphthalate, and polycarbonate, examples of the polyolefin resin include amorphous cyclic polyolefin, and examples of the polysulfone resin include polyethersulfone. . Among these, a PET film is preferably used from the balance between characteristics (transparency, mechanical strength, etc.) and price.
[0029]
The transparency in the transparent polymer film means that the total light transmittance is 85% or more.
When the total light transmittance is less than 85%, the total light transmittance as the entire laminated film tends to be lowered. Preferably it is 87% or more, More preferably, it is the range of 88 to 95%.
The said total light transmittance can be adjusted with a composition, film thickness, film-forming method, etc. of a polymer film.
[0030]
The thickness of the transparent polymer film is preferably 50 to 300 μm, more preferably 100 to 200 μm.
[0031]
The transparent polymer film can be produced by a method known per se.
[0032]
In addition, these transparent polymer films are publicly known as colorants, ultraviolet absorbers, stabilizers, plasticizers, pigments and the like that do not impair their mechanical properties (for example, impact resistance, flexibility, etc.) and optical properties. These additives may be contained, and a coating layer containing them may be provided by a known method. In particular, when used as an electromagnetic wave shielding filter for a plasma display, it is preferable to contain a dye that absorbs near infrared rays which causes malfunctions in remote control and infrared communication.
[0033]
The electromagnetic wave shielding filter of the present invention uses the transparent conductive film. In addition to transparent conductive film, the electromagnetic wave shielding filter is a colorless transparent plate such as polycarbonate and polymethylmethacrylate for improving the impact resistance of the filter, various color filters (near infrared cut filter) for preventing remote control malfunction, and reflectance. It is preferable to apply an antireflection film for improving screen brightness by reduction, a non-glare treatment film, a hard coat film for preventing damage to the screen, or the like. The ground terminal can be applied by, for example, conductive paste printing or conductive metal tape in the peripheral portion.
[0034]
【Example】
The present invention is described in detail below based on examples, but the present invention is not limited to these examples. Each physical property was measured as follows.
[Surface resistivity]
The surface resistivity was measured using a resistivity meter (Mitsubishi Yuka Co., Ltd., Loresta AP).
[0035]
[Total light transmittance and haze]
The total light transmittance and haze were measured using a haze meter (Nippon Denshoku Industries Co., Ltd., NDH-1001DP).
[0036]
[Electromagnetic wave shielding characteristics]
The electromagnetic wave shielding characteristics were measured for the electric field and the magnetic field using a spectrum analyzer (Advantest, R3361A) and a shield box (Advantest, TR17301A). The measurement frequency was 1 MHz to 1 GHz.
[0037]
[Oxygen permeability coefficient]
According to JIS K7126, measurement was performed in an atmosphere at a measurement temperature of 25 ° C. and a relative humidity of 0% RH using an oxygen permeability measuring device (OX-TRAN100 type) manufactured by Modern Controls.
[0038]
[Water vapor transmission coefficient]
In accordance with JIS K7129, measurement was performed at a measurement temperature of 40 ° C. using a water vapor permeability measuring device (L80-4000 type) manufactured by Rissy.
[0039]
Example 1
DC magnetron sputtering of a 100 mm Ag metal thin film (total light transmittance of 85%) as a (A) layer on a biaxially stretched polyethylene terephthalate film substrate (total light transmittance of 92%) having a length of 300 mm, a width of 210 mm, and a thickness of 188 μm Were laminated. Next, as a layer (B), a 200-mm tin oxide transparent conductive film (total light transmittance of 85%) was laminated by high-frequency magnetron sputtering. Further, as the layer (A), a 100-mm Ag metal thin film (total light transmittance of 85%) was laminated in the same manner as the layer (A). The laminate had a surface resistivity of 2Ω / □. Next, after masking with a width of 10 mm over the entire periphery, 200 cm silicon dioxide (total light transmittance 90%, oxygen transmission coefficient 1 cc / atm · m) as layer (C)2-Day, water vapor transmission coefficient 1g / m2(Day) was laminated by high frequency magnetron sputtering. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after standing in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 68% and haze was 2.2%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 55 dB.
[0040]
Example 2
DC magnetron sputtering of a 100 mm Ag metal thin film (total light transmittance of 85%) as a (A) layer on a biaxially stretched polyethylene terephthalate film substrate (total light transmittance of 92%) having a length of 300 mm, a width of 210 mm, and a thickness of 188 μm Were laminated. Next, after masking with a width of 10 mm over the entire periphery, a transparent conductive film of 200 の tin oxide (total light transmittance of 85%) was laminated as a layer (B) by high frequency magnetron sputtering. The masking was peeled off, and a 100 mm Ag metal thin film (total light transmittance of 85%) was laminated as the (A) layer in the same manner as the (A) layer. The laminate had a surface resistivity of 1Ω / □. Next, after masking with a width of 10 mm over the entire periphery, 200 cm silicon dioxide (total light transmittance 90%, oxygen transmission coefficient 1 cc / atm · m) as layer (C)2-Day, water vapor transmission coefficient 1g / m2(Day) was laminated by high frequency magnetron sputtering. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after standing in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 68% and haze was 2.2%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 60 dB.
[0041]
Example 3
DC magnetron sputtering of a 100 mm Ag metal thin film (total light transmittance of 85%) as a (A) layer on a biaxially stretched polyethylene terephthalate film substrate (total light transmittance of 92%) having a length of 300 mm, a width of 210 mm, and a thickness of 188 μm Were laminated. Next, after masking with a width of 10 mm over the entire periphery, 200 cm silicon dioxide (total light transmittance 90%, oxygen transmission coefficient 1 cc / atm · m) as layer (C)2-Day, water vapor transmission coefficient 1g / m2-The transparent conductive film of (day) was laminated by high frequency magnetron sputtering. The masking was removed, and a 100-mm Ag metal thin film (total light transmittance of 85%) was laminated as the (A) layer in the same manner as the (A) layer. The laminate had a surface resistivity of 5Ω / □. Next, after masking with a width of 10 mm over the entire periphery, 200 cm silicon dioxide (total light transmittance 90%, oxygen transmission coefficient 1 cc / atm · m) as layer (C)2-Day, water vapor transmission coefficient 1g / m2(Day) was laminated by high frequency magnetron sputtering. The obtained laminate had a total light transmittance of 75% and a haze of 2.0%. The total light transmittance after leaving in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 75% and haze was 2.0%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 50 dB.
[0042]
Example 4
A biaxially stretched polyethylene terephthalate film substrate (total light transmittance 92%) having a length of 300 mm, a width of 210 mm, and a thickness of 188 μm, and (C) layer of 200 珪 素 silicon dioxide (total light transmittance 90%, oxygen transmission coefficient 1 cc / atm ・ m2-Day, water vapor transmission coefficient 1g / m2(Day) was laminated by high frequency magnetron sputtering. Next, as the layer (A), a 100-mm Ag metal thin film (total light transmittance of 85%) was laminated by DC magnetron sputtering. Next, after masking with a width of 10 mm over the entire periphery, 200 cm silicon dioxide (total light transmittance 90%, oxygen transmission coefficient 1 cc / atm · m) as layer (C)2-Day, water vapor transmission coefficient 1g / m2(Day) was laminated by high frequency magnetron sputtering. The masking was removed, and a 100-mm Ag metal thin film (total light transmittance of 85%) was laminated as the (A) layer in the same manner as the (A) layer. The laminate had a surface resistivity of 2Ω / □. Next, after masking with a width of 10 mm over the entire periphery, 200 cm silicon dioxide (total light transmittance 90%, oxygen transmission coefficient 1 cc / atm · m) as layer (C)2-Day, water vapor transmission coefficient 1g / m2(Day) was laminated by high frequency magnetron sputtering. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after leaving in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 70% and haze was 2.0%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 50 dB.
[0043]
Example 5
A laminate was produced in the same manner as in Example 2 except that all the (A) layers in Example 2 were changed to 60 mm Ag metal thin films (total light transmittance of 90%). The surface resistivity before lamination of the outermost silicon dioxide was 10Ω / □. The obtained laminate had a total light transmittance of 85% and a haze of 1.0%. The total light transmittance after leaving in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 83% and haze was 1.2%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 45 dB.
[0044]
Example 6
A laminate was produced in the same manner as in Example 2 except that all the (A) layers in Example 2 were changed to 175 mm Ag metal thin films (total light transmittance of 75%). The surface resistivity before lamination of the outermost silicon dioxide was 0.5Ω / □. The obtained laminate had a total light transmittance of 67% and a haze of 3.0%. The total light transmittance after being left in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 65% and haze was 3.2%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 65 dB.
[0045]
Example 7
Except that all the (A) layers in Example 2 were changed to 100 Å Ag—Pd alloy thin films [Ag: Pd (atomic ratio) = 8: 2, total light transmittance 85%], the same as in Example 2. Thus, a laminate was produced. The surface resistivity before lamination of the outermost silicon dioxide was 5Ω / □. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after leaving in a constant temperature and humidity chamber at 60 ° C. and 95% RH for 1000 hours was 70% and haze was 2.0%, and there was no change. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 50 dB.
[0046]
Example 8
Except that all the (A) layers of Example 2 were changed to 100 Å Ag—Au alloy thin films [Ag: Au (atomic ratio) = 9: 1, total light transmittance 85%], the same as Example 2 Thus, a laminate was produced. The surface resistivity before lamination of the outermost silicon dioxide was 5Ω / □. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after leaving in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 70% and haze was 2.0%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 50 dB.
[0047]
Example 9
Except that all the (A) layers of Example 2 were changed to 100 Å Ag—Cu alloy thin films [Ag: Cu (atomic ratio) = 9: 1, total light transmittance 85%], the same as Example 2 Thus, a laminate was produced. The surface resistivity before lamination of the outermost silicon dioxide was 5Ω / □. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after leaving in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 70% and haze was 2.0%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 50 dB.
[0048]
Example 10
The layer (B) of Example 2 was formed into 200Å ZnO-Al.2OThreeThin film [ZnO: Al2OThreeA laminate was prepared in the same manner as in Example 2 except that (weight ratio) = 98: 2, total light transmittance 85%. The surface resistivity before lamination of the outermost silicon dioxide was 1Ω / □. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after standing in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 68% and haze was 2.2%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 60 dB.
[0049]
Example 11
The layer (B) of Example 2 was replaced with 200 S SnO.2-Sb2OThreeThin film [SnO2: Sb2OThreeA laminate was prepared in the same manner as in Example 2 except that (weight ratio) = 95: 5, total light transmittance 85%. The surface resistivity before lamination of the outermost silicon dioxide was 1Ω / □. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after standing in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 68% and haze was 2.2%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 60 dB.
[0050]
Example 12
The layer (B) of Example 2 was changed to 200 In In.2OThree-ZnO thin film [In2OThree: ZnO (weight ratio) = 80: 20, total light transmittance 85%], a laminate was produced in the same manner as in Example 2. The surface resistivity before lamination of the outermost silicon dioxide was 1Ω / □. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after standing in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 68% and haze was 2.2%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 60 dB.
[0051]
Example 13
The layer (B) of Example 2 was changed to 200 In In.2OThree-SnO2Thin film [In2OThree: SnO2(Weight ratio) = 90: 10, total light transmittance was 85%], and a laminate was produced in the same manner as in Example 2. The surface resistivity before lamination of the outermost silicon dioxide was 1Ω / □. The obtained laminate had a total light transmittance of 70% and a haze of 2.0%. The total light transmittance after standing in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 68% and haze was 2.2%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 60 dB.
[0052]
Example 14
The layer (C) of Example 3 is made of 200 Al Al.2OThree-SiO2Thin film [Al: Si (atomic ratio) = 30: 70, total light transmittance 95%, oxygen transmission coefficient 0.5 cc / atm · m2・ Day, water vapor transmission coefficient 0.5g / m2A laminated body was produced in the same manner as in Example 3 except that [day] was changed. The surface resistivity before lamination of the outermost silicon dioxide was 5Ω / □. The obtained laminate had a total light transmittance of 75% and a haze of 2.0%. The total light transmittance after leaving in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 75% and haze was 2.0%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 50 dB.
[0053]
Example 15
The layer (C) of Example 3 was replaced with 200 mm of ZrO.2-SiO2Thin film [Zr: Si (atomic ratio) = 1: 1, total light transmittance 95%, oxygen transmission coefficient 0.5 cc / atm · m2・ Day, water vapor transmission coefficient 0.5g / m2A laminated body was produced in the same manner as in Example 3 except that [day] was changed. The surface resistivity before lamination of the outermost silicon dioxide was 5Ω / □. The obtained laminate had a total light transmittance of 75% and a haze of 2.0%. The total light transmittance after leaving in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 75% and haze was 2.0%. Moreover, the masking of the peripheral part was peeled off and a ground wire was attached with a conductive paste. The electromagnetic wave shielding characteristic was 50 dB.
[0054]
Comparative Example 1
A 100 mm Ag metal thin film (total light transmittance 85%) was laminated by DC magnetron sputtering on a biaxially stretched polyethylene terephthalate film substrate (total light transmittance 92%) having a length of 300 mm, a width of 210 mm, and a thickness of 188 μm. The obtained laminate had a surface resistivity of 5Ω / □, a total light transmittance of 80%, and a haze of 1.5%. Moreover, after leaving this laminated body in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours, the surface resistivity is 100Ω / □ or more, the total light transmittance is 50% or less, and the haze is 10% or more. In terms of appearance, discoloration of the Ag film due to oxidation was observed.
[0055]
Comparative Example 2
It laminated | stacked similarly to Example 1 except not laminating | stacking the (C) layer of Example 1. FIG. The laminate had a surface resistivity of 2Ω / □. The obtained laminate had a total light transmittance of 75% and a haze of 2.0%. The total light transmittance after being left in a constant temperature and humidity chamber of 60 ° C. and 95% RH for 1000 hours was 55% and haze was 10%, and discoloration of the Ag film was also observed in appearance.
[0056]
Comparative Example 3
A laminate was produced in the same manner as in Example 2 except that all the (A) layers in Example 2 were changed to 30 mm Ag metal thin films (total light transmittance of 92%). The metal thin film layer had a discontinuous island structure and was not sufficiently conductive (surface resistivity ∞Ω / □ before lamination of the outermost silicon dioxide layer).
[0057]
Comparative Example 4
A laminate was produced in the same manner as in Example 2 except that all the (A) layers in Example 2 were changed to 300 mm Ag metal thin films (total light transmittance of 2% or less). The obtained laminate was an opaque total reflection film (total light transmittance of 1% or less).
[0058]
【The invention's effect】
According to the present invention, it is possible to provide a transparent conductive film having excellent environmental stability, in particular, translucency and electric conductivity. Therefore, the transparent conductive film of the present invention is useful as an electromagnetic wave shielding filter, particularly as an electromagnetic wave shielding filter for plasma display.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structural example of a transparent conductive film of the present invention.
FIG. 2 is a cross-sectional view showing another configuration example of the transparent conductive film of the present invention.
FIG. 3 is a cross-sectional view showing another configuration example of the transparent conductive film of the present invention.
FIG. 4 is a cross-sectional view showing another configuration example of the transparent conductive film of the present invention.
[Explanation of symbols]
(A) Metal thin film
(B) Transparent conductive thin film
(C) Transparent gas barrier thin film
(D) Transparent polymer film

Claims (6)

透明高分子フィルム上に、(A)層/(B)層/(A)層/(C)層がこれらの順に4層積層された積層構造を少なくとも有する透明導電フィルム。
(A)層;Agを主成分とする厚さ50Å〜200Åの金属薄膜層。
(B)層;In、Sn、Cd、Zn、AlおよびSbからなる群より選ばれる一種以上の金属の酸化物を有してなる透明導電薄膜層。
(C)層;Mg、Ca、Al、Si、Ti、ZrおよびCeからなる群より選ばれる一種以上の金属の酸化物を有してなる透明ガスバリア薄膜層。
A transparent conductive film having at least a laminated structure in which four layers of (A) layer / (B) layer / (A) layer / (C) layer are laminated in this order on a transparent polymer film.
(A) Layer: a metal thin film layer having a thickness of 50 to 200 mm mainly composed of Ag.
(B) Layer: A transparent conductive thin film layer comprising an oxide of one or more metals selected from the group consisting of In, Sn, Cd, Zn, Al and Sb.
(C) Layer: A transparent gas barrier thin film layer comprising an oxide of one or more metals selected from the group consisting of Mg, Ca, Al, Si, Ti, Zr and Ce.
2つの(A)層のうち透明高分子フィルムから上層側にある(A)層に外部からの端子を電気的に接続し得るように、該(A)層の上面が外周縁部において露出している請求項1記載の透明導電フィルム。  The upper surface of the (A) layer is exposed at the outer peripheral edge so that an external terminal can be electrically connected to the (A) layer on the upper layer side from the transparent polymer film of the two (A) layers. The transparent conductive film according to claim 1. 透明高分子フィルム上に、(A)層/(C)層/(A)層/(C)層がこれらの順に4層積層された積層構造を有し、両方の(C)層の外周形状が(A)層の外周形状より小さいものであり、2つの(A)層が電気的に接続されているものであり、かつ2つの(A)層のうち透明高分子フィルムから上層側にある(A)層が外部からの端子を電気的に接続し得るものである透明導電フィルム。
(A)層;Agを主成分とする厚さ50Å〜200Åの金属薄膜層。
(C)層;Mg、Ca、Al、Si、Ti、ZrおよびCeからなる群より選ばれる一種以上の金属の酸化物を有してなる透明ガスバリア薄膜層。
On the transparent polymer film , (A) layer / (C) layer / (A) layer / (C) layer has a laminated structure in which four layers are laminated in this order, and the outer peripheral shape of both (C) layers Is smaller than the outer peripheral shape of the (A) layer, the two (A) layers are electrically connected, and the two (A) layers are on the upper layer side from the transparent polymer film. (A) The transparent conductive film whose layer can connect the terminal from the outside electrically.
(A) Layer: a metal thin film layer having a thickness of 50 to 200 mm mainly composed of Ag.
(C) Layer: A transparent gas barrier thin film layer comprising an oxide of one or more metals selected from the group consisting of Mg, Ca, Al, Si, Ti, Zr and Ce.
透明高分子フィルムと積層構造の間に、(C)層を有するものである請求項1〜3のいずれか一項に記載の透明導電フィルム。The transparent conductive film according to any one of claims 1 to 3, which has a (C) layer between the transparent polymer film and the laminated structure. 請求項1〜4のいずれか一項に記載の透明導電フィルムを用いてなる電磁波シールドフィルター。The electromagnetic wave shielding filter which uses the transparent conductive film as described in any one of Claims 1-4. プラズマディスプレイに用いられる請求項5記載の電磁波シールドフィルター。  The electromagnetic wave shielding filter according to claim 5, which is used for a plasma display.
JP17955897A 1997-07-04 1997-07-04 Transparent conductive film and electromagnetic wave shielding filter using the same Expired - Fee Related JP3924849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17955897A JP3924849B2 (en) 1997-07-04 1997-07-04 Transparent conductive film and electromagnetic wave shielding filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17955897A JP3924849B2 (en) 1997-07-04 1997-07-04 Transparent conductive film and electromagnetic wave shielding filter using the same

Publications (2)

Publication Number Publication Date
JPH1120076A JPH1120076A (en) 1999-01-26
JP3924849B2 true JP3924849B2 (en) 2007-06-06

Family

ID=16067844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17955897A Expired - Fee Related JP3924849B2 (en) 1997-07-04 1997-07-04 Transparent conductive film and electromagnetic wave shielding filter using the same

Country Status (1)

Country Link
JP (1) JP3924849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177015A (en) * 2008-10-14 2011-09-07 Jx日矿日石金属株式会社 Metal foil with electric resistance film and method for manufacturing the metal foil

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058896A (en) * 2000-02-01 2006-03-02 Mitsui Chemicals Inc Filter for plasma display, and display device and method for manufacturing the same
JP2001328199A (en) * 2000-05-18 2001-11-27 Bridgestone Corp Laminated film
KR101096128B1 (en) * 2004-03-31 2011-12-20 다이니폰 인사츠 가부시키가이샤 Antistatic antireflective film capable of preventing occurrence of interference fringe
US7733025B2 (en) 2004-12-01 2010-06-08 Lg Electronics Inc. Plasma display panel
KR100709216B1 (en) * 2005-09-30 2007-04-19 삼성에스디아이 주식회사 Plasma display panel
US8138429B2 (en) 2008-12-17 2012-03-20 3M Innovative Properties Company Electromagnetic shielding article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177015A (en) * 2008-10-14 2011-09-07 Jx日矿日石金属株式会社 Metal foil with electric resistance film and method for manufacturing the metal foil

Also Published As

Publication number Publication date
JPH1120076A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP4666087B2 (en) Protection plate for plasma display
KR100587200B1 (en) Electromagnetic wave filter for plasma display panel
JP4837654B2 (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
JP5023556B2 (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
WO2004042436A1 (en) Optical filter
EP1819210B1 (en) Electroconductive laminate, manufacturing process thereof, electromagnetic wave shielding film and protective plate for plasma display
JP4893097B2 (en) Conductive laminate and protective plate for plasma display
JP2000294980A (en) Translucent electromagnetic wave filter and fabrication thereof
JP2012009873A (en) Conductive stacked body, manufacturing method for the same, electromagnetic wave shielding film for plasma display, and protection plate for plasma display
WO2003037056A1 (en) Substrate with electromagnetic shield film
JP3053668B2 (en) Heat shielding film
JP3924849B2 (en) Transparent conductive film and electromagnetic wave shielding filter using the same
JP4355327B2 (en) Protection plate for plasma display
JP2006156927A (en) Electromagnetic wave cutoff film for plasma display, and protective plate for plasma display
JP2006313918A5 (en)
JP2000059082A (en) Electromagnetic wave filter
JP3924846B2 (en) Transparent conductive film
JP2005072255A (en) Electromagnetic wave shielding sheet for plasma display and method of manufacturing the same
JP2006243757A (en) Protective plate for plasma display and manufacturing method thereof
JP2006133799A (en) Protective plate for plasma display and manufacturing method thereof
JP2000106044A (en) Surface resistance lowering method for transparent conductive film
JP2000062082A (en) Electromagnetic wave shielded film
JP4086905B2 (en) Protection plate for plasma display and manufacturing method thereof
JP2006163428A (en) Protective plate for plasma display and method for producing the same
JP4135235B2 (en) Laminated body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees